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ON AN INVARIANT RELATED TO A LINEAR INEQUALITY

AMNON BESSER AND PIETER MOREE

Abstract. Let α = (α1, α2, . . . , αm) ∈ R
m
>0

. Let αi,j be the vector obtained
from α on deleting the entries αi and αj . We investigate some invariants and
near invariants related to the solutions ǫ ∈ {±1}m−2 of the linear inequality |αi −
αj | < 〈ǫ, αi,j〉 < αi + αj , where 〈, 〉 denotes the usual inner product. One of our
methods relates, by the use of Rademacher functions, integrals involving products
of trigonometric functions to these quantities.

1. Introduction

The purpose of this note is to construct a certain invariant related to a linear
inequality. To give an example, consider the numbers 4, 6, 7, 9 and 11. Pick a pair
out of them, say 4 and 6. Then consider the linear combinations of the form ±7±9±11
that are in the open interval (|4−6|, 4+6). There are two of them: 1·7+(−1)·9+1·11,
which we give weight 1 · (−1) ·1 = −1 and 1 ·7+1 ·9+(−1) ·11, which we give weight
1 · 1 · (−1) = −1. Adding yields −2. If we now pick any two other numbers and
repeat the same construction, we also get −2. This is no coincidence; one obtains the
same invariance result for any sequence α1, · · · , αm of positive reals with m is odd,
provided that ±α1 ± α2 ± · · · ± αm 6= 0. The value of the invariant depends on the
numbers chosen at the outset. If the collection of numbers has even size, we can only
obtain an invariance result modulo 2.

A word about the structure of this note: We first give the results and a direct proof
that the quantity computed is independent of the choice of the two numbers. Based
on our method of proof we can then supply a closed formula for this quantity. At the
same time, having found the closed formula, we can give a much easier alternative
proof of the theorem. We also give some explanation regarding our choice of weights.
Finally, in Section 3 we rederive some of the results using Rademacher functions and
obtain some new ones.

2. Results

Theorem 2.1. Let m ≥ 3. Let α = (α1, α2, . . . , αm) ∈ R
m
>0 and suppose that there

is no ǫ ∈ {±1}m satisfying 〈ǫ, α〉 = 0. Let 1 ≤ i < j ≤ m. Let αi,j ∈ R
m−2
>0 be the

vector obtained from α on deleting αi and αj. Let

Si,j(α) := {ǫ ∈ {±1}m−2 : |αi − αj | <
〈

ǫ, αi,j

〉

< αi + αj}.

a) The reduction of #Si,j(α) mod 2 only depends on α.

b) Define Ni,j(α) =
∑

ǫ∈Si,j

∏m−2
k=1 ǫk. Suppose that m is odd. Then Ni,j(α) only

depends on α.
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2 AMNON BESSER AND PIETER MOREE

Corollary 2.2. Suppose m = 4. Then |Ni,j(α)| only depends on α.

Proof. In this case obviously #Si,j(α) ∈ {0, 1, 2}. If #Si,j(α) ∈ {0, 2}, then |Ni,j(α)|
is easily seen to equal zero. If #Si,j(α) = 1, then |Ni,j(α)| = 1. By property a) it
then follows that |Ni,j(α)| is an invariant.

Remark 2.3. An alternative notation for Ni,j(α) and Si,j(α) we will use that turns
out to be more convenient on occasion is Nαi,αj

(α), respectively Sαi,αj
(α).

Proof of Theorem 2.1. One checks the result easily in the case m = 3, so we assume
that m ≥ 4. Suppose we are given two pairs of indices, (i1, j1) and (i2, j2), with one
index repeated. We can choose an index l different from all of the above indices.
We will show that as function of αl we have Ni1,j1(α) = Ni2,j2(α) when the other
components of α are kept fixed, and that the same holds with N∗,∗ replaced by #S∗,∗

modulo 2. If this holds for all possible pairs with the above restriction, then also
Ni1,j1(α) = Ni2,j2(α) holds in the case the indices are all different (and the same with
N∗,∗ replaced by #S∗,∗ modulo 2).

