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Abstract

A very brief survey of the main results concerning the cell–growth problem and its variations is
given. The name stems from an analogy with an animal which, starting from a single cell of some
specified basic polygonal shape, grows step by step in the plane by adding at each step a cell of
the same shape to its periphery. The fundamental combinatorial problem concerning these animals
is ”How many animals with n cells are there?” This problem was included in the list of unsolved
problems in the enumeration of graphs by Frank Harary in 1960. Despite serious efforts over the
last 40 years, this problem is completely open. However, a few asymptotic results are known. For
example, let p(n) denote the number of polyominoes (square animals) having n cells. It was proved
that (p(n))1/n tends to a limit Θ, which satisfies the following inequality: 3.87 < Θ < 4.65 . The
situation could hardly be worse, since the first digit of Θ is not even known...

The difficulty of the classical cell–growth problem has led to the study of various restricted
classes of polyominoes. Some variations of this problem are considered. Unsolved problems are
stated. Chemical applications of this problem are mentioned too.

1. Classical cell–growth problem

Combinatorial problem known as cell-growth problem is stated as follows [1–7]. The name stems
from an analogy with an animal which, starting from a single cell of some specified basic polygonal
shape, grows step by step in the plane by adding at each step a cell of the same shape to its periphery.
Thus if the basic shape is a square, the animals are the polyominoes (Fig.1a). If the basic shape is
an equilateral triangle or a regular hexagon, we obtain triangular and hexagonal animals looking like
those in Fig.1b and Fig.1c. Animals are defined as simply–connected ones if they have no holes and
as multiply–connected ones otherwise. All animals presented in Fig.1 are simply–connected ones. The
smallest multiply–connected polyomino is shown in Fig.2.

The fundamental combinatorial problem concerning these animals is ”How many animals with n cells
are there?” This problem was included in the list of unsolved problems in the enumeration of graphs by
Harary in 1960 [8]. Polyominoes have the most long history, going to the start of the 20th century, but
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Figure 1. Simply-connected square (a) , triangular (b) and hexagonal (c) animals
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Figure 2. The smallest multiply-connected polyomino

they were popularized in the present era by Golomb [9–11] and by Gardner [12, 13] in his Scientific
American columns ”Mathematical Games”. Another notable book on the subject is written by Martin
[14]. There are a great many articles and problems concerning polyominoes to be found in the magazine
Recreational Mathematics [15–20].

The answer on the main question ”how many animals are there?” depends on how we distinguish
animals. There are some distinguishing rules commonly used, and for each set there is a name for the
animals.

Free animals are considered distinct if they have different shapes. Their orientation and location in
the plane is no importance. For example, the two animals:

are the same free square animal since they differ only in orientation. We use free(n) to denote the number
of free animals with n cells.

Fixed animals are considered distinct if they have different shapes or orientations. Thus two animals
above are different fixed animals. We use fixed(n) to denote the number of fixed animals with n cells.

Originally the cell–growth problem was considered for the polyominoes. The most general discussion
of polyominoes was done by Golomb [10], however the number of polyominoes was only briefly discussed.
In 1962 Read [21] derived several theoretical results about the number of polyominoes. He presented
a method for deriving generating functions to calculate the number of simply–connected and multiply–
connected polyominoes, but these become intractable very quickly. He calculated free(n) only for n up
to 10 and his value for n = 10 was incorrect.
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Klarner [22, 23] found bounds for free(n) and fixed(n) polyominoes. The values seem to be growing
exponentially, and indeed they have exponential bonds. It is easy to see that for each n,

fixed(n)
8

≤ free(n) ≤ fixed(n)

Eden [24] seems to have been the first person to give upper and lower bounds for fixed(n). His bounds
are

(3.14)n < fixed(n) < 4n,

for sufficiently large n. The proof of his upper found was questionable. Later these bounds were
improved by Klarner and Rivest [25]. Using automata theory and building on earlier works of Eden,
Klarner and Read they have shown

Theorem 1 [25]

lim
n→∞

(fixed(n))
1
n = Θ exists, and 3.87 < Θ < 4.65. (1)

Considerable effort has been expended to find a formula for the number of fixed polyominoes, with
no success. Lunnon [26] has made the most successful previous enumeration. He computed the numbers
of free, fixed and symmetric polyominoes up to 18 cells. Later Lunnon [27] computed the numbers of
free and fixed triangular and hexagonal animals up to n = 16 and n = 12 respectively. The results are
given in Table 1 and Table 2.

