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Abstract

The number of non-equivalent unbranched n-fold coverings of the Klein bottle
by a non-orientable surface proves to be the multiplicative function dodd(n) which
is equal to the number of divisors m of n such that m or n/m is odd. Previously
this was shown by one of the authors for odd n, in which case all n-fold coverings
are non-orientable and dodd(n) = d(n), the number of all divisors.
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1 Introduction

In the exposition in this note we use some well-known facts from the topology of 2-
dimensional manifolds (see, e.g., [2]; see also [1]). Let S, U and U ′ be compact surfaces.
Two coverings of S, ρ : U → S and ρ′ : U ′ → S, are called equivalent (or isomorphic) if
U and U ′ are homeomorphic and there exists a homeomorphism h : U → Ũ ′ such that
ρ′ = ρ ◦ h. It is well known that the n-sheeted coverings of the surface S are in one-to-
one correspondence with the subgroups of index n of the fundamental group π1(S), and
two coverings are equivalent if and only if their corresponding subgroups are conjugate
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in π1(S). The classical Hurwitz enumeration problem is to count non-equivalent n-fold
coverings of S satisfying various restrictions.

Let now S be a closed non-orientable surface. The number of non-equivalent non-
ramified coverings of S was enumerated in [4]. In this case, the covering surface U
may be orientable or non-orientable, and it is natural to count both types of coverings
separately. However the enumeration of orientable and non-orientable coverings of S
still remains an open problem despite the corresponding subgroups of the fundamental
group π1(S) can be enumerated separately (see [4]). Moreover, this problem is open
even for bordered non-orientable surfaces (in which case the fundamental group is free).

As was shown by one of the present authors [3], the enumeration can be simplified
significantly for the case of the Klein bottle K: the number of all coverings of K can
be presented as a simple combination of well-known multiplicative number-theoretic
functions (see below). Clearly, all coverings are non-orientable for odd n. But for even
n, both types of coverings are possible, and no formula has been obtained for the numbers
of orientable and non-orientable coverings of a Klein bottle. In the present note we fill
this gap by giving a simple criterion when two different subgroups of the fundamental
group of a torus T correspond to one orientable covering of the Klein bottle.

2 Orientable coverings of K
Recall that the fundamental group of a Klein bottle is such: π1(K) = 〈a, b | a2b2 = 1〉.
Let T be the orientable double of K. Then T is a torus, and by the Reidemeister–Schreier
method, π1(T ) = 〈a2, ab, ba〉. But a2b2 = 1, that is aabb = 1, whence ab = a−1b−1 =
(ba)−1, and also a2 · ab = ab · a2. So π1(T ) = 〈a2, ba〉 is a free abelian group of rank 2.
Set x = a2, y = ba. Then

axa−1 = x and aya−1 = y−1 (1)

in the group π1(K).

Remark The action of the element a by conjugation on π1(T ) = 〈x, y〉 is induced by
an orientation-reversing fixed-point-free involution ιa : T → T such that η ◦ ιa = η
where η : T → K is a canonical double covering of K by T . K = T /〈ιa〉.

Suppose n = 2k. Then it is easy to see (cf. [3]) that there are σ(k) (the sum of all
divisors of n) non-equivalent k-fold coverings of the torus T and they can be presented
by the following subgroups of index k in π1(T ) = 〈x, y〉 :

Γ = Γ`,m,j = 〈x`yj, ym〉, `m = k, j = 0, 1, . . . , m− 1. (2)

The exponents j are in fact considered modulo m.

Lemma 1 Two subgroups Γ and Γ′ are conjugate in π1(K) = 〈a, b〉 if and only if they
coincide or are conjugate by a : Γ′ = aΓa−1.
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Proof. Since π1(K) = π1(T ) + π1(K)a, there are only two possibilities for Γ and Γ′

to be conjugate: by some g ∈ π1(T ) or by ag. In the first case, Γ′ = Γ since π1(T ) is
abelian. In the second case, Γ′ = (ag)Γ(ag)−1 = a(gΓg−1)a−1 = aΓa−1 = Γ. �

Corollary 1 Two subgroups Γ`,m,j and Γ`′,m′,j′ are conjugate in π1(K) if and only if
(`′,m′, j′) = (`,m, j) or (`′,m′, j′) = (`,m, m− j).

