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Abstract

We give a new existence proof for the rank 2d even lattices usually
called the Barnes-Wall lattices, and establish new results on unique-
ness, structure and transitivity of the automorphism group on certain
kinds of sublattices. Our proofs are relatively free of calculations, ma-
trix work and counting, due to the uniqueness viewpoint. We deduce
the labeling of coordinates on which earlier constructions depend.

Extending these ideas, we construct in dimensions 2d, for d >> 0,
the Ypsilanti lattices, which are families of indecomposable even uni-
modular lattices which resemble the Barnes-Wall lattices. The number
Υ(2d) of isometry types here is large: log2(Υ(2d)) has dominant term
at least r

4d 22d, for any r ∈ [0, 1
2 ). Our lattices may be the first ex-

plicitly given families whose sizes are asymptotically comparable to
the Siegel mass formula estimate (log2(mass(n)) has dominant term
1
4 log2(n)n2).

This work continues our general uniqueness program for lattices,
begun in Pieces of Eight [19]. See also our new uniqueness proof for
the E8-lattice [14].
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1 Notation and terminology

annihilator, self annihilating Section 4
Aij and other diagonal notation 5.2
admissible 14.10
ancestors and generations, ancestral 13.5, 13.7
BW2d , the Barnes-Wall lattice in dimension 2d 3.4
lattice of BW-type 3.4
BRW 0(2d,±) Bolt, Room and Wall group, 15.2
classification 10.2
coelementary abelian subgroup, p-coelementary abelian a subgroup B ≤ A so

A/B is p-elementary abelian
D, a lower dihedral group 7.2
defect of an involution 6.10
density, commutator density 6.17,6.16
D(L), discriminant group of a lattice L D(L) = L∗/L
determinant of a lattice, L |D(L)|
d-invariant 12.1
duality level 6.7
double basis 5.3
DT, DTL 14.15
eigenlattice, total eigenlattice, Tel 6.8
f, fi, f12; various fourvolutions 7.2
Fi 7.2
fourvolution 6.1
frame, plain frame PF, sultry frame SF 6.15, 8.7
G2d 8.2
Hamming codes 4.2,4.4
I(d, p, q) 11.12
labeling 11.16
lower 8.3
mass formula, mass(n) 14.30
L, an integral lattice of rank n Section 5
Li, Li[k] 7.2
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L∗, the dual of the lattice L Section 5
εA, sign changes, monomial group 5.5
Mi,Mi[k] 7.2
minimal vectors, MinV ec(L), µ(L) 7.7
nextbw 7.2
power set, even sets Section 4
Qi 7.2
r-modular 5.10
R 8.2, 7.2
R2d 8.2
R2i 7.2
Scalar(G,M), the scalar subgroup 6.14
SSD, semiselfdual, RSSD, relatively semiselfdual 5.11
sultry frame 8.7
sultry transformation, twist 6.3
sBW, ssBW 7.11
ti, tij , tij′ 7.2
upper 8.3
Condition X(2d) 3.3
X 10.1
Y 14.11
Ypsilanti lattices, cousins, etc. Section 14
zop2 , zoop2 11.4
εA, sign changes, monomial group 5.5
ψi 7.2
Ω, index set (often identified with an affine space Fd2)
Ω, universe, 1, the “all ones vector” (1, 1, . . . , 1) in FΩ

2 Section 4

Conventions. Our groups and most endomorphisms act on the right, often
with exponential notation. Group theory notation is mostly consistent with
[11, 21, 18]. The commutator of x and y means [x, y] = x−1y−1xy and the
conjugate of of x by y means xy := y−1xy = x[x, y]. These notations extend
to actions of a group on an additive group; see 6.16, ff.

Here are some fairly standard notations used for particular extensions
of groups: pk means an elementary abelian p-group; A.B means a group
extension with normal subgroup A and quotient B; pa+b+... means an iterated
group extension, with factors pa, pb, . . . (listed in upward sense); A:B,A·B
mean, respectively, a split extension, nonsplit extension.
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2 Introduction

All lattices in this article are positive definite. A sublattice is simply an
additive subgroup of a lattice (no requirement on the rank).

