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Is There a “Simple” Proof of Fermat’s Last Theorem?
Introduction
Fermat's Last Theorem (FLT) states that:

 For all n > 2, there do not exist x, y, z such that xn + yn = zn,
where x, y, z, n, are positive integers.

 Until the mid-1990s, this was the most famous unsolved problem in mathematics.  It was 
originally stated by the 17th century mathematician Pierre de Fermat (1601-65).

 “In about 1637, he annotated his copy (now lost) of Bachet’s translation of Diophantus’ 
Arithmetika with the following statement:

Cubem autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et gener-
aliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas est 
dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non 
caparet. 

“In English, and using modern terminology, the paragraph above reads as: 

There are no positive integers such that xn + yn = zn for n > 2 . I’ve found a remarkable 
proof of this fact, but there is not enough space in the margin [of the book] to write it.”

                                       — Dept. of Mathematics, University of North Carolina at Charlotte 
                                            (http://www.math.uncc.edu/flt.php)

For more than 350 years, no one was able to find a proof using the mathematical tools at Fer-
mat’s disposal, or using any other, far more advanced, tools either, although the attempts produced 
numerous results, and at least one new branch of algebra, namely, ideal theory.  Then in summer 
of 1993, a proof was announced by Princeton University mathematics professor Andrew Wiles. 
(Actually, Wiles announced a proof of a special case of the Shimura-Taniyama Conjecture — a 
special case that implies FLT.)1  Wiles’ proof was 200 pages long and had required more than 
seven years of dedicated effort.  A gap in the proof was discovered later that summer, but Wiles, 
working with Richard Taylor, was able to fill it by the end of Sept. 1994.

Did Fermat Prove His Theorem?
It is safe to say that virtually all professional mathematicians believe that the answer to this 

question is no. For example:
“Did Fermat prove this theorem?
“No he did not. Fermat claimed to have found a proof of the theorem at an early stage in his 

career. Much later he spent time and effort proving the cases n = 4 and n = 5 . Had he had a proof 
to his theorem, there would have been no need for him to study specific cases.

“Fermat may have had one of the following “proofs'” in mind when he wrote his famous com-
ment.

 “Fermat discovered and applied the method of infinite descent, which, in particular can be 
used to prove FLT for n = 4 . This method can actually be used to prove a stronger statement than 

1. Aczel, Amir D., Fermat’s Last Theorem, Dell Publishing, N. Y., 1996, pp. 123 - 134.
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FLT for n = 4 , viz, x4 + y4 = z2 has no non-trivial integer solutions. It is possible and even likely 
that he had an incorrect proof of FLT using this method when he wrote the famous theorem”.

“He had a wrong proof in mind. The following proof, proposed first by Lamé was thought to 
be correct, until Liouville pointed out the flaw, and by Kummer which latter became and[sic] 
expert in the field. It is based on the incorrect assumption that prime decomposition is unique in 
all domains.

“The incorrect proof goes something like this:
“We only need to consider prime exponents (this is true). So consider xp + yp = zp . Let r be a 

primitive p-th root of unity (complex number).
“Then the equation is the same as:

“(x + y)(x + ry)(x + r2y)...(x + r(p - 1)y) = zp

“Now consider the ring of the form:

“a1 + a2 r + a3 r2 + ... + a(p - 1) r
(p - 1)

“where each ai is an integer.

“Now if this ring is a unique factorization ring (UFR), then it is true that each of the above fac-
tors is relatively prime. From this it can be proven that each factor is a pth power and from this 
FLT follows.

“The problem is that the above ring is not an UFR in general.
“Another argument for the belief that Fermat had no proof — and, furthermore, that he knew 

that he had no proof — is that the only place he ever mentioned the result was in that marginal 
comment in Bachet’s Diophantus. If he really thought he had a proof, he would have announced 
the result publicly, or challenged some English mathematician to prove it. It is likely that he found 
the flaw in his own proof before he had a chance to announce the result, and never bothered to 
erase the marginal comment because it never occurred to him that anyone would see it there.

“Some other famous mathematicians have speculated on this question. Andre Weil, writes:

“‘Only on one ill-fated occasion did Fermat ever mention a curve of higher genus xn + yn = zn 
, and then[sic] hardly remain any doubt that this was due to some misapprehension on his part [for 
a brief moment perhaps [he must have deluded himself into thinking he had the principle of a gen-
eral proof.’

“Winfried Scharlau and Hans Opolka report:

 “‘Whether Fermat knew a proof or not has been the subject of many speculations. The truth 
seems obvious ...[Fermat's marginal note] was made at the time of his first letters concerning 
number theory [1637]...as far as we know he never repeated his general remark, but repeatedly 
made the statement for the cases n = 3 and 4 and posed these cases as problems to his correspon-
dents [he formulated the case n = 3 in a letter to Carcavi in 1659 [All these facts indicate that Fer-
mat quickly became aware of the incompleteness of the [general] “proof” of 1637. Of course, 
there was no reason for a public retraction of his privately made conjecture.’
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“However it is important to keep in mind that Fermat's ‘proof’ predates the Publish or Perish 
period of scientific research in which we are still living.”

                                       — Dept. of Mathematics, University of North Carolina at Charlotte,
                                            (http://www.math.uncc.edu/flt.php) Jan. 31, 2004 (brackets (except
                                           in “[sic]”s) and quotation marks as in the original as they appeared
                                           on the author’s computer screen)

When Did Fermat Make the Note in the Margin?
Mathematicians who are normally cautious to a fault about making statements even with all 

the material before them that they need in order to prove the validity of their statements, seem to 
become gifted with apodictic insight when discussing the history of Fermat’s efforts to prove his 
theorem, even though much evidence is missing and almost certainly will never be found. 

Nevertheless, contrary to the standard view, it seems entirely possible that Fermat got the idea 
of his theorem in 1637 while reading Bachet, made no note in the margin at that time but instead 
set out to prove the theorem as described in the above-cited letters.  Then, late in life — after 1659 
— possibly while re-reading Bachet, he suddenly thought of his proof, and made a note of its dis-
covery in the nearest place to hand, namely, the margin of the book.

Why Should We Hold Out Any Hope That a “Simple” Proof Exists?
The author is well aware that the overwhelming consensus in the mathematics community is 

that no simple proof of FLT exists.  So the reader is perfectly justified in asking,  “Why bother 
spending even five minutes more on the question of a ‘simple’ proof?”  The author thinks there 
are several reasons:

•  The computer has pushed the deductive horizon far beyond that of even the best mathemati-
cians of the past, where by “deductive horizon” the author means the limit of our ability to carry 
out long deductions.  For example, the author believes that now or in the near future, it will be 
possible to input to a computer program all the theorems and lemmas and rules of deduction that 
scholars have reason to believe that Fermat had at his disposal at the time he made the famous 
note in the margin of his copy of Diophantus, and to ask the program to find a proof of FLT.  For a 
further discussion, see “Can We Find Out If Fermat Was Right After All?” on page26.

•  New conceptual machinery is constantly appearing that might make a simple proof possible. 
The author is thinking specifically of computation theory.  An attempt to use some of this machin-
ery is given in the section ““Computational” Approaches” on page26.

•  We don’t know all the approaches that have been tried in the past, since the mathematics 
community records only the (published) successes, however partial, that were achieved in the 
long years of attempting to prove the Theorem.  Furthermore, from the beginning of the 19th cen-
tury, if not earlier, the professionalization of mathematics tended to result in the relegation of the 
work of amateurs to the crackpot category.  The author was told by several professional mathema-
ticians prior to Wiles’ proof, that whenever an envelope arrives on their desk containing a manu-
4
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script with “Fermat’s Last Theorem” in the title, and the manuscript is by an author who is not a 
tenured professor, the manuscript goes unread straight into the wastebasket.  Such a practice was, 
we now know, justified in the past regarding claims of solutions to the three classic unsolved 
problems of the Greeks — squaring the circle, doubling the cube, and trisecting the angle, each to 
be done using only straightedge and compass — because, as was proved in the 19th century, solu-
tions to these problems, under the constraint of using only straightedge and compass, do not exist.  
But FLT is different, in that we know now that it is true.  No doubt all, or very nearly all, of the 
manuscripts that mathematicians received from amateurs1 were, in fact, flawed, if not outright 
crackpot, works.  Furthermore, overworked professional mathematicians have a perfect right to 
spend their time on the material they think it worth spending their time on.  Nevertheless, it is pos-
sible, however unlikely, that one of the amateurs’ manuscripts, even if it contained errors, con-
tained the germ of an idea that might have led to a “simple” proof of FLT.  We will never know. 

•  “Wiles’ proof used some mathematics that depends on the Axiom of Choice.  But there is a 
theorem that any theorem of number theory that uses the Axiom of Choice has a proof that 
doesn’t.  So, somewhere, there is a simpler, or at least less high-powered, proof of Fermat.” — 
email from a friend.

•  Finally, it is possible (however unlikely) that certain approaches to a possible solution were 
discarded time and again on the grounds that if a proof were that simple someone would have 
already published it.  The author believes that the approaches described under “Approach by 
“Geometry of Congruences”” on page10 and under ““Arithmetical” Version of the Approach by 
Induction on Inequalities” on page17 might be among these.