Notice that if αl is sufficiently large, then S∗,∗(α) = {∅}. Thus in this case we
get an equality with #S∗,∗(α) = 0 and N∗,∗(α) = 0. As αl decreases, a change
in some Si,j(α) will only occur if αl crosses the point where |αj − αi| =

〈

ǫ, αi,j

〉

or

αj +αi =
〈

ǫ, αi,j

〉

, that is at most at those αl such that 〈ǫ, α〉 = 0 for some ǫ ∈ {±1}m.
We will actually see that on moving across such α a change always occurs. In order to
prove Theorem 2.1 it is enough to prove that both Ni,j(α) and #Si,j(α) change by the
same amount (respectively the same amount mod 2), independent of i, j, when we go
from (α1, . . . , αl−1, αl + δ, . . . , αm) to (α1, . . . , αl−1, αl − δ, . . . , αm), where 〈ǫ, α〉 = 0
and δ is sufficiently small, but positive. Without loss of generality we may assume
that αj ≥ αi. Put α+

l = αl + δ, α−
l = αl − δ and, for k 6= l, α+

k = α−
k = αk. Let

N±
i,j(α) and S±

i,j(α) have the obvious definitions. Note that 〈ǫ, α〉 = 0 implies that

−ǫj

∑

k 6=i,j

ǫkα
+
k = α+

j + ǫiǫjα
+
i − ǫjǫlδ

and also that

−ǫj

∑

k 6=i,j

ǫkα
−
k = α−

j + ǫiǫjα
−
i + ǫjǫlδ.

If ǫiǫj = 1 and ǫjǫl = −1, the passage from α+
l to α−

l leads to −ǫj · ǫi,j to be added
to Si,j(α). Similarly looking at the other possible values for ǫiǫj and ǫjǫl, we see
that for all sign possibilities a solution is added or deleted according to whether
the sign of (ǫiǫj) · (ǫjǫl) = ǫiǫl is negative, respectively positive and therefore we
conclude that #S−

i,j(α) = #S+
i,j(α) − ǫiǫl. In general, let ǫ(1), . . . , ǫ(s) denote all

the different solutions to 〈ǫ, α〉 = 0, where ǫ and −ǫ are considered the same solu-
tion. Each of them leads to a contribution of ǫi(r)ǫl(r) to #S−

i,j(α) − #S+
i,j(α) that

is not yet accounted for, where 1 ≤ r ≤ s. If there would be further changes in
the passage from + to − they would lead to additional solutions of 〈ǫ, α〉 = 0. We
deduce that #S−

i,j(α) = #S+
i,j(α) −

∑s

r=1 ǫi(r)ǫl(r). In particular mod 2 the lat-
ter sum is independent of the choice of i and j. This proves part a. Note that
Ni,j(α) changes by

∑s

r=1 ǫi(r)ǫl(r)
∏

k 6=i,j(−ǫj(r)ǫk(r)). If m is odd this is equal to
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−
∑s

r=1 ǫl(r)
∏m

k=1 ǫk(r). This is independent of i and j, thus proving part b.

The more interesting part of Theorem 2.1, that is part b, raises the question of giving
an alternative description of Ni,j(α) that does not involve i and j. The next theorem
will give such a description. Let sgn(β) denote the function that equals 1 if β > 0,
0 if β = 0 and −1 if β < 0. Let m ≥ 3 be odd. Let δ0 be the delta distribution at
0. This is a generalised function which is the derivative of any step function of jump
1 at 0, e.g. (1/2) sgn. When we checked how Ni,j(α) varied when we changed αl, we
were in fact computing the derivative of Ni,j(α) with respect to αl. The computation
we made in the proof of Theorem 2.1 clearly gives the following formula:

∂Ni,j(α)

∂αl

= −
1

2

∑

ǫ∈{±1}m

ǫlδ0(〈ǫ, α〉)
m
∏

k=1

ǫk.

The factor of 1/2 comes from the fact that we count each solution together with its
negative. This almost proved the next result:

Theorem 2.4. For m ≥ 3 odd and α as in Theorem 2.1, we have

Ni,j(α) = −
1

4

∑

ǫ∈{±1}m

sgn(〈ǫ, α〉)
m
∏

k=1

ǫk.(1)

We give two proofs in this section and another proof, based on Rademacher func-
tions, in Section 3.

Proof 1. It follows from the computation above that both sides of (1) have the same
partial derivatives. It is also easy to see that

lim
αl→∞

R.H.S. = −
1

4

∑

ǫ∈{±1}m

ǫl

m
∏

k=1

ǫk = 0,

and the theorem follows.