We prove existence and uniqueness of the Barnes-Wall lattices of rank
2d by induction and establish properties of them and their automorphism
groups, including some new ones. In particular, the uniqueness theorem
seems to be new. With future classifications (and discoveries!) of lattices in
mind, we promote systematic study of uniqueness for important lattices. In
[19], we used scaled unimodular lattices and SSD involutions to give a new
uniqueness proof of the Leech lattice and revise the basic theory of the Leech
lattice, Conway groups and Mathieu groups. There is a new and elementary
uniqueness proof for the E8 lattice in [14].

The Barnes-Wall lattices BW2d are even lattices in Euclidean space of
dimension 2d. They have minimum norm 2⌊

d
2
⌋ and remarkable automorphism

groups [3] isomorphic to BRW 0(2d,+) ∼= 21+2d
+ Ω+(2d, 2), d ≥ 4.

Various terms have been applied to these abstract groups and their ana-
logues over finite fields in general. We think that BRW group for the groups
which occur here would be most appropriate since Bolt, Room and Wall
seem to have been the first to determine their structure [3]. Compare the
later articles [6], [15], [12], [16]. See Appendix A2.

These lattices (and related ones) were defined in [1]. Independently, these
lattices were rediscovered and their groups analyzed by Broué and Enguehard
in [6]. This coincidence does not seem well recognized in the literature. We
first noticed [6], then [1] only years later. The beautiful and definitive analysis
of Broué and Enguehard [6] was the main inspiration for this article.

We shall abbreviate Barnes-Wall by BW.
For ranks 2d ≤ 16, the BW lattices are well-known in several contexts.

For d = 1, we have a square lattice, and, depending on scaling, BW22 is the
D4 or F4 root lattice. We have BW23

∼= LE8
, though in [1], we find

√
2LE8

.
As sublattices of many of the Niemeier lattices, there are scaled copies of
BW23 and BW24 . See also [19]. About the BRW groups, there are further
details in Appendix A2.

We prove existence and uniqueness of the BW lattices of rank 2d by induc-
tion and establish basic properties of them and their automorphism groups.
We start not with a frame (a double orthogonal basis) but an orthogonal
sum of two scaled BW lattices of rank 2d−1, then show how, by choosing
overlattices, to enlarge this to a BW lattice of rank 2d. Analysis of choices
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and induction give suitable existence and uniqueness theorems, structure of
the set of minimum norm vectors, properties of automorphism groups, tran-
sitivity on certain sublattices, etc. The uniqueness and transitivity theorems
are new.

Our program emphasizes elementary algebra and involves very little of
special calculations, matrix work and combinatorial arguments. We heavily
exploit commutator density and equivalent properties, like 3/4-generation
and 2/4-generation, which are quite useful for manipulating sublattices and
lessening computations. As far as we know, these properties are new.

Reflections on the uniqueness theory led us naturally to the Ypsilanti
lattices, a very large family of BW-like lattices. The Ypsilanti lattices are
fairly explicit and represent a nontrivial share of all the even unimodular
lattices of dimension 2d. Their existence also clarifies the need for some
hypothesis like (e) in 3.3, as we now explain.

Let n > 0 be an integer divisible by 8. If L is a rank n even, unimodular
lattice, the theta function of L lies in a vector space of dimension roughly n

24

(see [29], p. 88). For n = 8 or 16, the dimension is 1, so the condition con-
stant term 1 determines the theta function. For n = 24, the two conditions
constant term 1 and no roots determines the theta function. In these cases,
one can use arithmetic information about norms to determine structure.

Now take n to be 2d for d large and L a BW lattice. The condition
minimum norm µ(L) = 2⌊

d
2
⌋ represents 2⌊

d
2
⌋ linear demands on the theta

function. This number is much less than 2d

24
. It is unclear how knowledege

of some higher coefficients can be used effectively to determine structure.
The family of Ypsilanti lattices shows that many isometry types in a given
dimension have the same minimum norm. To characterize these, or ones like
them, we probably need more than hypotheses about their theta functions.
We guess that for the Ypsilanti lattices, given theta functions may be shared
by large sets of isometry types, and similarly for automorphism groups.

