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ABSTRACT. We present a new ‘elementary’ proof of the irrationality of {(3) based on
some recent ‘hypergeometric’ ideas of Yu. Nesterenko, T. Rivoal, and K. Ball, and on
Zeilberger’s algorithm of creative telescoping.

A question of an arithmetic nature of the values of Riemann’s zeta function

1

() =3
n=1 ne

at odd integral points s = 3,5,7,... looks like a challenge for Number Theory. An

expected answer ‘each odd zeta value is transcendental’ is still far from being proved.

We dispose of a particular information on the irrationality of odd zeta values, namely:

e ((3) is irrational (R. Apéry [Ap], 1978);

e infinitely many of the numbers ((3),((5),{(7),... are irrational (T. Rivoal
[Ri1], [BR], 2000);

e cach set ((s+2),((s+4),...,{(85—3),((8 — 1) with odd s > 1 contains at
least one irrational number (this author [Zul], [Zu2], 2001);

e at least one of the four numbers ((5),((7),((9),(11) is irrational (this au-
thor [Zu3], [Zu4], 2001).

All these results have a classical well-poised-hypergeometric origin, and we refer the
reader roused the curiosity of this terminology to the forthcoming works [Zu4], [Zu5],
[RZ] for details. The aim of this note is to prove Apéry’s famous result by ‘elementary

means’.

Key words and phrases. Zeta value, hypergeometric series, Apéry’s theorem, Zeilberger’s algo-
rithm of creative telescoping.
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Apéry’s theorem. The number ((3) is irrational.

The idea of the following proof is due to T. Rivoal [Ri2], [Ri3], who mixed ap-
proaches of Yu. Nesterenko [Ne|] and K. Ball, and our contribution here is to make a
use of Zeilberger’s algorithm of creative telescoping in the most elementary manner.

Our starting point is repetition of [Ne, Section 1]. For each integer n = 0,1,2, ...

define the rational function

B (t_l)(t—n) 2
R, (t) := (t(t-i—l)"'(t-'_n))

and denote by D,, the least common multiple of the numbers 1,2,...,n (and Dy =1

for completeness).

Lemma 1 (cf. [Ne, Lemma 1]). There holds the equality
Foi=—) R(t) = un((3) — vn, (1)
t=1

where u, € Z, D3v, € Z.

Proof. Taking square of the partial-fraction expansion

(t=1)-(t-n) <~ EDEHE)
1t(zt+1)---(zt+n)_Z t+k :

k=0

with a help of the relation

1 1 1(1 1) —

t+k t4+1 1—k \t+k t+1

we arrive at the formula

LAy A
R”<t)_kzz()<(t+k)2+t+k)’

with A, = A;Z) satisfying the inclusions

n—+k 2\ 2
A2k2< n ) (k) GZ and DnAlk-GZ, k:0717"'7n' (2>

Furthermore,

Z Ay = Z Resi=_; Ry (t) = — ReSi—oo Ry (t) =0
k=0 k=0
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since R, (t) = O(t~2) as t — 00, hence the quantity

-~ 2A2k Alk = 2A2k Alk
=SS (s ) =2 X (B )

t=1 k=0 k=0 I=k+1
=23 (X -2 ) XXX
=1 k=0 =1 =1
has the desired form (1), with
n n k 1 n k 1
UnZQZAzk, Vp, = 2 Azkzl—g,—l- A1kzl—2~ (3)
k=0 k=0 =1 k=0 =1

Finally, using the inclusions (2) and
|
Zl— for £k=0,1,...,n, j=2,3,

we deduce that u,, € Z and Dzvn € 7 as required.

Since ) ) A A A
= Ry(t) = —
£2’ 1(®) P T PR

in accordance with formulae (3) we find that

Ro(t) =

Fy=2((3) and F, =10¢(3) - 12. (4)

Now, with a help of Zeilberger’s algorithm of creative telescoping [PWZ, Chapter 6]
we get the rational function S, (t) := s,,(¢t) R, (t), where

Sn(t) 1= 4(2n + 1)(=262 + t + (2n + 1)2), (5)

satisfying the following property.