Brief Summary of Approaches Described in this Paper
The approaches to a proof of FLT that are described in this paper are as follows:

•  “Vertical” Approaches

•  Approach by “Geometry of Congruences”

•  Approach by Induction on Inequalities

•  “Computational” Approaches

The “Vertical” approaches are motivated by the question, “If a counterexample existed, how 
would we ‘get there’?”  The meaning of this question will become clearer if we consider briefly 
the strategy that was pursued throughout most of the history of attempts to prove FLT, namely, the 
strategy of progressively expanding the set of exponents n for which FLT was true. (The fact that 
FLT was true for each of these n meant that it was true for all multiples of these n, since if  xn + yn 
≠ zn for all x, y, z, then certainly (uk)n + (vk)n ≠ (wk)n, for all u, v, w, k ≥ 1.)   Thus, Fermat claimed, 
in a letter to Frénicle de Bessy, that he had proved the Theorem for the case n = 4; but he did not 
give full details2.  Euler gave an incomplete proof for the case n = 3 in the early 18th century; 

1. And yet Fermat, and Pascal, and many of the leading mathematicians of the 17th century were amateurs!
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Gauss gave a complete proof in the early 19th.  Then, also in the early 19th century, Dirichlet and 
Legendre proved it for n = 5 and Dirichlet in 1832 proved it for n = 14.  Lamé proved it for n = 7 
in 1839.  Kummer then proved that the Theorem was true for all “regular” primes, a class of 
primes he defined. Among the primes < 100, only 37, 59, and 67 are not regular. The set of n for 
which the Theorem was true continued to be expanded in succeeding years. The author will call 
this the “Horizontal Approach”, because for each n the goal is to prove that FLT is true for all x, y, 
z, here imagined as constituting a “horizontal” set relative to the “vertical” direction of progres-
sively increasing n.

But there is another approach, one that the author calls the “Vertical” Approach.  Here, we 
assume that x, y, z are elements of a counterexample to FLT, then we attempt to find the n such 
that xn + yn = zn  , proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., proceeding in the “vertical” 
direction of progressively increasing n relative to the fixed x, y, z.  If we can show that we can 
never “get to” such an n, then we will have a proof of FLT.  Another way of regarding the Vertical 
Approach is to say that it asks what sequence of calculations would terminate in the counterexam-
ple, assuming x, y, z were known to be elements of a counterexample, and assuming the calcula-
tions were the sequence of comparisons of xn + yn  with zn for n = 3, then for n = 4, then for n = 5, 
etc.  This is, in fact, the form in which the Vertical Approach first occurred to the author when he 
became interested in FLT.  The author was at the time working as a progammer, and thus immedi-
ately thought about the task of trying to find a counterexample using the computer. 

The “Computational Approaches” in the list above were likewise inspired by the author’s 
work as a programmer, though here the underlying idea is different.  The first computational 
approach is based on the behavior of a program that could compute both the left-hand and right-
hand sides of the FLT inequality.  The second computational approach is based on an idea from 
algorithmic information theory.

Most Promising Approaches, in the Author’s Opinion
At present, the author believes that the following are the most promising approaches to a 

“simple” proof of FLT:

“An Attempted Implementation of the Approach by “Geometry of Congruences”” on page15.
“Strategy Using Ratios Between FLT Inequalities” on page18;

The author will pay $150 to the first person who can find errors in both these approaches such 
that the author cannot repair all the errors in at least one approach, within five days. Furthermore, 
the author will offer shared authorship to the winner of the prize if he or she can fix the errors in at 
least one approach in a way that leads directly to publication.  Note: before submitting descrip-
tions of errors, competitors for the prize must query the author as to the current status of the 
prize. The prize will not be awarded without this preliminary query.

Initial Assumptions, Definitions, and Properties of Numbers Involved
We are trying to prove Fermat’s Last Theorem (FLT), which states that:

2. Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University Press, N.Y., 
1972, p. 276.
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 For all n > 2, there do not exist x, y, z such that xn + yn = zn,
where x, y, z, n, are positive integers.

1. We will use proof by contradiction.  That is, we will assume there exist positive integers x, 
y, z such that for some n  > 2, 

(1)   xn + yn = zn.  

2. Without loss of of generality, we let n = p, the smallest odd prime such that (1) holds.  
Therefore from now on, we will usually write p instead of n when referring to an assumed coun-
terexample.

3. Also without loss of generality,  we assume that x, y, z are relatively prime in pairs, i.e., that 

(1.5)   (x, y) = (y, z) = (x, z) = 1.

(1.8)   Clearly, exactly one of x, y, z must be even.

Lemma 0.0. 
If xp + yp =  zp, then x + y > z.

(Students of the phenomenon of mathematical intuition might be interested to know that from 
the moment the author realized this simple fact, he was convinced this would be part of a “simple” 
proof of FLT if he was able to discover one.  The author has no explanation for his conviction, nor 
does he claim that his conviction will be vindicated.)

Proof of Lemma 0.0.
Assume the contrary, i.e., that x + y ≤ z.  Then, in the case that x + y = z, (x + y)p = zp.  By the 

binomial theorem, this implies that:

Clearly, the equation cannot hold if xp + yp = zp.  A similar argument applies if x + y < z. 

Remark:
By the contrapositive of Lemma 0.0,  if x + y = z, then x, y, z cannot be elements of a counter-

example.

xp p
1 

  xp 1– y … p
p 1– 

  xyp 1– yp+ + + + zp=
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Lemma 0.5. 
If x2 +  y2 = z2, then x, y, z cannot be elements of a counterexample.

Proof 1 of Lemma 0.5:

Follows directly from Lemma 0.0.  

Proof 2 of Lemma 0.5:

1. Let x2 + y2 = z2.

2. Raise both sides of this equation to the power p/2.  We get:

 

Remark:
Lemma 0.5 states that no elements of a Pythagorean triple can be elements of a counterexam-

ple.

Examples of Lemma 0.5:
32 + 42 = 52, but 33 + 43 < 53 (27 + 64 = 91, which is < 125), and 311 + 411 < 511 (177,147 + 

4,194,304 = 4,371,451, which is < 48,828,125).  72 + 242 = 252, but 73 + 243 < 253 (343 + 13,824 
= 14,167, which is < 15,625).  

Lemma 0.6
If FLT is true for the exponent n, then it is true for all multiples of n.

Proof of Lemma 0.6:
If  xn + yn ≠ zn for all x, y, z, then certainly (uk)n + (vk)n ≠ (wk)n, for all u, v, w, k ≥ 1. 

Lemma 1.0. 
p < x < y < z. 

Proof of Lemma 1.0.  
We quote from Ribenboim, Paulo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, 

N.Y., 1979, p. 226. 
“In 1856, Grünert proved:
“(1A) If 0 < x < y < z are integers and xn + yn = zn, then x > n.
“Proof:

x
p

y
p

+ x
2

y
2

+( )
p 2⁄

< z
2( )

p 2⁄
z

p
= =
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“xn = zn – yn = (z –  y)(zn– 1+ zn– 1y+ ... + yn– 1) > (z –  y)nyn– 1 .
“Hence

“and

“so n < x.”

Lemma 2.0. 
z < 2y.

Proof of Lemma 2.0.
 xn + yn < 2yn < (2y)n, so z cannot be ≥ 2y. 

An Elementary Question and Its Answer
Before we proceed, we should ask a question which it is hard to believe was not asked, and 

answered, at the very latest in the 19th century, as soon as the notion of a field of numbers had 
been formalized.  (Informally, a field is a set of numbers that behaves “like” the rationals under 
addition, subtraction, multiplication, and division, except that the field may or may not have the 
property of unique factorization into primes.)  The only reason the author asks the question here is 
that he has not come across it in the FLT literature he has examined thus far. The question is sim-
ply this:

Does there exist a field F in which a non-trivial factorization of the form (homogeneous poly-
nomial) P = xp + yp – zp exists, and if so, what are all such fields, and what are the factorizations 
in each such field?

The importance of the question lies simply in this: (1) if a counterexample exists, then P = 0; 
(2) if a factorization exists, then at least one of the factors of P must = 0.   From the latter fact, it 
might be possible to derive a contradiction. For example, if all factors of P are of the form (x + 
r(f(y, z))), where r is an irrational number, e.g., a complex root of 1, and f(y, z) is a rational expres-
sion in y, z, then we would have a proof of FLT, because this would imply that x = –r(f(y, z))) is an 
irrational number, contrary to the requirements of FLT.

However, as a mathematician has pointed out to the author, there does not exist a non-trivial 
factorization of P over any of the fields we are interested in (i.e., number fields of characteristic 
0).  Furthermore, nothing about the existence or non-existence of counterexamples can be inferred 
from this fact.