We acknowledge helpful conversations with Alex Ryba, Leonard Scott,
Jean-Pierre Serre and Kannan Soundarajan.

The author has been supported by NSA grant USDOD-MDA904-03-1-
0098.

3 Statement of Results

First, we give some notation, then state the main results.
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Definition 3.1. Given a lattice, L, define µ(L) := min{(x, x)|x ∈ L, x 6= 0}.

Definition 3.2. Given a lattice L, we define the dual lattice to be L∗ := {x ∈
Q ⊗ L|(x, L) ≤ Z}. Given an integral lattice, L, we define the discriminant
group of L to be D(L) := L∗/L, a finite abelian group. A set of invariants of
an integral lattice are the orders of the cyclic summands in a direct product
decomposition of D(L). (This depends on choice of decomposition.)

Definition 3.3. Condition X(2d): This is defined for integers d ≥ 2. Let
s ∈ {0, 1} be the remainder of d+ 1 modulo 2.

We say that the quadruple (L,L1, L2, t) is a an X-quadruple if it satisfies
condition X(2d) (or, more simply, condition X), listed below:

(a) L is a rank 2d even integral lattice containing L1 ⊥ L2, the orthogonal
direct sum of sublattices L1

∼= L2 of rank 2d−1;
(b) When d = 2, L ∼= LD4

∼= BW4 and L1
∼= L2

∼= LA2
1
; when d ≥ 3,

2−
s
2L1 and 2−

s
2L2 are initial entries of quadruples which satisfy condition

X(2d−1).

(c) µ(L) = 2⌊
d
2
⌋.

(d) D(L) ∼= 22d−1

, 1 as d is even, odd, respectively.
(e) There is an isometry t of order 2 on L which interchanges L1 and L2

and satisfies [L, t] ≤ L1 ⊥ L2, i.e., acts trivially on L/[L1 ⊥ L2].

Definition 3.4. Also, we say that the lattice L is a lattice of Barnes-Wall
type or a Barnes-Wall type lattice if there exist sublattices L1, L2 of L and
an involution t ∈ Aut(L) so that (L,L1, L2, t) satisfies condition X(2d).

Theorem 3.5. Let d ≥ 2. A Barnes-Wall type lattice of rank 2d exists and
is unique up to isometry.

Corollary 3.6. (i) For every integer d ≥ 2, there is an integral even lattice
L, unique up to scaled isometry, such that

(a) the rank is 2d;
(b) Aut(L) contains a group G2d

∼= 21+2d
+ Ω+(2d, 2);

(ii) For such a lattice, the group of isometries is isomorphic to WE8
if

d = 3 and is just G2d for d ≥ 4. Also, D(L) ∼= 1 or 22d−1

, as d is odd, even,

respectively. Also, µ(L) = 2⌊
d
2
⌋.

We mention that the much-studied lattice LE8
is the case d = 3 of the

above. The author has recently given an elementary uniqueness proof for LE8
.

8



See [14], where previous uniqueness proofs are discussed. Also, a uniqueness
proof for BW4 was given in [19].

In addition we prove transitivity results for certain types of sublattices
made of scaled Barnes-Wall lattices, including frames. See 12.4, 13.1, 13.3.

A final application of our theory is the construction of the Ypsilanti lat-
tices or the Ypsilanti cousins, built in a similar style. (Their definition is a
special case of Y 14.11, which is in turn a natural extension of the notation
X 3.3; the idea came during a pleasant moment in Ypsilanti, Michigan.)

Let j ≥ 1, d = 5 + 3j. The Ypsilanti lattices are indecomposable, even,
unimodular in dimension 2d, and BW-like in the sense of minimum norm. For
large dimensions, they become quite numerous. The following easily stated
results give a sample of what we proved.

Theorem 3.7. For c ∈ [0, 1
8
) and integer j > 0 so that 1

16
(2 − 21−j + 3 ·

2−1−2j) > c, there is a family Y psi(2d, j) of rank 2d indecomposable, even
unimodular lattices, defined for all d >> 0, so that log2 of the number of
isometry types in Y psi(2d, j) has dominant term at least c d 2d (in other lan-
guage, at least (1

8
+ o(1))d 2d.

