The Number of Non-Orientable Coverings of the Klein Bottle *

Valery Liskovets
Institute of Mathematics, National Academy of Sciences of Belarus, 220072, Minsk, Belarus
and
Alexander Mednykh
Institute of Mathematics, Novosibirsk State University, 630090, Novosibirsk, Russia

February 5, 2002

Abstract

The number of non-equivalent unbranched n-fold coverings of the Klein bottle by a non-orientable surface proves to be the multiplicative function $d_{\text {odd }}(n)$ which is equal to the number of divisors m of n such that m or n / m is odd. Previously this was shown by one of the authors for odd n, in which case all n-fold coverings are non-orientable and $d_{\text {odd }}(n)=d(n)$, the number of all divisors.

Keywords: non-orientable surface, odd divisor, multiplicative function, fundamental group, torus

1 Introduction

In the exposition in this note we use some well-known facts from the topology of 2dimensional manifolds (see, e.g., [2]; see also [1]). Let \mathcal{S}, \mathcal{U} and \mathcal{U}^{\prime} be compact surfaces. Two coverings of $\mathcal{S}, \rho: \mathcal{U} \rightarrow \mathcal{S}$ and $\rho^{\prime}: \mathcal{U}^{\prime} \rightarrow \mathcal{S}$, are called equivalent (or isomorphic) if \mathcal{U} and \mathcal{U}^{\prime} are homeomorphic and there exists a homeomorphism $h: \mathcal{U} \rightarrow \tilde{\mathcal{U}}^{\prime}$ such that $\rho^{\prime}=\rho \circ h$. It is well known that the n-sheeted coverings of the surface \mathcal{S} are in one-toone correspondence with the subgroups of index n of the fundamental group $\pi_{1}(\mathcal{S})$, and two coverings are equivalent if and only if their corresponding subgroups are conjugate

[^0]in $\pi_{1}(\mathcal{S})$. The classical Hurwitz enumeration problem is to count non-equivalent n-fold coverings of \mathcal{S} satisfying various restrictions.

Let now \mathcal{S} be a closed non-orientable surface. The number of non-equivalent nonramified coverings of \mathcal{S} was enumerated in [4]. In this case, the covering surface \mathcal{U} may be orientable or non-orientable, and it is natural to count both types of coverings separately. However the enumeration of orientable and non-orientable coverings of \mathcal{S} still remains an open problem despite the corresponding subgroups of the fundamental group $\pi_{1}(\mathcal{S})$ can be enumerated separately (see [4]). Moreover, this problem is open even for bordered non-orientable surfaces (in which case the fundamental group is free).

As was shown by one of the present authors [3], the enumeration can be simplified significantly for the case of the Klein bottle \mathcal{K} : the number of all coverings of \mathcal{K} can be presented as a simple combination of well-known multiplicative number-theoretic functions (see below). Clearly, all coverings are non-orientable for odd n. But for even n, both types of coverings are possible, and no formula has been obtained for the numbers of orientable and non-orientable coverings of a Klein bottle. In the present note we fill this gap by giving a simple criterion when two different subgroups of the fundamental group of a torus \mathcal{T} correspond to one orientable covering of the Klein bottle.

2 Orientable coverings of \mathcal{K}

Recall that the fundamental group of a Klein bottle is such: $\pi_{1}(\mathcal{K})=\left\langle a, b \mid a^{2} b^{2}=1\right\rangle$. Let \mathcal{T} be the orientable double of \mathcal{K}. Then \mathcal{T} is a torus, and by the Reidemeister-Schreier method, $\pi_{1}(\mathcal{T})=\left\langle a^{2}, a b, b a\right\rangle$. But $a^{2} b^{2}=1$, that is $a a b b=1$, whence $a b=a^{-1} b^{-1}=$ $(b a)^{-1}$, and also $a^{2} \cdot a b=a b \cdot a^{2}$. So $\pi_{1}(\mathcal{T})=\left\langle a^{2}, b a\right\rangle$ is a free abelian group of rank 2 . Set $x=a^{2}, y=b a$. Then

$$
\begin{equation*}
a x a^{-1}=x \quad \text { and } \quad a y a^{-1}=y^{-1} \tag{1}
\end{equation*}
$$

in the group $\pi_{1}(\mathcal{K})$.
REMARK The action of the element a by conjugation on $\pi_{1}(\mathcal{T})=\langle x, y\rangle$ is induced by an orientation-reversing fixed-point-free involution $\iota_{a}: \mathcal{T} \rightarrow \mathcal{T}$ such that $\eta \circ \iota_{a}=\eta$ where $\eta: \mathcal{T} \rightarrow \mathcal{K}$ is a canonical double covering of \mathcal{K} by $\mathcal{T} . \mathcal{K}=\mathcal{T} /\left\langle\iota_{a}\right\rangle$.