Table 1. The numbers of fixed and free triangular animals [27]

n fixed(n) free(n)
1 2 1
2 3 1
3 6 1
4 14 3
5 36 4
6 94 12
7 250 24
8 675 66
9 1838 160
10 5053 448
11 14.016 1186
12 39.169 3334
13 110.194 9235
14 311.751 26.166
15 886.160 73.983
16 2.529.260 211.297
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Table 2. The numbers of fixed and free hexagonal animals [27]

n fixed(n) free(n)
1 1 1
2 3 1
3 11 3
4 44 7
5 186 22
6 814 82
7 3652 333
8 16.689 1448
9 77.359 6572
10 362.671 30.490
11 1.716.033 143.552
12 8.182.213 683.101

Table 3. The numbers of fixed and free polyominoes [28]

n fixed(n) free(n)
1 1 1
2 2 1
3 6 2
4 19 5
5 63 12
6 216 35
7 760 108
8 2725 369
9 9910 1285
10 36.446 4655
11 135.268 17.073
12 505.861 63.600
13 1.903.890 238.591
14 7.204.874 901.971
15 27.394.666 3.426.576
16 104.592.937 13.079.255
17 400.795.844 50.107.909
18 1.540.820.542 192.622.052
19 5.940.738.676 742.624.232
20 22.964.779.660 2.870.671.950
21 88.983.512.783 11.123.060.678
22 345.532.572.678 43.191.857.688
23 1.344.372.335.524 168.047.007.728
24 5.239.988.770.268 654.999.700.403
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Redelmeier [28] enumerated all free and fixed polyominoes up to 24 cells. His algorithm, which
produced the entries in Table 3 (and took over ten months of computer time to run), generates the fixed
polyominoes one by one and counts them. The running time is (necessarily) exponential. At present,
the computation of fixed(n) for n > 30 seems intractable.

Klarner [29] presented some unsolved problems arising in the cell–growth problem for polyominoes.

Problem 1. Can the number of fixed animals with n cells be computed by a polynomial–time algorithm?

A related problem concerns the constant Θ defined above.

Problem 2. Is there a polynomial algorithm to find, for each n, an approximation Θn of Θ satisfying

10−n < |Θn − Θ| < 10−n+1?

The lower–bound method of Klarner and Satterfield [30] gives an algorithm for approximating Θ
from below that has exponential complexity; no such method is known for approximating Θ from above.

Problem 3. Define some decreasing sequence β = (β1, β2, ...) that tends to Θ, and give an algorithm to
compute βn for every n.

It is known that (fixed(n)1/n) ≤ Θ for all n, and it seems that the ratios τ(n) = fixed(n +
1)/fixed(n) increase for all n. If the latter is true, τ(n) would approach Θ from below. This gives two
more unsolved problems:

Problem 4. Show that (fixed(n))1/n ≤ (fixed(n + 1))1/(n+1) for all n

Problem 5. Show that τ(n) ≤ τ(n + 1) for all n

Problem 6. Is the generating function T (z) =
∑∞

n=1 fixed(n)zn rational function?
Is T (z) even algebraic?

One can consider all of these problems for triangular and hexagonal animals.
So we gave the answer for the following question ”How many free and fixed animals with n cells are

there?”
Actually one can say about another distinguishing rule among animals. We can ask ”How many

simply–connected and multiply–connected animals with n cells are there?”
Read [21] calculated the numbers of simply–connected and multiply–connected square animals up

to n = 10. Later Trinajstić, etc., [31, 32] computed the numbers of simply–connected animals up to 10
cells and the numbers of multiply–connected animals with the only hole up to 10 cells.

The hexagonal animals which are also sometimes called polyhexes correspond to the structural for-
mulas of planar polycyclic aromatic hydrocarbons [33–35]. That is the reason why polyhexes have found
a big interest among chemists [36–51]. Moreover one more distinguishing rule among polyhexes was
considered. For simply–connected hexagonal animals it was done the answer on the following question
”How many animals with n cells and i internal vertices are there?” This classification is important for
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Figure 3. Hexagonal animals depicting dibenzo[a,c]anthracene (a) and benzo[e]pyrene (b)

chemists because the hexagonal simply–connected animals without internal vertices correspond to the
cata–condensed benzenoid hydrocarbons and the hexagonal simply–connected animals with internal ver-
tices correspond to the peri–condensed benzenoid hydrocarbons (see Fig.3). The obtained results are
given in Table 4.