0 z y–( ) x
n

ny
n 1–

--------------- x
n
---< < <

y 1+ z y x
n
---+<≤
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Fermat’s “Method of Infinite Descent”
“Fermat invented the method of infinite descent and it was an invention of which he was 

extremely proud.  In a long letter written toward the end of his life he summarized his discoveries 
in number theory and he stated very definitely that all his proofs used this method. Briefly put, the 
method proves that certain properties or relations are impossible for whole numbers by proving 
that if they hold for any numbers they would hold for some smaller numbers; then, by the same 
argument, they would hold for some numbers that were smaller still, and so forth ad infinitum, 
which is impossible because a sequence of positive whole numbers cannot decrease indefinitely.” 
— Edwards, Harold M., Fermat’s Last Theorem, Springer-Verlag, N.Y., 1977, p. 8.

The Vertical Approach described above under “Brief Summary of Approaches Described in 
this Paper” on page5 can be run in the “downward” direction as well as the upward, and in that 
case it becomes similar to Fermat’s method of infinite descent.  This downward-direction 
approach is discussed below under “An Attempted Implementation of the Approach by “Geome-
try of Congruences”” on page15.  In light of Fermat’s statement that all his proofs used the 
method of infinite descent, which then must be taken to include his claimed proof of FLT, it seems 
appropriate that we thoroughly explore any approach that is similar to his method.

Approach by “Geometry of Congruences”
In this Approach, we attempt to show that the assumption of a counterexample implies a con-

tradiction between congruences pertaining to the counterexample, and congruences pertaining to 
exponents for which FLT is known (say, pre-1990) to be true.

Preliminaries
The “Lines-and-Circles” Model of Congruence

The Approach is motivated by a “geometrical” model of congruence.  In this model, an infi-
nite sequence of circles are positioned at equal distances, one above the other (see Fig. 1).  
10
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      Figure 1.  “Geometrical” model of positive integers congruent mod 5.

For the modulus m, each circle is divided equally into m segments as shown (here, m = 5).  
Vertical lines pass through the start of each segment.  All integers congruent to a given minimum 
residue r mod m lie on the same vertical line, with r at the start of the line.

We refer to the circles as levels mod m (or merely levels when m is understood), and number 
them 0, 1, 2, ... beginning with the lowest one.  The level numbers are the quotients of all numbers 
on that level when divided by m.  Thus, in our example, 14 ÷ 5 yields the quotient 2 and the 
remainder 4, so 14 is on level 2 and line 4.  We sometimes refer to level  0 as the base level mod m 
(or merely the base level when m is understood).  

In the “Geometry of Congruences” Approach, we define a potential counterexample <x, y, z, 
n, m> (here n need not be a prime) as a congruence xn + yn  ≡ zn mod m, and we imagine xn, yn, 
and zn as occupying positions on the vertical lines in our geometrical model of congruence mod 
m.  Similarly, we define a non-counterexample <x, y, z, n, m> as a congruence xn + yn is not ≡ zn 
mod m, and we imagine xn, yn, and zn as occupying positions on the vertical lines in our geometri-
cal model of congruence mod m.  (The justification for our calling the non-congruence a non-
counterexample is (1.91) (c) below.)  We then consider, for a given modulus m, the relationship 
between potential counterexamples, and the relationship between non-counterexamples.

Congruences Pertaining to Equalities, and Congruences Pertaining to Inequalities
We will be using several  facts of elementary number theory that relate congruences pertaining 

to equalities, and congruences pertaining to inequalities.  These facts are as follows:

.

.

0
1

23
4

5
6

78

9

11
1213

14 10

.

0

1

2

11



Is There a “Simple” Proof of Fermat’s Last Theorem?
For equalities:

(1.90)  

(a) If a + b, c < m, and a + b  = c, then a + b ≡ c mod m. 

(b) If a + b ≡ c mod m, and a  ≡ a′ mod m, and b  ≡ b′ mod m, and c  ≡ c′ mod m, then a′ + b′ ≡ 
c′  mod m.

For inequalities:

(1.91)  

(a) If a + b, c < m, and a + b  ≠ c, then a + b is not ≡ c mod m. 

(b) Assume a  ≡ a′ mod m, and b  ≡ b′ mod m, and c  ≡ c′ mod m. Then:
 If a + b is not ≡ c mod m then a′ + b′ is not ≡ c′ mod m.

Proof of (1.91) (b):
If a  ≡ a′ mod m, and b  ≡ b′ mod m, and c  ≡ c′ mod m, then, by definition of congruence, this 

implies that there exist integers h, j, k such that a′ = a + hm, b′ = b + jm and c′ = km.  
We prove the contrapositive of our statement.
Assume a′ + b′  ≡ c′  mod m.  Then by definition of congruence, this implies that a + b + (h + 

j − k)m = c, which by definition of congruence implies that a + b ≡ c mod m.   

(c) If a + b is not ≡ c mod m, then a + b ≠ c. 

In addition, we will need Fermat’s Little Theorem:

(1.92)  

If q is a prime and (a, q) = 1 then aq - 1 ≡ 1 mod q.

Multiplying both sides of the congruence in (1.92) repeatedly by a yields

  a(q - 1) + 1 ≡ a mod q,
  a(q - 1) + 2 ≡ a2 mod q,
  a(q - 1) + 3 ≡ a3 mod q,
...
Thus (q - 1) is a modulus that defines a set of (q - 1) congruence classes.

Discussion of the Approach by “Geometry of Congruences”
Given three positive integers a, b, and c, exactly one of two possibilities must hold: either a + 
12
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b = c or a + b ≠ c.  However, when we bring congruence into the picture, more possibilities 
present themselves.  First, we can have, for m ≥ 2:

a + b ≡ c mod m, in which case a + b may or may not equal c;
a + b is not ≡ c mod m, in which case, by (1.91) (c) we know that a + b ≠ c.

Second, congruence mod m for any m ≥ 2,  allows us to “reduce the infinite to the finite”.  
That is, it enables us to partition, in a systematic way, the infinite set of positive integers into a 
finite set of m congruence classes.  And, thanks to Fermat’s Little Theorem, and Euler’s Generali-
zation of the Theorem1, it allows us, for appropriate m, to “reduce the infinite set of powers of 
integers to the finite”.  That is, it allows us to partition the infinite set of powers into a finite set of 
congruence classes — q – 1 classes in cases where Fermat’s Little Theorem applies (see  (1.92)). 

To give an example of how this reduction into finite classes might be of use in our pursuit of a 
proof of FLT, consider the following lemma.

Lemma 4.0. 
Assume a counterexample xc

p+ yc
p=  zc

p exists. Then p cannot be a member of a certain infinite 
set of primes.

Proof of Lemma 4.0
1. Assume a counterexample xc

p+ yc
p=  zc

p exists.  By assumption (1) above, p is the smallest 
such prime.

2.  As proved under “Discussion” on page28, it is not possible that xc + yc = zc. 

3. Let q be any prime such that (xc, q) = (yc, q) = (zc, q) = 1 and xc + yc,  zc are < q.  Such a 
prime must exist because there are an infinite number of primes and only a finite number of prime 
factors, total, in xc, yc, and zc .

4.  By (1.92), (q - 1) defines a set of (q - 1) residue classes mod (q - 1).  For the class whose 
minimum element is 1, we have, by step 2,

(1.95)  xc
1 + k(q-1) + yc

1 + k(q-1)  is not  ≡ zc
1 + k(q-1) mod q,

where k ≥ 0.   

1. The Generalization asserts that if (a, m) = 1,  then aφ(m) ≡ 1 mod m, where φ(m) is Euler’s totient function, 
which returns the number of numbers less than m and relatively prime to m.
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5. Dirichlet’s celebrated Theorem states that the infinite series {a + v b}, (a, b) = 1, v ≥ 0, con-
tains an infinity of primes, and since (1, (q - 1)) = 1, this means that for an infinity of k in (1.95), 1 
+ k(q - 1) is prime.  By (1.95) and (1.91) (c), p cannot be any of these primes.  

We see here how the fact (which followed from our assumption of a counterexample) that

 xc + yc ≠ zc

and the fact that there exists a prime q such that xc + yc and  zc  are both < q, led to an infinity of 
facts, namely the non-congruences expressed by (1.95), which in turn gave us another infinity of 
facts, namely, that the prime p in the assumed counterexample could not be any of the infinity of 
primes required by Dirichelet’s Theorem.

A young mathematician stated and proved the following, stronger version of Lemma 4.0. (The 
proof given here is a slightly edited version of the original.  Any errors are entirely the responsi-
bility of the present author.)

Lemma 4.0.5:  
Assume a counterexample xc

p+ yc
p=  zc

p = 0 exists. Then p can be at most one prime.

First Proof of Lemma 4.0.5
We will be using the fact that for positive numbers a and b and an exponent r > 1: ar + br < (a 

+ b)r.

1. Let us assume there are two primes p < q for which:
xc

p + yc
p = zc

p;
xc

q + yc
q = zc

q.

2. Let (r = q/p) > 1.  By the above fact, with xc
p and yc

p playing the role of a and b:

xc
q + yc

q = (xc
p)r + (yc

p)r < (xc
p + yc

p)r = (zc
p)r = zc

q  = xc
q + yc

q,

which is a contradiction.  Therefore there cannot be two p which yield counterexamples for given 
xc,  yc, zc. 