Suppose $n=2 k$. Then it is easy to see (cf. [3]) that there are $\sigma(k)$ (the sum of all divisors of n) non-equivalent k-fold coverings of the torus \mathcal{T} and they can be presented by the following subgroups of index k in $\pi_{1}(\mathcal{T})=\langle x, y\rangle$:

$$
\begin{equation*}
\Gamma=\Gamma_{\ell, m, j}=\left\langle x^{\ell} y^{j}, y^{m}\right\rangle, \quad \ell m=k, j=0,1, \ldots, m-1 . \tag{2}
\end{equation*}
$$

The exponents j are in fact considered modulo m.
Lemma 1 Two subgroups Γ and Γ^{\prime} are conjugate in $\pi_{1}(\mathcal{K})=\langle a, b\rangle$ if and only if they coincide or are conjugate by $a: \Gamma^{\prime}=a \Gamma a^{-1}$.

Proof. Since $\pi_{1}(\mathcal{K})=\pi_{1}(\mathcal{T})+\pi_{1}(\mathcal{K}) a$, there are only two possibilities for Γ and Γ^{\prime} to be conjugate: by some $g \in \pi_{1}(\mathcal{T})$ or by $a g$. In the first case, $\Gamma^{\prime}=\Gamma$ since $\pi_{1}(\mathcal{T})$ is abelian. In the second case, $\Gamma^{\prime}=(a g) \Gamma(a g)^{-1}=a\left(g \Gamma g^{-1}\right) a^{-1}=a \Gamma a^{-1}=\Gamma$.

Corollary 1 Two subgroups $\Gamma_{\ell, m, j}$ and $\Gamma_{\ell^{\prime}, m^{\prime}, j^{\prime}}$ are conjugate in $\pi_{1}(\mathcal{K})$ if and only if $\left(\ell^{\prime}, m^{\prime}, j^{\prime}\right)=(\ell, m, j)$ or $\left(\ell^{\prime}, m^{\prime}, j^{\prime}\right)=(\ell, m, m-j)$.

Proof. By Lemma 1 we have two possibilities. If $\Gamma_{\ell^{\prime}, m^{\prime}, j^{\prime}}=\Gamma_{\ell, m, j}$ then $\left(\ell^{\prime}, m^{\prime}, j^{\prime}\right)=$ (ℓ, m, j) since (2) is the full list of subgroups without repetitions. If, instead, $a \Gamma_{\ell^{\prime}, m^{\prime}, j^{\prime}} a^{-1}=\Gamma_{\ell, m, j}$, then by (1), $a\left\langle x^{\ell} y^{j}, y^{m}\right\rangle a^{-1}=\left\langle x^{\ell} y^{-j}, y^{-m}\right\rangle=\left\langle x^{\ell} y^{m-j}, y^{m}\right\rangle$, and we are done.

3 Enumeration

As a direct enumerative corollary of the previous considerations we obtain the following.
Proposition 1 The number of conjugacy classes of orientable subgroups ${ }^{1}$ of index $n=2 k$ in $\pi_{1}(\mathcal{K})$ is

$$
\begin{equation*}
N_{\mathcal{K}}^{+}(2 k)=\sum_{m \mid k}\left\lfloor\frac{m+2}{2}\right\rfloor . \tag{3}
\end{equation*}
$$

$\mathcal{K}^{+}(n)$ is the number of orientable n-coverings of the Klein bottle \mathcal{K}.
Indeed, orientable subgroups of $\pi_{1}(\mathcal{K})$ of index $2 k$ are just subgroups of $\pi_{1}(\mathcal{T})$ of index k. They are listed in (2) and their conjugacy in $\pi_{1}(\mathcal{K})$ is characterized by Corollary 1. Now if $m, m \mid k$, is even, then there are $1+m / 2$ pairs $(j, m-j)$, which give rise to one and the same orientable covering of \mathcal{K} of index $2 k: j \neq m-j$ in all pairs except for two pairs, $(0,0)$ and $(m / 2, m / 2)$. If m is odd, then there are $(1+m) / 2$ such pairs $(j, m-j)$ including now a sole pair of identical exponents: $(0,0)$.

To represent $\mathcal{K}^{+}(n)$ in a more convenient form we need to use two multiplicative number-theoretic functions: $d(n)$, the number of divisors of n, and $\sigma(n)$, the sum of divisors of n mentioned in the previous section. Set

$$
n=2^{s} n_{-}
$$

where n_{-}is the odd multiplicative part of n. Then $d(n)=(s+1) d\left(n_{-}\right)$and $\sigma(n)=$ $\left(2^{s+1}-1\right) \sigma\left(n_{-}\right)$. For convenience we formally set these function to vanish for a noninteger argument.

