
Bertrand’s postulate
Bertrand’s postulate states that for each integer n ≥ 2 there is a prime number

p with n < p < 2n. The following proof is due to Erdős. This account is based
on my reading of Hardy and Wright, Introduction to the Theory of Numbers and
Rose, A Course in Number Theory (both Oxford University Press).

We need to prove a bound due to Chebyshev on the theta function. This is
defined by

ϑ(n) =
∑
p≤n

log p,

where p runs over primes. Chebyshev’s bound is ϑ(n) ≤ n log 4 for all integers n.
We use induction on n. For n = 1 and n = 2 the claim is obvious. If n ≥ 4 is
even then the case of n is immediate from that of n − 1. So let n = 2m + 1 be
odd with m ≥ 1. The binomial coefficient

(
2m+1

m

)
occurs twice in the expansion

of (1 + 1)2m+1, and so
(

2m+1
m

)
≤ 4m. But each prime p with m + 1 < p ≤ 2m + 1

divides
(

2m+1
m

)
and so

ϑ(2m + 1)− ϑ(m + 1) ≤ log

(
2m + 1

m

)
≤ log(4m) = m log 4.

Inductively ϑ(m + 1) ≤ (m + 1) log 4, and so ϑ(2m + 1) ≤ (2m + 1) log 4, estab-
lishing Chebyshev’s bound.

Now to the main proof. Suppose that n ≥ 2 and there is no prime p with
n < p < 2n. Suppose first that n ≥ 211 = 2048. As

(
2n
n

)
is the largest of the

2n + 1 terms in the expansion of (1 + 1)2n then
(

2n
n

)
≥ 4n/(2n + 1). For a prime

p we shall denote the highest power of p dividing
(

2n
n

)
by pr(p,n). But

r(p, n) =
blog 2n/ log pc∑

j=1

(
b2n/pjc − 2bn/pjc

)
.

Each of these terms is 0 or 1, and so r(p, n) ≤ blog 2n/ log pc. Consequently
pr(p,n) ≤ 2n. For p >

√
2n we have blog 2n/ log pc ≤ 1. Hence for p >

√
2n

we have r(p, n) = b2n/pc − 2bn/pc. By assumption there are no primes p with
n < p < 2n. If 2n/3 < p ≤ n, then p >

√
2n and r(p, n) = b2n/pc − 2bn/pc =

2− 2 = 0. Thus each prime factor of
(

2n
n

)
is at most 2n/3. Hence(

2n

n

)
=

∏
p≤2n

pr(p,n) ≤
∏

p≤
√

2n

2n ·
∏

p≤2n/3

p ≤ (2n)
√

2n exp(ϑ(2n/3)).

Chebyshev’s inequality gives

4n

2n + 1
≤
(

2n

n

)
≤ (2n)

√
2n42n/3.
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For our values of n, 2n + 1 < (2n)2 and so

4n/3 ≤ (2n)2+
√

2n.

Also 2 ≤
√

2n/3 and so

4n/3 ≤ (2n)4
√

2n/3.

Taking logarithms gives √
2n log 2 ≤ 4 log 2n.

Write 2n = 4t so that t ≥ 6. We then get

2t/t ≤ 8.

The function x 7→ 2x/x is increasing for x > 1/ log 2. So 2t/t ≥ 26/6 > 10, a
contradiction.

Now assume 2 ≤ n < 211. Then one of the prime numbers 3, 5, 7, 13, 23, 43,
83, 163, 317, 631, 1259, 2503 satisfies n < p < 2n as each is less than twice its
predecessor. This completes the proof.
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