The same classification was used for square and triangular animals by Konstantinova [52, 53]. The
numbers of simply–connected square and triangular animals without and with internal vertices up to 11
and 13 cells correspondingly are given in Table 5 and Table 6.

Table 4. The numbers of simply–connected hexagonal animals with i internal vertices [31]

n\i 0 1 2 3 4 5 6 7 8 9 10 total
1 1 1
2 1 1
3 2 1 3
4 5 1 1 7
5 12 6 3 1 22
6 36 24 14 4 3 81
7 118 106 68 25 10 3 1 331
8 411 453 329 144 67 21 9 1 1435
9 1489 1966 1601 825 396 154 55 15 4 6505
10 5572 8395 7652 4518 2340 1018 416 123 42 9 1 30086

Table 5. The numbers of simply–connected square animals with i internal vertices [52]

n\i 0 1 2 3 4 5 total
1 1 1
2 1 1
3 2 2
4 4 1 5
5 11 1 12
6 27 7 1 35
7 82 21 4 107
8 250 90 21 2 363
9 815 334 89 9 1 1248
10 2685 1311 391 67 6 4460
11 9072 4978 1674 324 45 1 16094
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Table 6. The numbers of simply-connected triangular animals with i internal vertices [53]

n\i 0 1 2 3 total
1 1 1
2 1 1
3 1 1
4 3 3
5 4 4
6 11 1 12
7 23 1 24
8 62 4 66
9 148 11 159
10 405 38 1 444
11 1041 118 2 1161
12 2825 386 15 3226
13 7541 1189 54 1 8785

She also presented the numbers of multiply–connected square [52], triangular [53] and hexagonal [54]
animals with respect to the type of holes.

All multiply–connected square animals with the fixed internal boundaries presented in Fig.4 were
generated and enumerated. The obtained data for n = 9, n = 10, n = 11 are given in Table 7, Table 8
and Table 9 correspondingly. In these tables t is the type of an internal boundary (see Fig.4) and i is the
number of internal vertices. The total numbers of multiply–connected square animals with 7 ≤ n ≤ 11
are given in Table 10. The total numbers of simply– and multiply–connected square animals for n ≤ 11
are given in Table 11. These data correspond to the numbers of free square animals [26, 28].

Type 1

a′ b′ c′ d′ d′′ e′ f ′

r r r

r

r r

r

r

Type 2

a b

Figure 4. The different types of internal boundaries for multiply–connected
square animals with up to 11 cells
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Table 7. The numbers of multiply–connected square animals with n = 9

i\t a′ a b′ total
0 31 2 1 34
1 3 3
total 34 2 1 37

Table 8. The numbers of multiply–connected square animals with n = 10

i\t a′ a b′ b total
0 132 14 12 1 159
1 34 1 35
2 1 1
total 167 15 12 1 195

Table 9. The numbers of multiply–connected square animals with n = 11

i\t a′ a b′ b c′ d′ d′′ e′ f ′ total
0 575 52 78 4 1 2 2 1 3 718
1 213 13 8 234
2 26 1 27
total 814 66 86 4 1 2 2 1 3 979

Table 10. The total numbers M of multiply–connected square animals

n 7 8 9 10 11
M 1 6 37 195 979

Table 11. The total numbers of simply– and multiply–connected square animals

n 1 2 3 4 5 6 7 8 9 10 11
data 1 1 2 5 12 35 108 369 1285 4655 17073

Moreover the diagrams of all multiply–connected square animals up to 11 cells are given in [52] and
diagrams of all multiply–connected triangular animals up to 13 cells are given in [53].

8



Type 1

��@@ �
��

@@
��@@�� @@

r @@��
@@

a

��@@ �
��

@@
�
��

@@�
��

@
@@

r @@��
@@
@@

b

��@@
@@ @@�� ��

�
��

@@
�
��

@@�
��

@
@@

r

@@

@@

c

��@@ @@
��

��
@@

@@��@@��@@

��@@�� @@ r

��
@@

d

Type 2

��@@
@@

�
��

@@
��@@��

��@@�� @@
@@��
@@

e

Figure 5. The different types of internal boundaries for multiply–connected
triangular animals with up to 13 cells

All multiply–connected triangular animals with the fixed internal boundaries presented in Fig.5 were
generated and enumerated. The obtained data are given in Table 12. In this table t is the type of an
internal boundary, i is the number of internal vertices and n is the number of cells. The total numbers
of simply– and multiply–connected triangular animals for n ≤ 13 are given in Table 13. These data
correspond to the numbers of free triangular animals [27].