Corollary 2 For even n,

$$
\begin{equation*}
N_{\mathcal{K}}^{+}(n)=\frac{\sigma(n)+(2 s-1) d\left(n_{-}\right)}{2} . \tag{4}
\end{equation*}
$$

[^1]Proof. $\sum_{m \mid k}\left\lfloor\frac{m+2}{2}\right\rfloor=\sum_{m \mid k \text { odd }} \frac{m+1}{2}+\sum_{m \mid k \text { even }} \frac{m+2}{2}=\left[\sigma\left(n_{-}\right)+d\left(n_{-}\right)\right] / 2+[\sigma(n / 4)+d(n / 4)]=$ $\left[\left(2^{s}-1\right) \sigma\left(n_{-}\right)+(2 s-1) d\left(n_{-}\right)\right] / 2=\left[\sigma(n)+(2 s-1) d\left(n_{-}\right)\right] / 2$.

According to [3], the total number of n-coverings of a Klein bottle \mathcal{K} is

$$
N_{\mathcal{K}}(n)= \begin{cases}d(n), & n \text { odd } \tag{5}\\ \frac{3}{2} d(n)+\frac{1}{2} \sum_{m \left\lvert\, \frac{n}{2}\right.}(m-1), & n \text { even }\end{cases}
$$

So, for even $n, N_{\mathcal{K}}(n)=\frac{3}{2} d(n)+\frac{1}{2}(\sigma(n / 2)-d(n / 2))=\left[3(s+1) d\left(n_{-}\right)+\left(2^{s}-1\right) \sigma\left(n_{-}\right)-\right.$ $\left.s d\left(n_{-}\right)\right] / 2=\left[\left(2^{s}-1\right) \sigma\left(n_{-}\right)+(2 s+3) d\left(n_{-}\right)\right] / 2=\left[\sigma(n)+(2 s+3) d\left(n_{-}\right)\right] / 2$.

Denote by $N_{\mathcal{K}}^{-}(n)=N_{\mathcal{K}}(n)-N_{\mathcal{K}}^{+}(n)$ the number of non-orientable n-fold coverings of a Klein bottle. Subtracting (4) from formula (5) for even n we obtain

$$
N_{\mathcal{K}}^{-}(n)=2 d\left(n_{-}\right), \quad 2 \mid n .
$$

Now, $2 d\left(n_{-}\right)=(s+1) d\left(n_{-}\right)-(s-1) d\left(n_{-}\right)=d(n)-d(n / 4)$ if $4 \mid n$, and $2 d\left(n_{-}\right)=d(n)$ for even n not divisible by 4 . The same equality $N_{\mathcal{K}}^{-}(n)=d(n)$ is valid for odd n as well, in view of (5) since $N_{\mathcal{K}}^{+}(n)=0$ in this case. Thus, we obtain finally

Theorem 1

$$
N_{\mathcal{K}}^{-}(n)= \begin{cases}d(n)-d(n / 4), & 4 \mid n \tag{6}\\ d(n), & \text { otherwise }\end{cases}
$$

In particular $N_{\mathcal{K}}^{-}\left(2^{s}\right)=2$ for any $s \geq 1$.
REmARK The right-hand side of formula (6) is a multiplicative number-theoretic function $d_{\text {odd }}(n)$ which can be defined as follows: this is the number of divisors m of n such that m or n / m is odd. It is also defined by the following conditions: $d_{\text {odd }}\left(2^{s}\right)=2$ and $d_{\text {odd }}\left(p^{s}\right)=s+1$ for odd prime p. Now the assertion of Theorem 1 that

$$
N_{\mathcal{K}}^{-}(n)=d_{\text {odd }}(n)
$$

has a simple topological sense: for any $m \mid n$ for which at least one of the numbers m and n / m is odd, it is possible to construct a non-orientable n-covering of \mathcal{K}. So, we conclude that this construction exhausts all non-orientable n-coverings of the Klein bottle.

Acknowledgement. These results were obtained during our joint visit in Pohang. The authors express their deep gratitude to $\mathrm{Com}^{2} \mathrm{MaC}$ of the Pohang University of Science and Technology for a warm atmosphere, hospitality and support.

References

[1] J. H. Kwak and J. Lee, Enumeration of graph coverings, surface branched coverings and related group theory, In: Combinatorial and Computational Mathematics: Present and Future (ed. by S. Hong, J. H. Kwak et al.), Word Scientific, Singapore, 2001, 97-161.
[2] W.S. Massey, Algebraic Topology: an Introduction, Springer-Verlag, New York, 1977.
[3] A. D. Mednykh, On the number of subgroups in the fundamental group of a closed surface, Commun. Algebra 16(10) (1988) 2137-2148.
[4] A. D. Mednykh and G. G. Pozdnyakova, Number of nonequivalent coverings over a nonorientable compact surface, Siber. Math. J. 27(1) (1986), 99-106.

[^0]: *Supported by $\mathrm{Com}^{2} \mathrm{MaC}-\mathrm{KOSEF}$.

[^1]: ${ }^{1}$ That is, subgroups that correspond to orientable coverings of \mathcal{K}.