We wish, however, to give a second, more direct proof, which does not use the com-
putation done while proving Theorem 2.1.

Proof 2. Denote the right hand side in (1) by g(α) and the summand by h(α, ǫ).
Since m is odd by assumption, we have h(α,−ǫ) = h(α, ǫ). Thus, we can write

g(α) = −
1

2

∑

〈ǫi,j ,αi,j〉>0

h(α, ǫ),

where we sum over all ǫ ∈ {±1}m satisfying the condition. (Note that
∑

〈ǫi,j ,αi,j〉=0

h(α, ǫ) = 0.)

From this

g(α) = −
1

2

∑

〈ǫi,j ,αi,j〉>0





∑

ǫi,ǫj

ǫiǫj sgn

(

〈

ǫi,j, αi,j

〉

+ ǫiαi + ǫjαj

)





∏

k 6=i,j

ǫk.



4 AMNON BESSER AND PIETER MOREE

One checks that the sum in the square brackets is 0 if ǫi,j satisfies either
〈

ǫi,j, αi,j

〉

>

αi + αj or
〈

ǫi,j, αi,j

〉

< |αj − αi|, and is −2 if |αj − αi| <
〈

ǫi,j, αi,j

〉

< αi + αj . Thus

g(α) =
∑

|αj−αi|<〈ǫi,j ,αi,j〉<αi+αj

∏

k 6=i,j

ǫk = Ni,j(α).(2)

(The case where
〈

ǫi,j, αi,j

〉

= |αi − αj| or
〈

ǫi,j, αi,j

〉

= αi + αj does not occur, since
by assumption 〈ǫ, α〉 6= 0.)

Remark 2.5. Notice that g(α) = 0 when m is even.

Modulo 2 we have, by (2), that g(α) =
∑

|αj−αi|<〈ǫi,j ,αi,j〉<αi+αj
1 = Ni,j(α) in case

m ≥ 3 is odd. Thus Theorem 2.1 a) follows in case m is odd. From Theorem 2.4 the
validity of Theorem 2.1 b) immediately follows.

Is there a result similar to Theorem 2.1 b) when m is even? Clearly the exact
same statement is false. It is however conceivable that there exists an assignment
of weights to the elements of Si,j(α) that would lead to a similar result. We now
show that under certain assumptions this is impossible, while also suggesting how
one might have guessed the correct form of the weights in Theorem 2.1 in the first
place. We consider a weight function f : {±1}m−2 → R. We would like f to be such
that N ′

i,j(α), where

N ′
i,j(α) :=

∑

ǫ∈Si,j(α)

f(ǫ),

is independent of i and j. A look at the proof of Theorem 2.1 shows that f will have
this property if and only if the following condition is satisfied:

(∗): For any ǫ ∈ {±1}m the quantity ǫif(−ǫj · ǫi,j) is independent of i and j.

Indeed, since N ′
i,j(α) is independent of whether αj ≥ αi or αi < αj , we can assume

w.l.o.g. that αj ≥ αi, the proof of Theorem 2.1 then shows that when we pass over a
solution of 〈ǫ, α〉 = 0, we gain or lose a solution according to the sign of ǫlǫi, with l
the coordinate that we vary, and that this solution is −ǫj · ǫi,j . Ni,j therefore changes
by ǫlǫif(−ǫj · ǫi,j) and we may neglect ǫl, since it is fixed in the argument. We now
have the easy

Proposition 2.6. If m ≥ 4 is even, there is no function f satisfying the condition
(∗). If m ≥ 3 is odd, every f satisfying (∗) is of the form f(ǫ) = C ·

∏m−2
k=1 ǫk, with

C a constant.

Proof. Let m ≥ 3. Consider (ǫ1, . . . , ǫr, . . . , ǫm−2) ∈ {±1}m−2. If we apply condition
(∗) to the vector

(ǫ1, . . . , ǫr−1, ǫr,−ǫr, ǫr+1, . . . , ǫm−2,−1) ∈ {±1}m,

with (i, j) = (r, m) and (i, j) = (r + 1, m), we see immediately that f has to satisfy

f(ǫ1, . . . , ǫr, . . . , ǫm−2) = −f(ǫ1, . . . ,−ǫr, . . . , ǫm−2).