(i) There is an integer m so that for d >> 0 and L ∈ Y psi(2d, j), µ(L) =
2m.

(ii) the minimal vectors of L span a proper sublattice of finite index in L;
(iii) Aut(L) has a normal 2-subgroup U of order divisible by 21+2d

The quotient Aut(L)/U is generally small. The integer m in (iii) is
roughly ⌊d−j

2
⌋. Like the BW lattices, the minimum norms go to infinity

roughly like the square root of the dimension.

Corollary 3.8. Let b ∈ [0, 1
8
). The number Υ(n) of isometry types of even

unimodular lattices of dimension n ∈ 8Z which contain a Ypsilanti lattice as
an orthogonal direct summand satisfies: log2(Υ(n)) is asymptotically at least
b · log2(mass(n)) for n >> 0, where mass(n) is the number provided by the
Siegel mass formula.

4 Background on Codes

Definition 4.1. An (n − k) × n matrix of the form H = (A|In−k), where
A is an (n − k) × k matrix, is a parity check matrix for the code C if C is
defined as the set of row vectors x ∈ F n which satisfy Hxtr = 0 [24], p.2.

9



Definition 4.2. The Hamming code Hr is defined (up to coordinate per-
mutations) by the parity check matrix Hr which is the r × (2r − 1) matrix
consisting of the 2r − 1 nonzero column vectors of height r over F2. The
binary simplex code Sr is the annihilator of the Hamming code Hr.

Remark 4.3. The code Hr can be interpreted as the subsets of nonzero
vectors in Fr2 which sum to zero. It has parameters [2r − 1, 2r − 1 − r, 3]
[24], p. 23. The minimum weight elements of Hr are simply the nonzero
elements of a 2-dimensional subspace. Therefore, a nonzero codeword A in
the annihilator meets every such 3-set in 0 or 2 elements. Equivalently, the
complement A′ of A meets every such 3-set in a 1-set or the whole 3-set. It
is clear that A′ with the zero vector is a codimension 1 linear subspace of Fr2,
whence A is an affine codimension 1 subspace. It follows that every nonzero
element of Sr has weight 2r−1, so Sr has parameters [2r − 1, r, 2r−1]. Note
that for r ≥ 2, Hr ≥ Sr and that Sr contains 1, the all-ones vector, an odd
set. Also, Hr is spanned by the affine planes with 0 removed.

Definition 4.4. The extended Hamming code is obtained by appending an
overall parity check, so has parameters [2r, 2r−r−1, 4]. For r ≥ 2, it contains
the all-ones vector. It is denoted He

r. Its annihilator is the extended simplex
code Ser , which has parameters [2r, r + 1, 2r−1]. We have for r ≥ 2, that
He
r ≥ Ser contains 12r

. Also, Hr is spanned by the affine planes.

Proposition 4.5. If r ≥ 1 is an integer, the Hamming code and simplex
code of length 2r have automorphism group isomorphic to AGL(r, 2).

Proof. This is well known. Since these two codes are mutual annihilators,
they have a common group. A recent proof was given in an appendix of [10].
�

Lemma 4.6. If S is a subset of Fd2 of cardinality 2r > 1 so that for every
affine hyperplane H of Fd2, |H ∩ S| = 0, 2r or 2r−1, then S is an affine
subspace.

Proof. This is a result of Rothschild and Van Lint, [28]; it is given in [24],
Chapter 13, Section 4, Lemma 6, page 379. �

Remark 4.7. The Reed-Muller codes are present in our analysis (the codes
CX in 11.16) but play a small role.
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Definition 4.8. A code 0 6= C ≤ FX is decomposable if there is a nontrivial
partition X = Y ∪ Z of the index set, so that C = CY ⊕ CZ is a nontrivial
direct sum, where CW means the set of vectors in C with support contained
in W ⊆ X. If a code C 6= 0 is not decomposable, it is decomposable.

Lemma 4.9. For all t ≥ 3, there is a length 2t indecomposable doubly even
self orthogonal binary code.