Table 12. The number of multiply–connected triangular animals

i 0 1
n\t a b c d e a total
9 1 1
10 4 4
11 24 1 25
12 100 5 1 1 1 108
13 405 29 5 1 2 8 450

Table 13. The total number of simply– and multiply–connected triangular animals

n 1 2 3 4 5 6 7 8 9 10 11 12 13
data 1 1 1 3 4 12 24 66 160 448 1186 3334 9235

All multiply–connected hexagonal animals with the fixed internal boundaries presented in Fig.6 were
generated and enumerated. The obtained data are given in Table 14. In this table t is the type of an
internal boundary, i is the number of internal vertices and n is the number of cells. The total numbers
of simply– and multiply–connected hexagonal animals for n ≤ 9 are given in Table 15. These data
correspond to the numbers of free hexagonal animals [27].

Table 14. The number of multiply–connected hexagonal animals

i 0 1 2 3 4
n\t a b c a b a a a total
6 1 1
7 1 1 2
8 5 1 3 4 13
9 17 2 1 17 2 17 10 1 67
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Figure 6. The different types of internal boundaries for multiply–connected
hexagonal animals with up to 9 cells

Table 15. The total number of simply– and multiply–connected hexagonal animals

n 1 2 3 4 5 6 7 8 9
data 1 1 3 7 22 82 333 1448 6572

Sometimes more careful classification is used for simply–connected hexagonal animals [55]. Un-
branched tree–like polyhexes have only two terminal cells (see Fig.1c). Branched tree-like polyhexes have
more than two terminal cells (see Fig.3a). Unbranched tree–like polyhexes are the graph representations
of unbranched cata–condensed benzenoid molecules, including helicenic species (non-embedded to the
plane) and play a distinguished role in the theoretical chemistry of benzenoid hydrocarbons [35].

The unbranched tree–like polyhexes Un were counted by Balaban and Harary [36]:

Un =
{

1
4 (3(n−2)/2 + 1)2, if n is an even
1
4 (3n−2 + 3(n−1)/2 + 3(n−3)/2)2, if n is an odd

(2)

Later Dobrynin [56] computed and generated all these polyhexes up to 16 cells. Some variations
of this problem were considered by Cyvin, etc., [57–60] for unbranched tree–like systems of congruent
polygons.

Cyvin [60] formulated the following problem in mathematical chemistry. Let P is the polyhex, i is
the number of internal vertices in P and n is the number of hexagons in P . Then a very useful relation
for polyhexes holds:

i ≤ 2n − d(12n − 3)1/2e, (3)

where dxe is the smallest integer not smaller than x. The upper bound is realized in extremal animals
[61] .

For example, for n = 5 extremal polyhex P looks like this one:
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Using the above formula we exactly have the following upper bound

i ≤ 2 · 5 − d(12 · 5 − 3)1/2e = 10 − d
√

57e = 10 − 7 = 3, (4)

which is realized in polyhex P .
Let define the mono–q–polyhex as the planar graph embedded to the mono–q–hexagonal lattice which

is similar to the hexagonal lattice; it consists of exactly one q–gon and otherwise hexagons.
Many hydrocarbons correspond to the mono–q–polyhex graphs, e.g., the (q)circulenes. (5)circulene,

(6)circulene, (7)circulene have been synthesized and a synthesis of (8)circulene has been attempted.
Let h be the number of hexagons outside the unique q–gon. Then the following conjecture is proposed

for mono–q–polyhexes:

Problem 7 [60]. Show that

i ≤ 2h − d(1/2)(8qh + q2)1/2 − (q/2)e

The upper bound is supposed to be realized in the appropriate extremal systems.
One more problem immediately arise here.

Problem 8. To enumerate all mono–q–polyhex with i internal vertices and h hexagons

So the main results concerning the cell–growth problem and some unsolved problems arising there are
considered above. Actually there is a lot of variations for this combinatorial problem. We will consider
some of them.

2. Cell–growth problem for non–embedding animals

The classical cell–growth problem was formulated for the animals embedded to the plane. The
animals non–embedded to the plane were investigated in the several papers [3, 22, 23, 36, 41, 56, 57, 62,
63].