Therefore, f(ǫ) = C ·
∏m−2

k=1 ǫk with C = f(1, 1, . . . , 1). Now it is immediately checked
that this function satisfies (∗) only if m is odd.
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2.1. Shortening vectors. The quantities above can be related to quantities of the
same nature, but for shortened vectors. Let α be a vector of the type allowed in
Theorem 2.1. For j 6= k, let γ±

j,k
be the vector of length m − 1 obtained from α on

replacing αj by |αj ± αk| and deleting αk. It can be deduced, for example, that if
m ≥ 4 and αk ≤ αj − αi with i, j and k distinct, then

#Sαi,αj
(α) = #Sαi,|αj−αk|(γ

−

j,k
) + #Sαi,αj+αk

(γ+

j,k
).(3)

To see this, note that if αk ≤ αj − αi the number of ǫ ∈ {±1}m−2 with 〈ǫ, αi,j〉 =
· · ·+αk+· · · and the number of ǫ with 〈ǫ, αi,j〉 = · · ·−αk+· · · , equals #Sαi,|αj−αk|(γ

−
j,k

),

respectively #Sαi,αj+αk
(γ+

j,k
). We defer further discussion of shortening until Section

3.1, where a more powerful approach in uncovering and proving this type of identities
is employed.

3. Results obtained by using Rademacher functions

Let 0 ≤ t ≤ 1 be a real number. We define ǫi(t), i = 1, 2, · · · recursively. Suppose
ǫ1(t), · · · , ǫi−1(t) are already defined. Then we define ǫi(t) to be 1 if

1

2i
≤ t −

i−1
∑

j=0

ǫj(t)

2j

and to be zero otherwise. Note that 0.ǫ1(t)ǫ2(t) · · · gives a binary representation for t.
We define ri(t) = 1−2ǫi(t) for i = 1, 2, · · · . The functions ri(t) are called Rademacher
functions.

Using the Rademacher functions we will prove the following result, which shows
again that N∗,∗(α) only depends on α in case m is odd. Using (4) it is then easy to
give yet another proof of Theorem 2.4.

Theorem 3.1. Let m ≥ 3 and α as be as in Theorem 1. Let β1, · · · , βm be positive
integers and q a real number such that, for k = 1, · · · , m,

|
βk

q
− αk| <

minǫ∈{±1}m |〈ǫ, α〉|

m
,

and with the β’s satisfying the same ordering and equalities as do the α’s (that is if
αi ≤ αj, then βi ≤ βj, where 1 ≤ i, j ≤ m with i 6= j). Suppose m is odd. Then

Ni,j(α) = (−1)
m+1

2
2m−2

2π

∫ 2π

0

cot(
x

2
) sin(β1x) · · · sin(βmx)dx.(4)

Suppose m is even and αi ≤ αj. Then

Ni,j(α) = (−1)
m
2
−12m−2

2π

∫ 2π

0

cot(
x

2
) cot(βjx) sin(β1x) · · · sin(βmx)dx.(5)

Let m ≥ 3 be arbitrary and αi ≤ αj. Then

#Si,j(α) =
2m−2

2π

∫ 2π

0

cot(
x

2
) tan(βix) cos(β1x) · · · cos(βmx)dx.(6)
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Corollary 3.2.
a) Theorem 2.1 b) holds true.
b) If m ≥ 4 is even, then N∗,∗(α) depends only on the largest component omitted from
α. This implies that N∗,∗(α) assumes at most m − 1 values.
c) The value of #S∗,∗(α) depends only on the smallest component omitted from α.

Proof of Theorem 3.1. The existence of q and β = (β1, · · · , βm) is obvious. Clearly the

equality Ni,j(α) = Ni,j(q
−1β) = Ni,j(β) holds and similarly we have Si,j(α) = Si,j(β).

We only prove the identity (4), the proofs of the other two being very similar.
Let s be an integer. Note that

1

2π

∫ 2π

0

eisxdx =

{

1 if s=0;

0 otherwise.
(7)

Let us consider Nm−1,m(α) = Nm−1,m(β). Put m1 = m − 2. We have

Nm−1,m(α) =
2m1

2π

βm−1+βm−1
∑

s=|βm−1−βm|+1

∫ 1

0

r1(t) · · · rm1(t)

∫ 2π

0

eix(β1r1(t)+···+βm1rm1 (t)−s)dx dt.