Proof. For t = 3, take the extended Hamming code. Suppose t ≥ 4 and set
u = t − 3. Take a partition of an index set S of size 2t into 2u parts Si of
size 8, for i = 1, . . . , 2u. Let Hi be an extended Hamming code on Si. Take
a vector vi of weight 2 with support Ai in Si and define v =

∑
i vi. Form

the code C spanned by vi and the codimension 1 subspace of
∑

iHi which
annihilates v. Then wt(v) = 2.2u ∈ 4Z, whence C is even. �

5 Background on Lattices

Lemma 5.1. Let L be a positive definite integral lattice. Then L has a unique
orthogonal decomposition into indecomposable summands. More precisely,
let X(L) be the set of nonzero vectors of L which are not expressible as
the orthogonal sum of two nonzero vectors of L. Generate an equivalence
relation on X(L) by relating two elements if their inner product is nonzero.
An orthogonally indecomposable summand of L is the sublattice spanned by
an equivalence class in X(L). In fact, an orthogonal direct summand is a
sum of a subset of this set of sublattices.

Proof. (See [23] and [25], which credits [23].) Let Xi, i = 1, . . . , t be the
equivalence classes in X = X(L) and let Li be the sublattice spanned by
Xi. Positive definiteness implies that L is the sum of the Li. Also by taking
inner products, we deduce Li ∩ Lj = 0 for i 6= j. So, we have an orthogonal
direct sum.

Let M be an arbitrary orthogonal direct summand. Let N be the anni-
hilator of M in L. We show for each i that Li ≤ M or Li ≤ N . For x ∈ X,
write x = xM +xN , where xM ∈M,xN ∈ N . Indecomposability implies that
one of these components is 0.

Now, suppose that M ∩ Li is nonempty. Then, there exists x ∈ Xi so
that (x,M) 6= 0. The last paragraph implies that x ∈ M . We then deduce
Xi ⊂M and Li ≤M . If M ∩ Li = ∅, then Li ⊂ N . �

11



Notation 5.2. Given a lattice L, the ambient vector space is Q ⊗ L, with
natural extension of the symmetric bilinear form on L.

Take isometries ψi : Q ⊗ L → Vi of rational vector spaces. From these,
we get isometries ψij = ψ−1

i ψj from Vi to Vj . Priming on an index means
replacement of the corresponding map by its negative.

For a subset A ⊆ Q ⊗ L, define the following subsets of V := V1 ⊥ V2:
Aij := {xψi + xψj |x ∈ A},
Aij′ := {xψi − xψj |x ∈ A},
Ai′j := {−xψi + xψj |x ∈ A},
Ai′j′ := {−xψi − xψj |x ∈ A}.

Notation 5.3. Given a basis B of Euclidean space and binary code C ≤ FB
2 ,

we define LB,C := {∑b∈B
1
2
abb|ab ∈ Z, (ab + 2Z)b∈B ∈ C}. (This lattice is

sometimes integral.) Note that LB,C = {∑b∈B
1
2
abb|ab ∈ Z,

∑
b∈B(ab+2Z)cb =

0 + 2Z for all (cb)b∈B ∈ C⊥}.

Notation 5.4. Let αi, i ∈ Ω = F3
2 be vectors in RΩ which satisfy (αi, αj) =

2δij. Let He
8 be the extended Hamming code 4.4.

Define the A8
1-description of LE8

or the 2-twisted version of LE8
to be

the Z-span of all αi and all 1
2
αc, for c ∈ He

8. In the Notation 5.3, this is
L{αi|i=1,...,8},He

8
.

Notation 5.5. Suppose that Ω is an index set and {vi|i ∈ Ω} is a basis
of a vector space. For a subset A of Ω, define vA :=

∑
i∈A vi. The linear

transformation εA sends vi to −vi if i ∈ A and to vi if i 6∈ A. The group of
such maps is EP (Ω). If C is a subset of P (Ω), EC denotes the set of maps εA
for A ∈ C. This is a subgroup if C is a subspace of the vector space P (Ω).