Second Proof of Lemma 4.0.5:
“The Fermat curves Cm:  Xm + Ym = 1 intersect trivially.” (A reader) 

Remark on Lemmas 4.0 and 4.0.5.  It is important not to misunderstand what these lemmas 
establish.  Suppose that someone announced (before 1990), “I have three numbers, xc, yc, zc, that 
are elements of a counterexample to FLT!”  We know now that the person would have been mis-
taken, but let us consider several possible responses to the announcement.  
14
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(1) A person knowing only that a counterexample would have to involve a prime exponent, 
but knowing none of the results establishing exponents for which FLT had been proved true, 
might have responded, “How interesting!  The exponent can be any positive prime!  Or perhaps 
there are several prime exponents for each of which xc, yc, zc are the elements of a counterexam-
ple.” 

(2) A person who knew the results concerning exponents might have instead responded, “How 
interesting!  The exponent can be any prime > 125,000.  Or perhaps there are several prime expo-
nents in this range, for each of which xc, yc, zc are the elements of a counterexample.”  

(3) A person who knew what the person in (2) knew, plus Lemma 4.0.5, might have 
responded, “How interesting!  The exponent must be one and only one prime > 125,000.”

(4) Finally, a person who knew what the person in (3) knew, plus Lemma 4.0, might have 
responded, “How interesting!  The exponent must be one and only prime > 125,000 that is not 
excluded by Lemma 4.0.”

An Attempted Implementation of the Approach by “Geometry of Congruences”
Our goal will be a proof by contradiction, the contradiction to arise from the congruences 

resulting from the assumption of a counterexample, xp + yp =  zp, and the congruences arising 
from known inequalities,  xk + yk ≠ z 

k, 1 ≤ k ≤ p − 1, k ≥ p + 1. These inequalities follow from 
“Lemma 0.0.” on page7, “Lemma 0.5.” on page8, and “ Lemma 4.0.5:” on page14.   It is impor-
tant to understand the limitation we are subject to as far as inequalities are concerned: in general, 
it is not true that if a + b ≠ c then a + b is not ≡ c mod m, for arbitrary m ≥ 2.   For example, 5 + 3 
is certainly ≠ 1, but 5 + 3 ≡ 1 mod 7. So if we want to go from inequality to guaranteed non-con-
gruence, we must require that the modulus m be > a, b, c, a + b and that (a, m) = (b,m) = (c,m) = 1.  
Under these conditions, if a + b ≠ c then a + b is not ≡ c mod m (1.91(a)).

One way to implement our proof by contradiction, is via the concept of towers, which we now 
define.

Definition of Tower
Definition. Let u be any positive integer, and let M = {m1, m2, m3, ... } be an infinite sequence 

of moduli such that for all i ≥ 1, (u, mi) = 1, and such that m1 < m2 < m3 < ....  Then there exists a 
minimum i ≥ 1 such that u < mi.  In the language of “The “Lines-and-Circles” Model of Congru-
ence” on page10, u is on level 0 mod mi.  We say that u touches down at mi.  Clearly, u is also < 
mi′ for all i′ > i, and so we say that u remains down for all these i′.  (“Once u touches down, it 
remains down.”)

By abuse of language, we will say that u + v = w (or u + v ≠ w) touches down at mi when we 
mean that (u, mi) = (v, mi) = (w, mi) = 1, and that u, v, and u + v = w are all < mi, and furthermore 
that mi is the smallest modulus in M for which this is the case.  

Definition.  Assume that all the mi in M are primes.  Then if  If ur + vr = wr touches down at 
mi, and (u, mi) = (v, mi) = (w, mi) = 1, we have, by Fermat’s Little Theorem, 

for all  h ≥ 0.

u
r h mi 1–( )+( )

v
r h mi 1–( )+( )

+ w
r h mi 1–( )+( )

mod mi≡
15
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The (infinite) set of all such congruences we call a tower mod mi.  Similarly, if  ur + vr ≠ wr 
touches down at mi′, and (u, mi) = (v, mi) = (w, mi) = 1, we have, by Fermat’s Little Theorem,

for all  h ≥ 0.
The (infinite) set of all such non-congruences we likewise call a tower mod mi.  In either case, 

we call  ur, vr, wr  together the base of the tower. A congruence, or non-congruence, in a tower, we 
will some times call an element of the tower. Thus, the base of a tower forces the congruence or 
non-congruence of all elements of the tower.

A Possible Proof of FLT Using Towers
Let q be the smallest prime that is larger than the maximum of x, y, z (i.e., larger than z), and 

such that (x, q) = (y, q) = (z, q) = 1.  By Bertrand’s Postulate, we know that z < q ≤ 2z.
We will consider successive moduli q, q2, q3, ....  In this case, we need to use Euler’s general-

ization of Fermat’s Little Theorem to build our towers.  This generalization  states that if (a, m) = 
1, where m may be composite,

Here, ϕ is Euler's ϕ  function, which returns the number of numbers less than, and relatively prime 
to, m.  It can easily be shown that if m = q is prime then ϕ(qj) = (q − 1)qj − 1, j ≥ 1. 

Let  , k ≥ 1, denote the power of q at which xk, yk, zk  , xk + yk all touch down, i.e., are first 
all less than a power of q.  Then we have an infinite sequence of such powers, namely, 

and these give rise to the infinite sequence of statements in (1) below, all as a direct consequence 
of “Lemma 4.0.5:” on page14. .

(1) For all j ≥ j1, and for every tower element mod , 

i ≥ 0, by “(1.91)” on page12.
And similarly for all j ≥ j2 , all j ≥ j3 , all j ≥ j4, ..., j ≥ p–1, j ≥ p+1, j ≥ p+2, ..., where, of course, 

the exponent in the base elements of the tower in each case are 2, 3, 4, ..., p–1, p+1, p+2, ... 
respectively.  (End of (1))

Each non-congruence element in each tower tells us that when the element touches down, it 

u
r h mi 1–( )+( )

v
r h mi 1–( )+( )

is not+ w
r h mi 1–( )+( )

mod mi≡

a
ϕ m( )

1 mod m≡

q
jk

q
j1 q

j2 q
j3 q

j4…, , ,

q
j

x
1 i+ ϕ qj( )•

y
1 i+ ϕ qj( )•

is not+ z
1 i+ ϕ qj( )•

mod q
j≡
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will do so as an inequality.  But we already knew, from “Lemma 4.0.5:” on page14, that, for 
given x, y, z, only one exponent p can yield a counterexample. 

Definition. Consider any tower element u in which the multiplier i in the exponent is > 1.  
Then any other element of the same tower with smaller i we call a predecessor element of u. 

Assume the first element touches down at the modulus qj and the predecessor element touches 
down at qj′.  Then clearly j′ must be ≤  j.

Now assume our counterexample xp + yp = zp touches down at  . There are two cases to be 
considered:

Case 1: the counterexample has a predecessor element in some tower mod  
1 ≤ k ≤  p–1.

Case 2: the counterexample has no predecessor element in any such tower.

Proof of the Impossibility of Case 1: there are two sub-cases to be considered:

Case 1.1: the congruence corresponding to the assumed counterexample has a predecessor 
element in one of the towers of non-congruences mod    

Clearly this is impossible, because all elements of these towers are non-congruences.  (The 
base of each tower can be regarded as an element of the tower, and the inequality in the base con-
stitutes a non-congruence.) 

Case 1.2: the congruence corresponding to the assumed counterexample has a predecessor 
element in some tower of congruences mod  

But there is no such tower, since the bases of all the towers of non-congruences cover all 
exponents 1 ≤ k ≤  p–1. 

Proof of the Impossibility of Case 2:  If the counterexample has no predecessor element in any 
such tower, then for all k, 1 ≤ k ≤ p–1, p, the exponent in our counterexample, must be < ϕ( ). 
But this is impossible, because then the element representing our counterexample must be at level 
0 mod , for all k, 1 ≤ k ≤ p–1, contradicting our assumption regarding jp.

So Case 2 is impossible. 
     

Hence our assumption of a counterexample leads to two impossibilities that exhaust all possi-
bilities, and FLT is proved. (End of Possible Proof)  

Approach by Induction on Inequalities
“Arithmetical” Version of the Approach by Induction on Inequalities

The reader will recall our “Vertical Approach” to a proof of FLT as described under “Brief 
Summary of Approaches Described in this Paper” on page5:

“[In this Approach], we assume that x, y, z are elements of a counterexample to FLT, then we 
attempt to find the n such that xn + yn = zn  , proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., pro-
ceeding in the “vertical” direction of progressively increasing n relative to the fixed x, y, z.  If we 

q
jp

q
jk,

q
jk 1 k p 1.–≤ ≤,

q
jk 1 k p 1.–≤ ≤,

q
jk

q
jk 1+
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can show that we can never “get to” such an n, then we will have a proof of FLT.  Another way of 
regarding the Vertical Approach is to say that it asks what sequence of calculations would termi-
nate in the counterexample, assuming x, y, z were known to be elements of a counterexample, and 
assuming the calculations were the sequence of comparisons of xn + yn  with zn for n = 3, then for 
n = 4, then for n = 5, etc.”