Proof. By Lemma 1 we have two possibilities. If Γ`′,m′,j′ = Γ`,m,j then (`′,m′, j′) =
(`,m, j) since (2) is the full list of subgroups without repetitions. If, instead,
aΓ`′,m′,j′a−1 = Γ`,m,j, then by (1), a〈x`yj, ym〉a−1 = 〈x`y−j, y−m〉 = 〈x`ym−j, ym〉, and we
are done. �

3 Enumeration

As a direct enumerative corollary of the previous considerations we obtain the following.

Proposition 1 The number of conjugacy classes of orientable subgroups1 of index
n = 2k in π1(K) is

N+
K (2k) =

∑

m|k

⌊m + 2
2

⌋

. (3)

K+(n) is the number of orientable n-coverings of the Klein bottle K.

Indeed, orientable subgroups of π1(K) of index 2k are just subgroups of π1(T ) of index
k. They are listed in (2) and their conjugacy in π1(K) is characterized by Corollary 1.
Now if m, m|k, is even, then there are 1 + m/2 pairs (j, m− j), which give rise to one
and the same orientable covering of K of index 2k : j 6= m− j in all pairs except for two
pairs, (0, 0) and (m/2,m/2). If m is odd, then there are (1 + m)/2 such pairs (j,m− j)
including now a sole pair of identical exponents: (0, 0). �

To represent K+(n) in a more convenient form we need to use two multiplicative
number-theoretic functions: d(n), the number of divisors of n, and σ(n), the sum of
divisors of n mentioned in the previous section. Set

n = 2sn−

where n− is the odd multiplicative part of n. Then d(n) = (s + 1)d(n−) and σ(n) =
(2s+1 − 1)σ(n−). For convenience we formally set these function to vanish for a non-
integer argument.

Corollary 2 For even n,

N+
K (n) =

σ(n) + (2s− 1)d(n−)
2

. (4)

1That is, subgroups that correspond to orientable coverings of K.
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Proof.
∑

m|k
bm+2

2 c =
∑

m|k odd

m+1
2 +

∑

m|k even

m+2
2 = [σ(n−)+d(n−)]/2+[σ(n/4)+d(n/4)] =

[(2s − 1)σ(n−) + (2s− 1)d(n−)]/2 = [σ(n) + (2s− 1)d(n−)]/2. �
According to [3], the total number of n-coverings of a Klein bottle K is

NK(n) =







d(n), n odd
3
2d(n) + 1

2

∑

m|n2

(m− 1), n even. (5)

So, for even n, NK(n) = 3
2d(n) + 1

2(σ(n/2)− d(n/2)) = [3(s + 1)d(n−) + (2s− 1)σ(n−)−
sd(n−)]/2 = [(2s − 1)σ(n−) + (2s + 3)d(n−)]/2 = [σ(n) + (2s + 3)d(n−)]/2.

Denote by N−
K (n) = NK(n) − N+

K (n) the number of non-orientable n-fold coverings
of a Klein bottle. Subtracting (4) from formula (5) for even n we obtain

N−
K (n) = 2d(n−), 2|n.

Now, 2d(n−) = (s + 1)d(n−)− (s− 1)d(n−) = d(n)− d(n/4) if 4|n, and 2d(n−) = d(n)
for even n not divisible by 4. The same equality N−

K (n) = d(n) is valid for odd n as well,
in view of (5) since N+

K (n) = 0 in this case. Thus, we obtain finally

Theorem 1

N−
K (n) =

{

d(n)− d(n/4), 4|n,
d(n), otherwise. (6)

In particular N−
K (2s) = 2 for any s ≥ 1. �

Remark The right-hand side of formula (6) is a multiplicative number-theoretic func-
tion dodd(n) which can be defined as follows: this is the number of divisors m of n such
that m or n/m is odd. It is also defined by the following conditions: dodd(2s) = 2 and
dodd(ps) = s + 1 for odd prime p. Now the assertion of Theorem 1 that

N−
K (n) = dodd(n) (6′)

has a simple topological sense: for any m|n for which at least one of the numbers m and
n/m is odd, it is possible to construct a non-orientable n-covering of K. So, we conclude
that this construction exhausts all non-orientable n-coverings of the Klein bottle.
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