Lemma 2. For eachn =1,2,..., there holds the identity

(n+1)°Ruy1(t) —(2n+1) (1702 +1Tn+5) R, (t) +n’ R, 1 (t) = Sp(t+1) —S,(t). (6)

‘One-line’ proof. Divide both sides of (6) by R, (t) and verify numerically the identity

t—n—1 2 t+n 2
3 —) —@2n+1D)Am2+1 3 —=
(n+1) (t—l—n—i—l) 2n+1)(17Tn" +17Tn+5) +n (t—n)

t2

:Sn(t+1)<(t—n)(t+n+1))2_8”(t>’

where s, (t) is given in (5).
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Lemma 3. The quantity (1) satisfies the difference equation
(n+1)upyq — (2n + 1)(1702 + 170 + 5)u, + nu, = 0 (7)
form=1,2,....
Proof. Since Rl (t) = O(t™3) and S/ (t) = O(t~2), differentiating identity (6) and
summing the result over t = 1,2,... we arrive at the equality
(n+1)Fy1 — (2n+1)(17n* + 1Tn + 5)F, + n’F,_; = S/, (1).

It remains to note that, for n > 1, both functions R,,(t) and S,,(t) = s, (t)R,(t) have
second-order zero at t = 1. Thus S/,(1) =0 for n = 1,2,... and we obtain the desired
recurrence (7) for the quantity (1).
Consider another rational function
~ t—1)---(t—n)-(t+n+1)---(t+2n)
R,(t) :==nl*(2t +n (
Q ( ) (tt+1)---(t+n))*

and the corresponding hypergeometric series

Fo:=Y Ry(t), (9)
t=1
proposed by K. Ball.
Lemma 4 (cf. [BR, the second proof of Lemma 3|). For each n = 0,1,2,..., there
holds the inequality
0< F, <20(n+1)*v2—-1)*. (10)

Proof. Since R,(t) = 0 for t = 1,2,...,n and R,(t) > 0 for t > n we deduce that

F, > 0.
With a help of elementary inequality

1 )™ 1\™ 1\ 1)mt

_.M:<1+_> <e<<1+_) :_.u
m mm= m m m mm

that yields (m + 1)™/m™ ! < em < (m + 1)™*/m™ for m = 1,2,..., we deduce

that

m+n—1 m+n
e_”(m+n) il <m(m+1)...(m+n—1)<e‘”M.
mm= mm

Therefore, for integers t > n + 1,

Rt (t+n)° _n'Q.(t—1)-~-(t—n)~(t—|—n)~-~(t—|—2n—1)
U @t+n)(t+2n) (tt+1)---(t+n—1))*
t5t—4<t+2n)t+2n

(t _ n)t—n(t + n)5(t+n)—4

< (n+41)2+D.
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and, as a consequence,
~ t4(t +n)

£5(t + 2n)' 2"

(t —n)t="(t + n)dt+n)

1 2n n
_ (1 n _) Lenft/n) 2. <Sup efm) ,
n T>1

< (n+1)2n_

(11)
where s 2
TT(T+2)7
=1 .
f(r) :=log (r — 1)7—1(r + 1)5(r+D)
The unique (real) solution 7y of the equation

°(1+2)

/ = 1 T - O
Fr) =los 3 1y

in the region 7 > 1 is the zero of the polynomial

Sn- o= (3 (o(r+ 1) (1) D).

hence we can determine it explicitly:
1 5
= —— — 2.
o= -5+ V2
Thus,

Sl;lil)f(T) = f(10) = f(10) — 70.f'(10) = 2log(79 + 2) + log(mo — 1) — 5log(ro + 1)

= 4log(v2 — 1)
and we can continue the estimate (11) as follows:
> t(t +n) 2 2 4
Ra(t) - 1)2(V2 — 1), 12
O G < CHVY2- 12)
Finally, we apply the inequality (12) to deduce the required estimate (10):
~ =~ = (2t +n)(t+2n)
F, = R, (t 2 D2(V2 —1)*" (
t:;q W =etntl (f ) t:;ﬂ t4(t+n)

<e(n+1)3%(V2-1)*" i (2 +5n+2n?>

A= TR
<e(n+1)2(2¢(5) + 5n¢(4) +2n2¢(3)) (V2 — 1)*" < 20(n + 1)*(vV2 — 1)*".
This completes the proof.
For the rational function (8) we obtain Zeilberger’s certificate
Snl) = o +R;7§t)— 1)(t + 2n)
+ 2n(67n2 4+ 71n + 15)t> + (358n* + 3390 + 76n% — Tn — 3)t?
+ (384n° + 396n* + 97n® — 29n* — 17n — 2)t
+ n(153n° + 183n* + 50n° — 30n* — 22n — 4)). (13)

(=t% — (8n — 1)t° + (4n® + 27n + 5)t*
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Lemma 5. For eachn=1,2,..., there holds the identity

(n+1)>Rypr () — (2n+1) (1702 +17n45) Rp () +n° Ru_1 (t) = S, (t+1) = Sp(t). (14)

‘One-line’ proof. Divide both sides of (14) by R, (t) and verify the reduced identity.
Lemma 6. The quantity (9) satisfies the difference equation (7) forn=1,2,....