In this sub-section, we discover some facts about the sequence of FLT inequalities,

 x3+ y3 ≠ z3 ,
 x4+ y4 ≠ z4 ,

...

 xn+ yn ≠ zn , and then, following the assumed equality, 
 x(p = n+1) + y(p = n+1) = z(p = n+1), the further inequalities,
 xn + 2 + yn + 2 ≠ zn + 2,
 xn + 3 + yn + 3 ≠ zn + 3,
...

We first state the following basic facts about the FLT inequalities.  The formal statement of 
each lemma, and the proof, is given in Appendix B.

for all k, 1 ≤ k < n + 1:
xk + yk > zk (Lemma 0.90);
(xk +yk)/zk > (xk +1 + yk +1)/zk + 1 (Lemma 0.70).

for all k > p = n + 1:
xk + yk < zk (Lemma 0.95);
lim k → ∞, (xk +yk)/zk = 0 (Lemma 0.97)1.

The question of the maximum size of p = n+1 in a counterexample to FLT is answered by 
Lemma 1.0, namely, p must be < x.

We now discuss a possible proof of FLT using ratios between the FLT inequalities. We then 
consider the possible application of the familiar inner product from vector theory to a proof of 
FLT. 

Strategy Using Ratios Between FLT Inequalities
We know from Lemma 0.70 that (xk +yk)/zk > (xk +1 + yk +1)/zk + 1 for all k, 1 ≤ k < n + 1.  It is 

reasonable to assume that, for each such k there exist integers ak, bk, with ak < bk, such that

1. A young mathematician has written the author that Lemma 0.97 “bears a major resemblance to what is known 
as the ABC Conjecture, ... a long unsolved problem in additive number theory... The ABC Conjecture almost proves 
FLT in the sense that if ABC is true, then for all n sufficiently large, xn + yn = zn has no integer solutions.  See for 
instance mathworld.wolfram.com/abcconjecture.html.”
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(We make no claim that ak/bk is the same for different k.)1

Now consider k = n, where p = n + 1 is the assumed exponent that yields a counterexample.  
Then it must be the case that

where we simply use equal signs in the exponents to show that the indicated terms all have the 
same value — to show that we are using several different terms to represent the same thing.  We 
could, of course, have written, “k, which here is the same thing as p - 1, which here is the same 
thing as n”. 

But then, clearly, (ak = p-1 = n)/(bk = p-1 = n) must be the reciprocal of the term it is multiplied 
by if the result is to be 1.  Hence:

(1)

Since by Lemma 1.0, x < y < z, it is clear that the product of the numerators in the left-hand 
term of (1) is greater than the numerator in the center term, and similarly for the denominators. 
We assert that this is a contradiction, for the following reason:

We begin with two observations regarding products.

(Q)
If r, s, t are positive integers, then t is the product of r and s iff t = rs.
Another way of saying this is (by the Fundamental Theorem of Arithmetic),
If r, s, t are positive integers, then t is the product of r and s iff the prime factors of t (including 

powers) are the same as the prime factors of rs (including powers).

Now let us consider products of fractions composed of positive integers.  
(Q′)
If r, s, t, u, are positive integers, then ( v/w) is the product of (r/s) and (t/u) if v = rs and w = su.
However, unlike (Q), it is not necessarily the case that if (v/w) = (r/s)(t/u) then (v/w) is the 

product of (r/s) and (t/u).  For example, 1 = 7/7 = (6/3)(3/6), but 7/7 is not the product of (6/3)(3/

1. In fact, as a reader has pointed out, given (xk +yk)/zk ,(xk +1 + yk +1)/zk + 1, then  ak = (xk +1 + yk +1)/
(xk +yk) , bk = zk+1/zk.

ak

bk

----- x
k

y
k

+

z
k

----------------
 
 
  x

k 1+
y

k 1+
+

z
k 1+

------------------------------=

a
k p 1– n= =

b
k p 1– n= =

--------------------------- x
k p 1– n= =

y
k p 1– n= =

+

z
k p 1– n= =

------------------------------------------------------------
 
 
  x

p n 1+=
y

p n 1+=
+

z
p n 1+=

---------------------------------------------- 1= =

z
k p 1– n= =( )

x
k p 1– n= =

y
k p 1– n= =

+
------------------------------------------------------------

 
 
  x

k p 1– n= =
y

k p 1– n= =
+

z
k p 1– n= =

------------------------------------------------------------
 
 
  x

p n 1+=
y

p n 1+=
+

z
p n 1+=

---------------------------------------------- 1= =
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6).  

We now apply (Q′) to (1), in which the product of the two fractions (r/s) and (t/u) is the left-
hand term, the fraction (v/w) is the center term.  Since by (1.5) under “Initial Assumptions, Defi-
nitions, and Properties of Numbers Involved” on page6 ( x, y) = (y, z) = (x, z) = 1, and since, by 
Lemma 1.0, x < y < z, it is clear that the product of the numerators in the left-hand term of (1) is 
greater than the numerator in the center term, and similarly for the product of the denominators. 
Hence, by (Q′), the center term is not the product of the fractions in the left-hand term, which is a 
contradiction. (End of Strategy Using Ratios...)

Strategy Using Inner Products
The Inner Product Representation of Inequalities

xp+ yp≠ zp can be expressed as xp+ yp − zp ≠ 0, whereas a counterexample can be expressed as 
xp+ yp− zp= 0. 

The non-counterexample case can also be expressed as <x, y, z> •  < x(n-1), y(n-1), −z(n-1)> = xn 
+ yn - zn  ≠ 0, where “•” denotes inner product and n > 2.  The counterexample case can be 
expressed as <x, y, z> •  < x(p-1), y(p-1), −z(p-1)> = xp + yp - zp = 0. 

Definitions: call any ordered triple <u, v, w>, u, v, w integers, an inner product term. (An inner 
product term is thus a vector.)

For any inner product term <u, v, w>, call <u, v, w> • <1, 1, 1> the value of the term.  I.e., the 
value of <u, v, w> is simply u + v + w.

A Possible Strategy Utilizing Inner Products
1. Assume that n + 1 is the smallest exponent such that there exists xc, yc, zc such that
 xc

n+1 + yc
n+1 = zc

n+1.

2.By Lemma 0.90, we know that
for all k, 1 ≤ k ≤ n, xc

k + yc
k− zc

k > 0, i.e., the value of <xc
k, yc

k, − zc
k > is > 0.

By Lemma 0.95, we know that
for all k´ > n + 1,  xc

k´  + yc
k´  − zc

k´  < 0, i.e., the value of  <xc
k´ , yc

k´,  −zc
k´ > is < 0.  

3. Let n′ be any exponent greater than n + 1.  Then there are numerous inner products that 
yield the value of <xn′, yn′, – zn′> = xn′+ yn′ – zn′, which by Lemma 0.95 we know is < 0.  

For example, consider the product <xm, ym, –zm> • <xm′, ym′, zm′>, where m + m′ = n′, and 
both m, m′ are less than n + 1.  

But, as we know from Lemma 0.97 (see initial paragraphs under ““Arithmetical” Version of 
the Approach by Induction on Inequalities” on page 17), each FLT inequality is different from the 
next at least in the ratio (xk + yk)/ zk .  Therefore it is reasonable to suspect that the inner products 
corresponding to differing m, m′ such that m + m′ = n′, will not always yield the same value, much 
less a value that is less than 0, as required by Lemma 0.95.  If this is the case, we have a contradic-
tion, and a proof of FLT. 
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Inner Products That Yield 0
The author assumes that the inner product literature contains an abundance of results concern-

ing which inner products yield 0 and which do not.  We would have a proof of FLT if one or more 
of these results enabled us to establish that:

<xc, yc, zc> • <xc
n-1, yc

n-1, −zc
n-1>  > 0.

It is well-known, of course, that, in the domain of inner product terms, unlike the domain of 
the reals, 0 divisors exist.  Thus, e.g., <2, 1, 0> • <−1, 2, 0> = −2 + 2 + 0 = 0, even though the 
value of <2, 1, 0> and the value of <-1, 2, 0> are both non-zero.

Inner Product Strategy Utilizing Vectors
A different strategy might be based on a fundamental result concerning the inner product, 

namely, that

(1) if u, v, are n-element vectors, n ≥ 1, u, v ≠ 0, then u •  v = 0 iff the angle between u and v is 
90°.  

Thus we can interpret FLT as asserting that it is impossible for the vectors <x, y, z>, and < x(p-

1), y(p-1), −z(p-1)> to be at right angles to each other. (And similarly for the vectors <x, y, -z> and < 
x(p-1), y(p-1), z(p-1)>.)  If we assume a counterexample, then we are asserting that every pair of vec-
tors, <x, y, z>, and < xn, yn, −zn>, 1 ≤ n ≤ p-2, are not at right angles to each other, but that the vec-
tors <x, y, z>, and < x(p-1), y(p-1), −z(p-1)>, are.  (And similarly for the vectors <x, y, -z> and < xn, 
yn, zn>, 1 ≤ n ≤ p-2, and <x, y, -z>, and < x(p-1), y(p-1), z(p-1)>.