As was mentioned above unbranched tree–like polyhexes embedded and non–embedded to the plane
were considered by Balaban, Harary and Read [3, 36]. Moreover they have obtained the formula (2)
for the number of unbranched tree–like polyhexes embedded and non–embedded to the plane. Actually
in [3] it was shown how, by making a fairly drastic change in the definition of hexagonal animals, it is
possible to arrive at a combinatorial problem for which an explicit solution exists.

In [62] a variation of the cell–growth problem for so–called n−clusters was considered. Here is a more
formal recursive definition. The graph which is a polygon of order n (n−gon) is an n−cluster, and if G

is an n−cluster of order p then the graph of order p + (n − 2) obtained by identifying an edge of a new
n−gon with an edge of G lying in exactly one n−gon is again an n−cluster. The example of 6–cluster is
given in Figure 7. Thus three–like polyhexes enumerated in [3] form a subset of hexagonal clusters. The
generating function for n−clusters was obtained and the results for 3 ≤ n ≤ 6 are given in Table 16.

It was also mentioned that the enumeration of n−clusters can be viewed as the counting of dissections
of a polygon. One can draw a cluster so that its perimeter (the set of outer edges) appears as a regular

11



HH

�� HH��

��

�� �� ll

��
l
l

E
E
E

HH

�� HH��

��

HH

��� HHH��

��

Figure 7. Hexagonal cluster

Table 16. The numbers of n−clusters, 3 ≤ n ≤ 6, with h cells [62]

h n = 3 n = 4 n = 5 n = 6
1 1 1 1 1
2 1 1 1 1
3 1 2 2 3
4 6 5 8 12
5 4 16 33 68
6 12 60 194 483
7 27 261 1196 3946
8 82 1243 8196 34.485
9 228 6257 58.140 315.810
10 733 32.721 427.975 2.984.570
11 2282 175.760 3.223.610 28.907.970
12 7528 963.900 24.780.752 285.601.251
13 24.834 5.374.400 193.610.550 2.868.869.733
14 83.898 30.385.256 1.534.060.440 29.227.904.840
15 285.357 173.837.631 12.302.123.640 301.430.074.416
16 983.244 1.004.867.079 99.699.690.472 3.141.985.563.575
17 3.412.420 5.861.610.475 815.521.503.060 33.059.739.636.198
18 11.944.614 34.469.014.515 6.725.991.120.004
19 42.080.170 204.161.960.310 55.882.668.179.880
20 149.197.152 1.217.145.238.485
21 531.883.768 7.299.007.647.552
22 1.905.930.975 44.005.602.441.840
23 6.861.221.666
24 24.806.004.996
25 90.036.148.954
26 327.989.004.892
27 1.198.854.697.588
28 4.395.801.203.290
29 16.165.198.379.984
30 59.609.171.366.325

polygon. Then the cluster gives a dissection of the regular polygon into regions, each of which is an n−gon.
The simplest of these dissection problems is the one for which n = 3, and concerns triangulations of the
polygon. For some special cases this problem has been solved by Guy [64] and Motzkin [65]. In this
connection see also the catalogue of sequences by Sloane [66], which corrects an error in Guy’s list,

12



Table 17. The numbers of non–embedding polyhex NEP up to 10 hexagon [41]

n 1 2 3 4 5 6 7 8 9 10

NEP 1 8 71 542 3857

and also one in Motzkin’s. Note also that the problem of counting clusters rooted at an exterior edge is
equivalent to that of counting dissections of a fixed polygon, and has been considered in some detail by
Motzkin. The case n = 3 for a fixed polygon is particularly well–known, having a history that extends
all the way back to Euler, and gives rise to the ubiquitous Catalan number.

Some chemical enumerations of non-embedding animals take place too. Trinajstić, etc., [41] enumer-
ated all simply–connected polyhexes non–embedded to the plane up to 10 hexagon. These polyhexes
are the graph representations of cata–helicene and peri–helicene benzenoid hydrocarbons [55]. The data
are shown in Table 17.

The following unsolved problems concerning non–embedding animals with n cells are here.

Problem 9. To enumerate all simply–connected and multiply–connected non–embedding animals

Problem 10. To enumerate all non–embedding simply–connected animals with i internal vertices

All previous considerations were dealing with the 2-dimensional case. Actually one can consider
3-dimensional case of the cell-growth problem and formulate the cell–growth problem for this case using,
for example, cubes instead of squares:

Problem 11. How many cubical animals are there?