Every sequence of length m1 of +1’s and −1’s corresponds to one and only on interval
(j/2m1, (j + 1)/2m1), with 0 ≤ j ≤ 2m1 − 1. Thus

∫ 1

0

r1(t)r2(t) · · · rm1(t)e
ix

∑m1
k=1 βkrk(t)dt = 2−m1

∑

ǫ∈{±1}m1

(

m1
∏

k=1

ǫk)e
ix

∑m1
k=1 ǫkβk

= im1

m1
∏

k=1

eiβkx − e−iβkx

2i
= im1

m1
∏

k=1

sin(βkx).

Our expression for Nm−1,m(α) can thus be rewritten as

Nm−1,m(α) =
(2i)m1

2π

βm−1+βm−1
∑

s=|βm−1−βm|+1

∫ 2π

0

e−ixs sin(β1x) · · · sin(βm1x)dx.

Let us consider the case where βm−1 > βm. Note that

βm−1+βm−1
∑

s=βm−1−βm+1

e−ixs = e−ixβm−1
sin((βm − 1

2
)x)

sin(x
2
)

.

Since by assumption m is odd, m1 is odd and hence (2i)m1 is purely imaginary. Since,
a priori, Nm−1,m(α) is real, we see that we only have to retain the purely imaginary
part of e−ixβm−1 , that is −i sin(βm−1x). We thus find that

Nm−1,m(α) = −i
(2i)m1

2π

∫ 2π

0

sin(β1x) · · · sin(βm−1x) sin((βm − 1/2)x)

sin(x/2)
dx.(8)

Our assumption on q and β1, · · · , βm implies that 〈ǫ, β〉 6= 0 for every ǫ ∈ {±1}m.
Thus instead of summing from s = βm−1 − βm + 1 to s = βm−1 + βm − 1, we might



ON AN INVARIANT RELATED TO A LINEAR INEQUALITY 7

as well sum from s = βm−1 − βm to s = βm−1 + βm, this then yields

Nm−1,m(α) = −i
(2i)m1

2π

∫ 2π

0

sin(β1x) · · · sin(βm−1x) sin((βm + 1/2)x)

sin(x/2)
dx.(9)

On noting that sin(γ−δ)+sin(γ+δ) = 2 sin γ cos δ, we finally obtain (4) for i = m−1
and j = m on adding (8) to (9) and averaging. By a completely similar reasoning
one deals with the case where βm−1 ≤ βm and one also finds (4). Obviously one also
arrives at (4) if one considers Ni,j(α) for arbitrary 1 ≤ i < j ≤ m.

Remark 3.3.
a) The condition on the ordering of the β’s is not needed in the derivation of (4). It
is in (5) and (6) to infer that the assumption αi ≤ αj implies that βi ≤ βj.
b) Since (7) only holds valid for integral s, we are forced to work with the approxi-
mation vector β, rather than α itself.
c) Using that the argument in (4) has period 2π and is an odd function if m ≥ 2 and
even, one deduces that the integral in (4) equals zero in this case.

3.1. The shortening of vectors reconsidered. The various formulae in Theorem
3.1 can be related to each other by invoking very elementary trigonometric identies
such as 2 sin α sin β = cos(α + β) + cos(α− β). This then yields shortening formulae.
In proving them, which is left to reader, one has to convince oneself that one can
choose an ‘approximation vector’ β for α that will also yield an approximation vector
of the shortened vector(s) involved. An alternative method of proof is indicated in
Section 3.2. Recall that γ±

j,k
is defined in Section 2.1.

Theorem 3.4. Let α and αi,j be defined as in Theorem 2.1.
a) Suppose m ≥ 4 and even and αi ≤ αj. Then

Ni,j(α) = sgn(αj − αk)N∗,∗(γ
−

j,k
) − N∗,∗(γ

+

j,k
).

b) Let m ≥ 4 and αi ≤ αj. Suppose furthermore there exist r, s 6= i such that
αr + αs ≥ αi and |αr − αs| ≥ αi. Then

#Sαi,αj
(α) = #Sαi,|αr−αs|(γ

−

r,s
) + #Sαi,αr+αs(γ

+

r,s
).

c) Let m ≥ 5 be odd. Suppose we have αk ≤ |αi − αj| for some i, j, k with k 6= i, j.
Then

N∗,∗(α) = Nαk,αi+αj
(γ−

i,j
) − Nαk ,|αi−αj |(γ

+

i,j
).