The question then is, can we derive a contradiction by working with this vector representation 
of FLT?

“Algebraic” Version of the Approach by Induction on Inequalities
We begin by considering the following sequence S of inequalities, culminating in the assumed 

counterexample to the Theorem. These inequalities constitute bases of towers as described under 
“An Attempted Implementation of the Approach by “Geometry of Congruences”” on page 15 (the 
Approach in this subtitle refers to the “Geometry of Congruences”). 

The Sequence S
The sequence S is:

{x3 + y3 ≠ z3,

x4 + y4 ≠ z4,

x5 + y5 ≠ z5,

.

.
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.

xp-1 + yp-1 ≠ zp-1,

xp + yp= zp}

We can also express this sequence as a sequence of inner products:
{<x, y, z> • <x2, y2, −z2> = (x3 + y3 − z3) ≠ 0,

<x, y, z> • <x3  , y3 , −z3 > = (x4+ y4 − z4 ) ≠ 0,

<x, y, z> • <x4, y4, − z4 > = (x5 + y5 − z5 ) ≠ 0,

.

.

.

<x, y, z> • <xp-2, yp-2, −zp - 2  > = (xp-1 + yp-1 −zp-1 ) ≠ 0,

<x, y, z> • <xp-1, yp-1, −zp-1 > = (xp + yp −zp ) = 0}

The Basic Question
We now ask the Basic Question:  Is the sequence S possible?  In other words, could such a 

sequence of inequalities terminate in the indicated equality?  Could we “get to” the indicated 
equality via the sequence of inequalities?  We urge the reader to keep in mind that we are not 
merely attempting to approach FLT from the point of view of forms (homogeneous polynomials) 
of degree k, 1 ≤ k ≤ p.  A vast literature already exists on that approach.  We are attempting to 
approach FLT from the point of view of the sequence of forms represented by S.

We now attempt to answer the Basic Question in the negative, considering first the sequence S 
from a factoring point of view, then considering the inner product representation of S.

The Sequence S Considered From a Factoring Point of View
Our assumption of a counterexample as the last item in the above list implies, by elementary 

algebra, that the sequence can be written:

{x3 ≠  ( z3 - y3= (z - y)(z2+ z1y +  y2)),

  x4 ≠ ( z4 - y4 = (z - y)(z3 + z2y + zy2+ y3)), 

  x5≠ ( z5 - y5 = (z - y)(z4 + z3y + z2y2 +  zy3+ y4)), 

...

  xp-1 ≠ ( zp-1 - yp-1 = (z - y)(zp-2 + zp-3y +  ... + zyp-3 + yp-2)),
22
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  xp =  ( zp - yp = (z - y)(zp-1 + zp-2y +  ... + zyp-2 + yp-1)) }

Similar sequences exists with yk, zk on the left-hand side, 3  ≤  k  ≤  p.

We now prove two very elementary lemmas.  Let:

(6)  Bn, (z - y) = (zn-1 + zn-2y  + ... + zyn-2 + yn-1).
       Bn, (z - x) = (zn-1 + zn-2x  + ... + zxn-2 + xn-1).
       Bn, (x + y)  = (xn-1 -  xn-2y + ... + yn-1), n ≥ 3.

Lemma 20.0 
If any of the following pairs, 

      (7)  ((z - y),  Br, (z - y));
(8)  ((z - x),  Br, (z - x));
(9)  ((x + y), Br, (x + y)), r a prime ≥ 3. 

has a factor in common, then that factor must be r.

Proof for the pair in (7): 

1. Assume the pair in (7) have the prime q as a common factor.

2. Then z - y = kq implies

 (10)   z - y ≡ 0 mod q, 

and Br, (z - y) = mq implies

 (11)  (Br, (z - y) = (zr-1 + zr-2y  + ... + zyr-2 + yr-1)) ≡ 0 mod q.

3. (10) implies z ≡ y mod q,  so substituting y for z in (11) gives

(12)  ryr-1 ≡ 0 mod q.

4.If y ≡ 0 mod q, then, by (10),  z ≡ 0 mod q, contrary to (1.5).  Therefore r must be ≡ 0 mod q.  
Since r is a prime, r must = q. 

We leave it to the reader to verify that the proofs for (8) and (9) in the Lemma are similar.  

We now prove one more very elementary lemma.
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Lemma 28.0.  
((z - y), (z - x), (x + y)) = 1, i.e., the three terms do not have a factor in common.

Proof of Lemma 28.0:
The proof is by contradiction.

1. Assume that the three terms do have a factor q in common, and without loss of generality, 
assume q is a prime.  Then:

(20) z - y ≡ 0 mod q,
(21) z - x ≡ 0 mod q,
(22) x + y ≡ 0 mod q.

2. Adding (20) and (22) yields
(23) x + z ≡ 0 mod q,

which with (21) yields

(24) 2z ≡ 0 mod q

implying z ≡ 0 mod q. This with (21) implies x ≡ 0 mod q, contradicting (1.5). 

Keeping the Basic Question always before us, we now make the following observations.

(A) Since x, y, z are by hypothesis fixed, then so is the prime factorization of (z - y), (z - x), (x 
+ y).

(B) Therefore, if a counterexample exists, (z - y) contains some of the prime factors of xk, (z - 
x) contains some of the prime factors of yk, and (x + y) contains some of the prime factors of zk, 
for all k ≥ 2.

 (C) The process of constructing Bn, (z - y) = (zn-1 + zn-2y  + ... + zyn-2 + yn-1) from Bn-1, (z - y) 
=(zn-2 + zn-3y  + ... + zyn-3 + yn-2) is very simple: multiply through Bn-1, (z - y) by z and add yn.  And 
similarly for Bn, (z - x), and Bn, (x + y).  

If a counterexample exists, this process must yield Bp, (z - y), which must contain all the prime 
factors of x not in (z - y), and similarly for Bp, (z - x), y, and Bp, (x + y), z.

We remark in passing that:
Bn, (z - y) can also be written (z(...(z(z(z + y) + y2) + y3)...+  yn-1), and similarly for Bn, (z - x), and 

Bn, (x + y).  
Furthermore, Bn, (z - y) can also be written1 (x - α1y)(x - α2y)...(x - αn-1y), where α1, α2, ..., αn−

1 are the roots of  p(z) = zn-1 + zn-2  + ... + z + 1 in the splitting field of p(z). And similarly for Bn, 

(z - x), and Bn, (x + y).

1. Borevich, Z. I., and Shafarevich, I. R., Number Theory, Academic Press, N.Y., 1966, p. 78.
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Question 2. Recognizing that Bn, (z - y), Bn, (z - x) and Bn, (x + y) are binary forms of degree (n - 
1), are there any results in the literature up to 1990, that enable us to prove that the process cannot 
yield such Bp, (z - y), Bp, (z - x), and Bp, (x + y)?

(D) There exists a prime r such that for all  r′ > r, ((z - y), Br′ , (z - y)) = ((z - x), Br′ , (z - x)) = ((x 
+ y), Br′ , (x+y)) = 1.  Otherwise, by Lemma 20.0, x, y, z would each contain an infinite number of 
prime factors, an impossibility.

(E) By Lemma 20.0, if a counterexample exists, then we have the following possibilities:

(E.1) The exponent p does not divide either (z - y) or Bp, (z-y);
(E.2) The exponent p divides only (z - y) but not  Bp, (z - y) ;
(E.3) The exponent p does not divide (z -y) but divides Bp, (z - y) ;
(E.4) The exponent p divides both (z - y) and Bp, (z - y) .

And similarly for ((z - x), Br, (z - x)), and ((x + y), Br, (x + y)).

In other words, all prime factors of (z - y) except for, possibly, p, and all prime factors of 
Bp, (z - y)  except for, possibly, p, are not only disjoint but are also pth powers.  (If  either or both 
terms (z - y) and Bp, (z - y) contain the prime p, then the combined power of p must = pp.) The cor-
responding statement holds for (z - x) and (x + y).  So if we were to embark on a “search” for 
counterexamples, x, y, z, we could immediately eliminate all those such that (z - y), (z - x), and (x 
+ y) failed to have prime factors conforming to these requirements.  

Question 3: do any relevant results exist in the pre-1990 literature?

(F) Consider the sets  

G = { ..., 1/x3, 1/x2, 1/x, 1, x, x2, x3, ... }

and 

G′ = { . .., 1/(B3, (z - y)), 1/(B2, (z - y)), 1, (z - y)B2, (z - y),  (z - y)B3, (z - y), ...}

We ask: are G and G′ infinite cyclic groups over the rationals, with:
 x, B2, (z - y) respectively as generators; 
1 as the identity element in both cases;
multiplication/division by x the group operation of G; 
multiplication/division of Bn,(z - y) by z and addition of yn the group operation of G′.

If so, then they are isomorphic groups, by a well-known result.  We now state a conjecture 
which, if true, implies the truth of FLT.