Proposition 5.6. For an integer d ≥ 2, define m := ⌊d
2
⌋. Let Ω be an

index set, identified with Fd2. Take a basis B := {vi|i ∈ Ω} where (vi, vj) =
2mδij of RΩ. Form LB,He, as in 5.3; it is integral for d ≥ 3. Then, if
d ≥ 4, Aut(LB,He

d
) is in the monomial group on B and in fact Aut(LB,He

d
) =

EΩF , where F is a natural AGL(d, 2) subgroup of the group of permutation
matrices. If d = 3, Aut(LB,He

d
) ∼= WE8

.

Proof. For d = 3, we have the lattice 5.4 and for d = 2, we have the F4

lattice, spanned by vectors of shape (±1, 0, 0, 0), (±1
2
,±1

2
,±1

2
,±1

2
). These

automorphism groups are well known to be WE8
and WF4

, respectively.

12



For any d ≥ 2, the set of minimal vectors of L := LB,He
d

is just ±vi, i ∈ Ω

and 1
2
vSεT , for S ∈ He

d an affine plane and T a subset of S. These span L
since affine planes span He

d. All these minimal vectors have norm 2m, m ≥ 1.
We now assume d ≥ 4. The set of these which are in 2m−1L∗ is exactly

±vi, i ∈ Ω, for if A is an affine plane there exists an affine plane B so that
A∩B is a 1-set (because d ≥ 4), whence (1

2
vAεS,

1
2
vBεT ) = ±2m−2. It follows

that Aut(L) is contained in the monomial group based on B. Clearly it
contains EΩF , described above, and maps to the stabilizer of the code L/Q
in 1

2
Q/Q ∼= FΩ

2 , where Q is the square lattice with basis B. Since Aut(He
d) is

a natural AGL(d, 2) subgroup of the symmetric group (4.5), we are done. �

Definition 5.7. Let c = (ci) ∈ Fn2 . The Euclidean lift of c is the vector
in {0, 1}n ⊂ Zn which reduces modulo 2 to c. When p is an odd prime
and c = (ci) ∈ Fnp , we have a similar definition of lift, using the subset

{−p−1
2
,−p−3

2
. . . ,−1, 0, 1, . . . p−3

2
, p−1

2
}n ⊂ Zn.

Lemma 5.8. Let L be a lattice with sublattice of finite index M which is a
coelementary abelian p-group for some prime p. Let F := Fp. Suppose that
C is an error correcting code in F n with minimum weight w. Suppose that
J is the lattice between Mn and Ln corresponding to C, i.e. spanned by all
(c1x, c2x, . . . , cnx) for x ∈ L and (ci) is the Euclidean lift of a codeword in C.

(i) If (y1, . . . , yn) ∈ J \Mn, the weight of (y1, . . . , yn)(mod M
n) is at least

w.
(ii) Suppose that M is indecomposable and C is indecomposable. Then

Aut(J)∩Aut(M ⊥ · · · ⊥M)∩Aut(L ⊥ · · · ⊥ L) factorizes as the product of
subgroups A1A2, where A1 is the subgroup which fixes each direct summand
isometric to M and acts diagonally on (L/M)n, and where A2 is the subgroup
of the natural group of block permutation matrices of degree n which fixes the
code C.

Proof. (i) We take a basis v(1), . . . , v(d) of C. For a codeword v = (vi)
and x ∈ L/M , let vx be the vector in (L/M)n whose ith component is the
Euclidean lift of vi times x + M . So, J/Mn =

∑
i=1,...,d;x∈L v(i)x + Mn =⊕

i=1,...,d v(i)(L/M).
Suppose that y = (y1, . . . , yn)(mod M

n) represents the minimal weight
k in J/Mn. Write it as a linear combination y =

∑d
i=1 v(i)x(i), where

x(1), . . . , x(d) is a sequence of elements of L/M and the product v(i)x(i)
is as in the previous paragraph.
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Take any linear functional f : L/K → F and extend it componentwise
to g : (L/M)n → F n. Then g(J/M) = C. Given a nonzero x(i), take an f
so that f(x(i)) = 1. Then g(y) ∈ C has nonzero coefficient 1 at v(i), whence
0 6= g(y) = (f(y1), . . . , f(yn)) ∈ C has at least w nonzero entries, whence so
does y = (y1, . . . , yn). Therefore, k ≥ w.