Proof. Since R, (t) = O(t~?) and S, (t) = O(t~2) as t — oo for n > 1, summation of
equalities (14) over t = 1,2, ... yields the relation

(n+ 1)3fn+1 — (2n+ 1)(17112 +17n + 5)ﬁn + nSﬁn—l = _§n(1>-

It remains to note that, for n > 1, both functions (8) and (13) have zero at t = 1.
Thus S,(1) = 0 for n = 1,2,... and we obtain the desired recurrence (7) for the
quantity (9).

Lemma 7. For each n =0,1,2,..., the quantities (1) and (9) coincide.

Proof. Since both F,, and F, satisfy the same second-order difference equation (7),

we have to verify that Fy = f’o and F; = ﬁl. Direct calculations show that

~ 2 ~ 2 2 ) ) 5 S
Ro(t)==, Rt)=—4+ = 424 ° 2, 9
olt) = 3 1(®) T T s TR R T s DR AL e P
hence Fy = 2¢(3) and Fy = 10¢(3) — 12, and comparison of this result with (4) yields
the desired coincidence.

Proof of Apéry’s theorem. Suppose, on the contrary, that ((3) = p/q, where p and ¢
are positive integers. Then, using a trivial bound D,, < 3", we deduce that, for each

n=0,1,2,..., the integer ¢D3 F,, = D3u,,p — D3v,q satisfies the estimate
0 < ¢D3F, < 20g(n +1)*3%"(v2 — 1)*" (15)

that is not possible since 3%(v/2 — 1)* = 0.7948 ... < 1 and the right-hand side of (15)
is less than 1 for a sufficiently large integer n. This contradiction completes the proof

of the theorem.

Inspite of its elementary arguments, our proof of Apéry’s theorem does not look
simpler than the original (also elementary) Apéry’s proof well-explained in A. van der
Poorten’s informal report [Po], or (almost elementary) Beukers’s proof [Be| by means
of Legendre polynomials and multiple integrals. We want to mention that our way

to deduce the recursion (7) for the sequence F;, as well as for the coefficients u,,, vt

tHint: multiply both sides of (6) by (¢t + k)2, substitute t = —k and sum over all integers k to
show that the sequence u,, satisfies the difference equation (7); then v, = un{(3) — F,, also satisfies
it.
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slightly differs from those considered in [Po, Section 8] and [Ze, Section 13] although
it is based on the same algorithm of creative telescoping. This algorithm and the
above scheme allow us [Zu5], [Zu6] to obtain Apéry-like difference equations for {(4)
and Calalan’s constant.

The fact that F,, = un((3) — v, with D,u,, Dv, € Z was first discovered by
K. Ball; the proof follows lines of the proof of Lemma 1 and vanishing the coefficients
for ((4) and ((2) is due to a well-poised origin of the series (9). An open question
of T. Rivoal here is to get the better inclusions u,, D30, € Z by elementary means
without going back to Apéry’s series (1). A solution of this question accompanied
with Ball’s Lemma 4 can bring the ‘most elementary’ proof of Apéry’s theorem.

Lemma 7 can be proved by specialization of Bailey’s identity [Ba, Section 6.3,
formula (2)]

oy a‘71+%a‘7 b7 ) d7 €, f 1
o %a, l1+a-bl+a—cl+a—-d14+a—el+a—f

Il+a-0)I(1+a—-c)T(1+a—-d)T(1+a—e)I'(1+a—f)
T +a) Ol d)T(1+a—-b—c)T(1+a—b—d)
xI'l+a—c—d)T(14+a—e—f)

T+t (c+t)T(d+H)T(1+a—e—f+1)
1 [ xF(l—f—a—b—c—d—t)F(—t)dt
“omi ). T(1+a—e+t)T(1+a—f+1) ’

(16)

provided that the very-well-poised hypergeometric series on the left-hand side con-
verges. Namely, takinga =3n+2andb=c=d=e= f =n+1in (16) we obtain
Ball’s sequence (9) on the left and Apéry’s sequence (1) on the right (for the last
fact see [Ne, Lemma 2]). Identity (16) can be put forward for an explanation how
the permutation group from [RV] for linear forms in 1 and ((3) appears (see [Zub,
Sections 4 and 5 for details)).
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