 
Conjecture 1.01:  There do not exist groups G, G′ over the rationals having the following proper-
ties:
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G, G′ are infinite cyclic groups having generators g, g′  where g ≠ g′ ;
All elements of G, G′ that are greater than the identity, 1, are positive integers;
For some exponent p and for no smaller exponent, gp = mg′ p, where m is a fixed positive inte-

ger (it is equal to (z - y) in our case);
For an infinite set of k > p, gk ≠ mg′ k.

(G) If we could prove that Bp, (z - y) cannot be a pth power, then we will have proved FLT for 
cases (E.1), (E.2), and (E.3) above.  We observe that, if m = z + y, then:

Now, by Pascal’s triangle, we can see that Bp, (z - y) cannot be equal to mp - 1.  Suppose we con-
sider the set T = {mn = (a + b)n | m ≥ 1, a, b, ≥ 1,  a + b = m, n ≥ 1}, where (a + b)n is expanded as 
above in accordance with the binomial theorem, and suppose we imagine the elements of T as 
being organized in two lists, one by increasing m and then by increasing n, the other, say, lexico-
graphically, by (a + b).  Then using these lists, we could find all possible occurrences of Bn, (z - y), 
including, specifically, Bp, (z - y). 

Question 4:  Can this strategy1 enable us to prove that Bp, (z - y) can never be a pth power? 
Note: there exists an infinity of binary forms of degree n - 1 which are, in fact, powers.  For, if 

a = b = n,  n ≥ 3,  then the binary form of degree n - 1,  an-1+ an-2b + ... + abn-2+ bn-1= n • nn - 1

nn. However, this possibility is ruled out by the constraints on x, y, z, and n.  Are there any other 
possibilities?

“Computational” Approaches
By a “computational approach” to a proof of FLT, the author means one that either utilizes the 

computer directly, or else one that is based on programming or computer science concepts.  Fol-
lowing are three such approaches.

Can We Find Out If Fermat Was Right After All?
The author believes that the day is not far off when it will be possible to supply a computer 

program with what scholars believe was Fermat’s mathematical knowledge at any specified time 

1. I am indebted to J. D. Gilbey for correcting the statement of an earlier, more general version of this con-
jecture, and for then quickly disproving it. Gilbey did not see the current conjecture before this paper was 
placed on the web site.
1. This strategy can be considered an application of the idea of  “What = Where”: What something is (e.g., 
its value) is a function of where it is in some structure — some database, as programmers might say.  The 
most elementary example of the strategy is probably a binary tree.  If we are asked to store the non-negative 
binary integers,  then we can do so using a binary tree, in which, say, the digit 0 corresponds to descending 
the right-hand branch from a node, and the digit 1 corresponds to descending the left-hand branch from a 
node.  Then the sequence of binary digits representing the integer is the address where the integer can be 
found in the tree:  What =Where.

m
p 1–

z y+( )p 1– p 1–
0 

  z
p 1– p 1–

1 
  z

p 2–
y … p 1–

p 2– 
  zy

y 2– p 1–
p 1– 

  y
p 1–

+ + + += =
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in his career, and then give the computer a proof of FLT as a goal and ask it to return all possible 
attempts at a proof of length 1 step, then all possible attempts at a proof of length 2 steps, etc.  Ide-
ally, the program would be interactive, so that the researcher could make suggestions as to how to 
go about finding such a proof.  Of course, an immediate question is, What constitutes a “step” in 
this context? As every student of mathematics knows, a complicated proof — i.e., one that 
requires many steps —  is often broken down into a “simpler” proof in which steps are grouped 
into supersteps.  Or, putting it another way (see William Curtis’ How to Improve Your Math 
Grades, accessible as downloadable PDF files on the web site www.occampress.com), it is possi-
ble to approach a proof in a top-down fashion, in which, at the top-most level, there are only a few 
steps, each being the equivalent of a lemma or theorem.  If all the lemmas or theorems are valid, 
then the proof is valid.  The proof of each lemma or theorem is then proved, recursively, in the 
same fashion.

In the case of FLT, the user might set up sequences of statements, each sequence constituting 
the top level of a possible proof, e.g., a proof by induction, then see if the program can find a 
proof of each statement.

Approach by “The Extra +”
Description

A programmer looking at the two sides of the FLT inequality x n+  yn ≠ zn might see that the 
two sides can be computed by the same procedure, call it F.  In other words, the same procedure F 
can generate all possible instances of the left-hand and right-hand sides, with 0n = 0 being always 
added on the right.  Furthermore, we can run the computation of the left-hand and right-hand sides 
“in unison”, with incrementation (by 1) being the basic computational operation.  (Exponentiation 
is repeated multiplication, multiplication is repeated addition, and addition is repeated incremen-
tation-by-1 as implemented by a procedure called, say, incr.)  By “in unison” we mean that the 
execution of incr during the course of computing the left-hand side, always takes place in the 
same time period as the execution of incr on the right-hand side.  

We can therefore write a program P that operates as follows:
Given any x, y, z as possible counterexamples to FLT, P computes the left-hand and the right-

hand sides of the FLT inequality for n = 3 and compares the results. If they are equal (which we 
know will not be the case, of course), the program halts.  If they are unequal, the program repeats 
the process for n = 4, n = 5, etc. We will have a proof of FLT if we can prove that P never halts.  
Without loss of generality, we can write P so that the procedure that computes un, where u = x, y, 
or z, or 0, always does this by multiplying u by un-1.  We do this in the belief that it will increase 
our chances of discovering why the left-hand side and the right-hand side must always be 
unequal.

 In order to further increase our chances of proving that the left-hand and the right-hand sides 
are always unequal, P is to be written as a Turing machine.

In passing, we note that P can be thought of as a computational implementation of the 
“Approach by Induction on Inequalities” on page17.

Now suppose that we install two counters, CL and CR, in P.  Both are set to 0 when P starts 
executing.  CL counts the number of successive invocations of incr that occur when P computes 
the left-hand side of the FLT inequality. CR counts the the number of successive invocations of 
incr that occur when P computes the right-hand side of the FLT inequality . 
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Proof Strategy
Assume, now, that FLT is false, or, in other words, that for some x, y, z, p as described above 

under “Initial Assumptions, Definitions, and Properties of Numbers Involved” on page6, xp + yp 
= zp.  Then after P has computed zp + 0p, the counter CR will show zp incrementations.  But after 
P has completed execution xp + yp, the counter CL will likewise show (by hypothesis) a total of zp 
increments.  But P has not finished executing!  It must add xp and yp (this is the “extra +” in the 
title of this sub-section), and this will cause CL to show a total count greater than zp by the time P 
completes computation of xp + yp.  Thus, contrary to hypothesis, and in conformity with fact, xp + 
yp ≠ zp.

Discussion
It has been argued1 that the above Approach must include an explanation why the Approach 

doesn’t prove that there are no positive integers x, y, z such that x + y = z, or x2 + y2 = z2, which, of 
course, is contrary to fact.

Our answer is simple: the Approach does not apply to such x, y , z, because, by Lemmas 0.0 
and 0.5, there are no such x, y, z that can be counterexamples to FLT, and the Approach is based on 
the assumption that x, y, z are elements of such a counterexample! 

In passing, the author must remind the reader that, for a proof-by-contradiction of the proposi-
tion r, all we need to do is to assume not-r, and from that assumption, arrive at a contradiction.  r 
is then proved (if, with most mathematicians, we accept the validity of proof-by-contradiction).  
We are not required to explain why the argument used in the proof does not work in another con-
text (e.g., the context in which the exponent of x, y, z = 1 or 2).  Of course, readers may attempt to 
find a flaw in the argument by applying it to other contexts.  That is perfectly legitimate.  But then 
they must come back to the original argument and show where it is faulty. 

In reply to the argument that the Approach proves that for no x, y, z does x + y = z (which is 
contrary to fact) we might point out that there are no increments-by-1 to be counted on the right-
hand side of the equation.  I.e., the Approach does not apply to this case.  But then we must 
explain why the Approach does not prove that, e.g., there are no x, y, z, w, u, v such that x + y = z 
+ w + u + v, which is also contrary to fact.  Here, of course, there is addition, hence incrementa-
tion-by-1 on the right-hand side.  

Approach by Algorithmic Information Theory
A fundamental concept in algorithmic information theory is that of the minimal length pro-

gram to compute a given number n (or a given function f), i.e., the program (or programs) whose 
length l in number of symbols, l ≥ 1, is the minimum for all programs that compute the number n 
(or the function f).

If we can show that the minimum length of any program that computes xp + yp  must always 
be different from the minimal length of any program that computes zp, we will have a proof of 
FLT.

Superficially, such a proof seems obtainable, since we can derive from the above program P a 
shorter program P′ to compute zp by simply removing the second while loop from P. However, 

1. by Monsur Hossain
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there is nothing in the minimal length property that requires that a given number or function be 
computed “nicely”, e.g., the way a competent programmer would write a program to compute the 
number or function.  Any bizarre sequence of machine-executable instructions that yields the 
desired number is by definition a program that computes the number or function.  So, further 
investigation is required to see if this Approach holds any promise. 
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Appendix A — Lemma 3.0

Lemma 3.0.  
Let p, q, be odd primes, and let t be any positive integer. Then there exists an infinity of primes q 
such that  (p, q - 1) = (t, q - 1) = 1.