In case αi = αj for some i 6= j and αk ≤ 2αi for some k 6= i, j, then

N∗,∗(α) = −Nαk ,αi+αj
(γ+

i,j
) − 2N∗,∗(αi,j).

3.2. Theorem 2.4 reconsidered and some analoga. In this subsection we present
a third proof of Theorem 2.4 and present another theorem that can be proved using
the same method of proof.
Third proof of Theorem 2.4. On inverting some of the last steps in the proof of
Theorem 3.1, one easily checks that for integer β we have

1

2π

∫ 2π

0

cot(
x

2
) sin(βx)dx = sgn(β).(10)
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On writing sin(βjx) as (eiβjx − e−iβjx)/2i for j = 1, · · · , m in (4) and multiplying

all these factors out, one gets a sum of terms of the form ei〈ǫ,β〉x cos(x/2)/ sin(x/2),
where the term ei〈−ǫ,β〉x cos(x/2)/ sin(x/2) appears with opposite sign, due to the fact
that m is odd. This allows one to rewrite (4) in the form

Ni,j(α) = −
1

4

∑

ǫ∈{±1}m

(
m
∏

k=1

ǫk)
1

2π

∫ 2π

0

cot(
x

2
) sin(〈ǫ, β〉x)dx.

By (10) we then find the expression for Ni,j(α) as given in Theorem 2.4 with 〈ǫ, α〉
replaced by 〈ǫ, β〉. The proof is now completed on noting that β has the property
that sgn(〈ǫ, β〉) = sgn(〈ǫ, α〉).

The latter method of proof can also be applied to equalities (5) and (6) and then
yields Theorem 3.5. Theorem 3.5 is also easily derived on employing the method of
proof in Proof 2 of Theorem 2.4.

Theorem 3.5. Let m ≥ 3 and α be as in Theorem 2.1. Suppose αi ≤ αj. Then

#Si,j(α) =
1

2

∑

ǫ∈{±1}m

ǫi=1

sgn(〈ǫ, α〉).

If m is even, we have, moreover,

Ni,j(α) =
1

4

∑

ǫ∈{±1}m

ǫjsgn(〈ǫ, α〉)
m
∏

k=1

ǫk.

Applying the method of proof of Theorem 2.4 on the right hand side of the latter
identity one finds the following invariant in case m is even. Note that since i, j are
required to be distinct from some prescribed number, the result is consistent with
Proposition 2.6.

Theorem 3.6. Let α and αi,j be as in Theorem 2.1. Let h 6= i, j. Let h1 be an index
such that the h1th component of αi,j equlas αh. Define

N
(h)
i,j (α) =

∑

ǫ∈Si,j

ǫh1

m−2
∏

k=1

ǫk.

Then, for m ≥ 4 with m even, N
(h)
i,j (α) does not depend on i and j. If αh2 ≤ αh for

some h2 6= h, then N
(h)
i,j (α) = Nh2,h(α).

On invoking Theorems 2.4 and 3.5 it is not difficult to reprove Theorem 3.4. This
is left to the reader.

3.3. An example. Let p1, p2, · · · denote the consecutive primes. Since for the nat-
ural integers we have unique factorisation (up to order of factors), we have that
± log p1 ± log p2 ± · · · ± log pn 6= 0 and hence we can apply Theorem 2.1 with
α(n) = (log 2, · · · , log pn). It is not difficult to show that, for 1 ≤ i < j ≤ n,

#Ni,j(α
(n)) = (−1)n

∑

√
p1···pn/pi<m<

√
p1···pn

(m,pipj)=1, P (m)≤pn

µ(m),
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where P (m) denotes the largest prime factor of m and µ the Möbius function. If
n ≥ 3 is odd, then the latter quantity does not depend on i and j by Theorem 2.1 b).
If n ≥ 4 is even, the latter quantity does not depend on i by Corollary 3.2 b). The val-
ues one finds of N∗,∗(α

(n)) for n = 5, 7, 11, 13, 15 are, respectively, −1, 3, 22,−53,−55.
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