3. Variation of cell–growth problem: convex polyominoes

The difficulty of the classical cell–growth problem has led to the study of various restricted classes of
polyominoes. Most of them can be defined by combining two notions: a geometric notion of convexity,
and a notion of directed growth, which comes from statistical physics. Dhar [67, 68] presented the
important example of the correspondence between the enumeration of directed polyominoes on a regular
lattice in dimension D and the resolution of a gas–model in dimension D − 1.

A polyomino is said to be vertically convex (or column–convex) when its intersection with any vertical
line is convex (see Fig.8). We can define similarly a notion of horizontal (or row-) convexity. A polyomino
is convex if it is both vertically and horizontally convex. The area of a polyomino is the number of cells,
and the perimeter is the length of the border. A polyomino is said to be directed when every it’s cell
can be reached from a distinguished cell, called a root, by a path that is contained in polyomino and has
only North and East steps (see Fig.8).

13
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Figure 8. Four main subclasses of polyominoes

Combining the two notions described above, one can already define four types of polyominoes, de-
pending on whether they are only column–convex, or also row–convex, directed or not. Namely, here
are the four main subclasses of polyominoes: column–convex polyominoes, convex polyominoes, directed
and column–convex polyominoes, directed and convex polyominoes.

Usually the enumeration of these objects according to their perimeter and area is considered. Roughly,
one can say that two kinds of generating functions occur, depending on the convexity properties of the
class of polyominoes that is being enumerated. More precisely:

- the perimeter generating function for any usual convex polyominoes is an algebraic series, whereas
the area generating function involves q-series; moreover, taking into account the perimeter (or the width
and the height) when one already knows the area generating function is usually a rather easy task;

- the situation is different for families of column–convex polyominoes: the perimeter generating
function and the area generating function are both algebraic; but the difficulty consists in taking into
account simultaneously the two parameters.

Column–convex polyominoes apparently first appeared in Pólya’s diary notes [69] and were indepen-
dently introduced by Temperley [70]. The area generating function of these polyominoes was found on
the spot [69, 70]. Klarner [22] has obtained the area generating function of row–convex polyominoes. He
used the following method.

Let a composition of n with k parts is an ordered k-tuple (a1, . . . , ak) of positive integer with a1 +
. . . + ak = n and let us assign to each composition a polyomino with n cells and with a horizontal strip
of ai cells in row i. Thus can be done in many ways, and the results are all row–column polyominoes.
The examples of 6 row–convex polyominoes with 6 cells corresponding to the composition (3,1,2) of 6
are shown in Figure 9.

Since there are (m + n− 1) ways to form polyominoes with (m + n) cells by placing a strip of n cells
atop a strip of m cells, it follows that for each composition there are

(a1 + a2 − 1)(a2 + a3 − 1) · · · (ak−1 + ak − 1)

polyominoes with n cells having a strip of ai cells in the ith row for each i.

14



Figure 9. The 6 row–convex polyominoes with 6 cells corresponding to the composition (3,1,2) of 6

It follows that if b(n) is the number of row–convex polyominoes with n cells, then

b(n) =
∑

(a1 + a2 − 1)(a2 + a3 − 1) · · · (ak−1 + ak − 1),

where the sum extends over all compositions (a1, . . . , ak) of n into k parts, for all k. b(n), and the area
generating function B(z) =

∑∞
n=1 b(n)zn, are given by

Theorem 2 [22]

b(n + 3) = 5b(n + 2) − 7b(n + 1) + 4b(n), and B(z) =
z(1 − z)3

1 − 5z + 7z2 − 4z3
(5)

for n = 2, 3, . . ., where b(1) = 1, b(2) = 2, b(3) = 6, . . . .

Corollary 1.
limn→∞(b(n))

1
n = β where β is the largest real root of z3 − 5z2 + 7z − 4 = 0; 3.20 < β < 3.21

More general case was considered by Bousquet–Mélou [71] in 1996 for directed column–convex poly-
ominoes. Using ’Temperley methodology’ [70] and building on her earlier works [72–79] she has obtained
the generating function V (x, y, n) in which the variables x, y, n mark horizontal and vertical edges of a
perimeter and the number of cells

Theorem 3 [71]

V (x, y, n) = y2

∑∞
i=1

x2i(y2−1)i−1ni(i+1)/2

(n)i−1(y2n)i−1(y2n)i

1 −
∑∞

i=1
x2i(y2−1)i−1ni(i+1)/2

(n)i(y2n)i−1(y2n)i

(6)

The method which produced by formula (6) is markedly versatile. Besides the directed column–
convex polyominoes, that method can be handle e.g. directed convex, convex, column–convex poliomi-
noes and also some special classes such that parallelogram polyominoes [80]. Some common results for
directed polyominoes on the triangular and hexagonal lattice was obtained in [81].

