Bertrand's postulate

Bertrand's postulate states that for each integer $n \geq 2$ there is a prime number p with $n<p<2 n$. The following proof is due to Erdős. This account is based on my reading of Hardy and Wright, Introduction to the Theory of Numbers and Rose, A Course in Number Theory (both Oxford University Press).

We need to prove a bound due to Chebyshev on the theta function. This is defined by

$$
\vartheta(n)=\sum_{p \leq n} \log p,
$$

where p runs over primes. Chebyshev's bound is $\vartheta(n) \leq n \log 4$ for all integers n. We use induction on n. For $n=1$ and $n=2$ the claim is obvious. If $n \geq 4$ is even then the case of n is immediate from that of $n-1$. So let $n=2 m+1$ be odd with $m \geq 1$. The binomial coefficient $\binom{2 m+1}{m}$ occurs twice in the expansion of $(1+1)^{2 m+1}$, and so $\binom{2 m+1}{m} \leq 4^{m}$. But each prime p with $m+1<p \leq 2 m+1$ divides $\binom{2 m+1}{m}$ and so

$$
\vartheta(2 m+1)-\vartheta(m+1) \leq \log \binom{2 m+1}{m} \leq \log \left(4^{m}\right)=m \log 4 .
$$

Inductively $\vartheta(m+1) \leq(m+1) \log 4$, and so $\vartheta(2 m+1) \leq(2 m+1) \log 4$, establishing Chebyshev's bound.

Now to the main proof. Suppose that $n \geq 2$ and there is no prime p with $n<p<2 n$. Suppose first that $n \geq 2^{11}=2048$. As $\binom{2 n}{n}$ is the largest of the $2 n+1$ terms in the expansion of $(1+1)^{2 n}$ then $\binom{2 n}{n} \geq 4^{n} /(2 n+1)$. For a prime p we shall denote the highest power of p dividing $\binom{2 n}{n}$ by $p^{r(p, n)}$. But

$$
r(p, n)=\sum_{j=1}^{\lfloor\log 2 n / \log p\rfloor}\left(\left\lfloor 2 n / p^{j}\right\rfloor-2\left\lfloor n / p^{j}\right\rfloor\right) .
$$

Each of these terms is 0 or 1 , and so $r(p, n) \leq\lfloor\log 2 n / \log p\rfloor$. Consequently $p^{r(p, n)} \leq 2 n$. For $p>\sqrt{2 n}$ we have $\lfloor\log 2 n / \log p\rfloor \leq 1$. Hence for $p>\sqrt{2 n}$ we have $r(p, n)=\lfloor 2 n / p\rfloor-2\lfloor n / p\rfloor$. By assumption there are no primes p with $n<p<2 n$. If $2 n / 3<p \leq n$, then $p>\sqrt{2 n}$ and $r(p, n)=\lfloor 2 n / p\rfloor-2\lfloor n / p\rfloor=$ $2-2=0$. Thus each prime factor of $\binom{2 n}{n}$ is at most $2 n / 3$. Hence

$$
\binom{2 n}{n}=\prod_{p \leq 2 n} p^{r(p, n)} \leq \prod_{p \leq \sqrt{2 n}} 2 n \cdot \prod_{p \leq 2 n / 3} p \leq(2 n)^{\sqrt{2 n}} \exp (\vartheta(2 n / 3))
$$

Chebyshev's inequality gives

$$
\frac{4^{n}}{2 n+1} \leq\binom{ 2 n}{n} \leq(2 n)^{\sqrt{2 n}} 4^{2 n / 3}
$$

For our values of $n, 2 n+1<(2 n)^{2}$ and so

$$
4^{n / 3} \leq(2 n)^{2+\sqrt{2 n}}
$$

Also $2 \leq \sqrt{2 n} / 3$ and so

$$
4^{n / 3} \leq(2 n)^{4 \sqrt{2 n} / 3}
$$

Taking logarithms gives

$$
\sqrt{2 n} \log 2 \leq 4 \log 2 n
$$

Write $2 n=4^{t}$ so that $t \geq 6$. We then get

$$
2^{t} / t \leq 8
$$

The function $x \mapsto 2^{x} / x$ is increasing for $x>1 / \log 2$. So $2^{t} / t \geq 2^{6} / 6>10$, a contradiction.

Now assume $2 \leq n<2^{11}$. Then one of the prime numbers $3,5,7,13,23,43$, $83,163,317,631,1259,2503$ satisfies $n<p<2 n$ as each is less than twice its predecessor. This completes the proof.