Proof1:   
      First part:

We first prove that for all k ≥ 2,  p • t cannot be a factor of every element of the set S 'k = {qk - 
1, qk+1 - 1, qk+2 - 1,  ... }, where qk is the kth prime. This implies that there exists a qk+h, h ≥ 0, 
such that (p, qk+h - 1) = (t, qk+h - 1) = 1.

1. Let the set Sk be all primes beginning with the kth.  I.e., Sk = {qk, qk+1, qk+2, ... }. Thus, e.g., 
if k = 5, then Sk = {11, 13, 17, 19, ... }, and  S 'k = {10, 12, 16, 18, ... }.

Clearly, Sk  contains all but a finite number of primes.

2. Now assume to the contrary that there exists a k ≥ 2 such that, for each h ≥ 0,  qk + h - 1 = m 
• p • t, m ≥ 1. But then qk + h = 1 + m • p • t, and thus Sk+h is a subset of the set {1 + v • p • t}, v ≥  1.  

3. We recall that Dirichlet’s celebrated Theorem asserts that every arithmetic sequence 
{a + v • b}, (a, b) = 1, contains an infinity of primes. We also recall, from the theory of congru-
ences in elementary classical number theory, that {a + v • b} ∩ {a' + v • b} = φ if a is not congru-
ent to a' mod b.

4. Now {1 + v • p • t}, v ≥ 1, constitutes a residue class mod p • t, and, clearly, (1, p • t ) = 1.  
Every prime qk+h, h ≥ 0, is in this residue class, by our assumption in step 2.

But by the second statement we recalled in step 3, none of the primes qk+h, h ≥ 0, can therefore 
be in the residue class {2 + v • p • t},  v ≥ 1.  Thus, there are only a finite number of primes in this 
residue class.  And yet, since (2, p • t ) = 1, Dirichlet's Theorem requires that there be an infinite 
number of primes in this residue class. 

Hence our assumption has led to a contradiction, and therefore there exists at least one q hav-
ing the properties set forth in our lemma statement. 

Second part:
The fact that there exists an infinity of primes q having the properties set forth in our lemma 

statement follows directly from the fact that the first part applied to all k ≥ 2 (paragraph immedi-
ately prior to step 1). That is, the first part is true no matter how large k is — in other words, no 
matter how large a prime we begin with in Sk.  

 
. 

1. This proof is an edited version of a proof by Michael O’Neill.  Any errors are solely the fault of the author 
of this paper.
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Appendix B — Lemmas Pertaining to FLT Inequalities

Lemma 0.85. 
If  a counterexample xc

n+1 + yc
n+1 = zc

n+1 exists, where n + 1 is the smallest such exponent,  then 
xc

n + yc
n > zc

n .

Proof of Lemma 0.85
We use proof by contradiction.  

1. Assume that

(1) xc
n + yc

n > zc
n  and 

(2) xc
n –1 + yc

n  – 1 < zc
n  – 1 . 

(Equality is ruled out by our assumption on n + 1.)

2. Multiplying through (2) by z, we get

zxc
n –1 + z yc

n –1 < (z zc
n –1 = zc

n.).

2. But since z > x, z > y, we have

xn + yn < zxc
n –1 + z yc

n –1 < (z zc
n –1 = zc

n.) > xn + yn, a contradiction. 

Lemma 0.90. 
If a counterexample xc

n+1 + yc
n+1 = zc

n+1 exists, where n + 1 is the smallest such exponent, then 
for all k, 1 ≤ k ≤ n, xc

k + yc
k> zc

k .

Proof of Lemma 0.90:

1. We have already established, in Lemma 0.85, that xc
n + yc

n > zc
n .  Assume, to the contrary, 

that xc
n –1 + yc

n  – 1 < zc
n  – 1 (equality is of course ruled out by our assumption that n + 1 is the 

smallest exponent in a counterexample). Is it possible that xc
n + yc

n > zc
n ?  

2. xc
n –1 + yc

n  – 1 < zc
n  – 1 implies (xc

n –1 + yc
n  – 1)n/(n – 1) < (zc

n  – 1 )n/(n – 1) .

Now if the binomial theorem for exponents requires that in this case:

(I) the expansion of the left-hand side of the above inequality includes the terms 
(xc

(n –1))n/(n – 1)  = xc
n, and 

  
       (yc

(n –1))n/(n – 1) = yc
n, and 
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      (II) the expansion includes other terms, all positive, 

      then clearly xc
n + yc

n < zc
n .  Thus if  xc

n –1 + yc
n  – 1 < zc

n  – 1 it is not possible that xc
n + yc

n > 
zc

n .  Therefore  xc
n –1 + yc

n  – 1 must also be > zc
n  – 1.

The same argument can be applied again, etc.  

Lemma 0.90 implies that xc + yc > zc, which is confirmed by Lemma 0.0. 

Lemma 0.70  
Let x, y, z, be elements of a counterexample x(p = n+1) + y(p = n+1) = z(p = n+1) to FLT, where p = n + 
1 is the smallest such exponent. Then for all k, 1 ≤ k < n + 1, 

Proof of Lemma 0.70:
1. First, assume, to the contrary, that there exists a k, k + 1, in the stipulated range of k such 

that

2. Multiply both sides of the equation by zk + 1, and get:

3. But z > x, z > y, and so this equation is impossible.  

4. Second, assume, to the contrary, that there exists a k, k + 1, in the stipulated range of k such 
that

5. By the same argument as we used in steps 2 and 3, we arrive at an impossible equation.  
Hence we conclude that our Lemma is true. 
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We now proceed to a lemma that describes the relationship between the inequalities on the 
“other side” of the counterexample, i.e., inequalities involving exponents k > p = n + 1.

Lemma 0.95. 
Let x, y, z, be elements of a counterexample x(p = n+1) + y(p = n+1) = z(p = n+1) to FLT, where p = n + 
1 is the smallest such exponent. Then for all k > n + 1,  xc

k + yc
k < zc

k .

Proof of Lemma 0.95:
1. We use proof by induction.

Basis step
1. Assume that

(1) xc
n+1 + yc

n+1 = zc
n+1. 

2. Then 

(xc
n+1 + yc

n+1)(n+2)/(n+1) = ((zc
n+1)(n+2)/(n+1)  = zc

n+2 ).

3. But then it must be the case that 

xc
n+2 + yc

n+2 <  zc
n+2. 

Inductive step
4. Assume that for all j, (n + 1) < j ≤ k,  xc

j + yc
j < zc

j .

2. Then 

(xc
k + yc

k)(k+1)/(k) < ((zc
k)(k+1)/(k)  = zc

k+1 ).

3. But then it must be the case that 

xc
k+1 + yc

k+1 <  zc
k+1. 

We can establish more regarding the ratios 

when k > p = n + 1.
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Lemma 0.97
Let x, y, z, be elements of a counterexample x(p = n+1) + y(p = n+1) = z(p = n+1) to FLT, where p = n + 
1 is the smallest such exponent. Then 

First (and Simplest) Proof of Lemma 0.97:

1. By Lemma 1.0, x < y < z.  

2. Therefore (x/z)k can be made arbitrarily small for sufficiently large k, and similarly for 
(y/z)k.  Thus

Second Proof of Lemma 0.97:

1. If we can prove that

we will have our proof of the Lemma, since the leftmost term in the leftmost equation above, in 
which  x = y, and z = (y + 1), is the most unfavorable case for our Lemma.

2. The first term in the denominator on the right-hand side of the leftmost equation is always 
yk.

The coefficient of the second term, as is well-known, increases with increasing k, so eventu-
ally a k will be reached such that the coefficient is ≥ y and will remain  ≥ y for all larger k.

So then the denominator is ≥ 2yk and remains so for all larger k.

But eventually a k will be reached such that the coefficient of the second term is ≥ 2y and will 
remain ≥ 2y for all larger k.

So then the denominator is ≥ 3yk and remains so for all larger k.

x
k

y
k

+

z
k

----------------
k ∞→
lim 0=

x
k

z
k

---- y
k

z
k

----+ x
k

y
k

+

z
k

----------------=
 
 
 

k ∞→
lim 0=

y
k

y
k

+

y 1+( )k
-------------------

k ∞→
lim 2y

k

y
k k

1 
  y

k 1– k
2 

  y
k 2– … k

k 
 + + + +

-------------------------------------------------------------------------------------
k ∞→
lim

 
 
 
 

0= =
34



Is There a “Simple” Proof of Fermat’s Last Theorem?
Etc. The result follows.  

Remark on Second Proof
The rate of convergence is actually faster than the above proof indicates, since we can include 

more terms in step 2.  Thus, e.g., in the case of the coefficient of the third term, eventually an n 
will be reached such that the coefficient is ≥ y2 and will remain  ≥  y2 for all larger k.  Etc.
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