On the contrary, the perimeter generating function G(x, y) of column–convex polyominoes remained
unknown for many years after Pólya’s and Temperley’s works. At last Delest [82, 83] applied the DSV–
methodology [84–88] and the computer algebra program MACSYMA to obtain a formula for G(x, x).
Subsequently, Brak, etc., [89] rederived the function G(x, x) using the Temperley methodology and
Mathematica. Thus it turned out that the formula given in [82] can be written in a simpler form. The
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result of Brak was generalized to the case x 6= y by Lin [90] and confirmed by Feretić [91]. The following
remarkably simple formula for G(x, y) takes place:

G(x, y) = (1 − y2)

[
1 − 2

√
2

3
√

2 −
√

1 + x2 +
√

(1 − x2)2 − 16x2y2/(1 − y2)2

]
(7)

The area and perimeter generating functions of column–convex polyominoes and directed column–
convex polyominoes were obtained also by Brak, etc., [92], Delest and Dulucq [93], Feretić [94].

4. Some related topics

Some another results concerning the discussed topic can be found in [95–99] results related to the
classical cell-growth problem can be found in [100–116]. Let us mention some of them.

The polyominoes’ problem defined by two vectors has been proposed Navit in 1992 in the course
of the seminar held at the Dipartimento di Sistemi e Informatica di Fireze, on September 1992, on the
subject Tiling the plane with a horizontal bar hm and a vertical bar vn. It is the problem of establishing
the existence of a polyomino with a given number of cells in every column and every row. The problem is
solved by Lungo [109] for the following classes of polyominoes: directed column-convex, directed convex,
and parallelogram. The problem is also solved in the class of convex polyominoes in a particular case.
Also, for each of these classes an algorithm is defined which controls the existence of a polyomino for
given vectors.

The following problem concerns polyominoes radically different from convex ones.

Problem 12. [29] Find the smallest natural number n such that there exists a polyomino with n cells
and with no row or column consisting of just a single strip of cells

An example of a polyomino with 21 cells with this property is shown in Figure 10.
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Figure 10. A polyomino with 21 cells and with no row or column a single strip of cells
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Figure 11. Snaky polyomino

Achievement games for polyominoes are frequently discussed in the literature [18–20,102,111,112,116].
For a given polyomino P two players A and B alternately mark the cells of the tessellation as game board.
The player who first completes a copy of P with his marks wins the game. A polyomino P is called a
winner if the first player A can win regardless of the moves made by B. Otherwise, P is called a loser.

For the triangular tessellation there are three winners and all other polyominoes are losers (see
[20]). For the square tessellation 11 polyominoes are known to be winners. All others except one
undecided polyomino, called Snaky (see Fig.11), are losers [111]. For the hexagonal tessellation all but
five polyominoes with at most five cells are determined as winners or losers [116]. It may be remarked
that for the five platonic solids as game boards all winners and losers are determined in [112].
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16 119–134 (1984).

[33] E. Clar. The aromatic sextet, Wiley, London, (1972).

[34] J.R. Dias, Handbook of polycyclic hydrocarbons. Part A. Benzenoid hydrocarbons, Elsevier, Ams-
terdam, (1987).

[35] I. Gutman and S.J. Cyvin, Introduction to the theory of benzenoid hydrocarbons, Springer–Verlag,
Berlin, (1989).

[36] A.N. Balaban and F. Harary, Enumeration and proposed nomenclature of benzenoid cata-condensed
polycyclic aromatic hydrocarbons, Tetrahedron 24 2505–2516 (1968).

[37] A.T. Balaban, Ed., Chemical applications of graph theory, Academic Press, London, (1976).

[38] R.J. Wilson and L.W. Bieneke, Eds., Applications of graph theory, Academic Press, London, (1979).

[39] R.B. King, Ed., Chemical applications of topology and graph theory, Elsevier, Amsterdam, (1983).
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