(ii) First, suppose that h ∈ Aut(J) ∩ Aut(M ⊥ · · · ⊥ M) ∩ Aut(L ⊥
· · · ⊥ L). We claim that h determines a unique element of the code group,
up to scalars. For any v ∈ C, x ∈ L \M , h takes vx to an element of J/M .
This means that for linear functionals f, g as in (i) where f(x) = 1, we have
that g(h(vx)) is a codeword. Since h takes vx to another element of similar
form v′x′, it follows that there is a block permutation matrix b so that, for
all codewords x, the action of hb stabilizes each direct summand isometric
to M and takes vx to an element of the form vx′, for all x ∈ L/M . Since
the code is indecomposable, we use the property that for any v, w ∈ C, if hb
takes vx to vx′, then hb takes wx to wx′. In other words, the actions of hb
on the summands of (L/M)n are identified. �

Lemma 5.9. Suppose that J is a lattice and that SMV (J), the sublattice
spanned by the minimal vectors, has finite index. Suppose that SMV (J) =
J1 ⊥ · · · ⊥ Jn, where the Ji are indecomposable lattices.

Let K satisfy SMV (J) ≤ K ≤ J and K is homogeneous with respect
to the rational vector spaces spanned by the summands, i.e., K =

∑n
i=1Ki

where Ki := K ∩ (Q ⊗ Ji).
Suppose that J/K corresponds to an indecomposable code 4.8. Then J is

orthogonally indecomposable.

Proof. (See 5.1.) Let x be an indecomposable vector of J which is not in
K and let S be the indecomposable summand of J which contains it. Let
A be the support of x+K in J/K, i.e., those indices where x+K projects
nontrivially to Q ⊗Ki/Ki. For i ∈ A, there exists a minimal vector y ∈ Ki

so that (x, y) 6= 0. Therefore, Ji ≤ S, for all i ∈ A. The indecomposability
assumption on the code implies that all Ji, i = 1, . . . , n are in S and since
SMV (J) has finite index in J and S is a summand of J , S = J . �

Definition 5.10. Let r > 0 be an integer. An integral lattice L is r-modular
if L ∼= √

rL∗

Definition 5.11. The SSD concepts were established in [19]. Call a lattice
M semiselfdual (SSD) if 2M∗ ≤ M ≤ M∗. If the sublattice M of the
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integral lattice L is semiselfdual, we define the orthogonal transformation tM
on Q ⊗ L by −1 on M and 1 on M⊥. Then tM leaves L invariant and so
gives an isometry of L of order 1 or 2; it has order 2 on L if M 6= 0.

A more general notion is that of relatively SSD (RSSD): this is the cond-
tion that the sublattice M of the integral lattice L satisfies the weaker condi-
tion 2L ≤M +M⊥. In this case, the orthogonal involution defined as above
preserves L.

6 Actions of 2-groups and endomorphisms on

lattices

We gather an assortment of results on this topic.

Definition 6.1. A fourvolution is a linear transformation whose square is
−1. A fourvolution on a lattice is a lattice isometry whose square is −1.
In case we have a lower group as in 8.3, we use the terms lower and upper
fourvolution. We may call an element in a group a fourvolution with respect
to a representation, and even with respect to more than one representation,
for example by restriction of one action to a submodule.

Lemma 6.2. If f is a fourvolution of the lattice L, then the adjoint of 1± f
is 1 ∓ f , (1 ± f)2 = ±2f , 1 ± f is an isometry scaled by

√
2 and we have

L ≥ L(1 + f) ≥ 2L and |L : L(1 + f)| = |L(1 + f) : 2L| = |L/2L| 12 . In
particular, rank(L) is even.

Proof. For x, y ∈ L, we have (x(1±f), y(1±f)) = (x, y)±(x, yf)±(xf, y)±
(xf, yf) = 2(x, y) ± (x, yf) ± (xf 2, yf) = 2(x, y). For adjointness, just
compute (x(1±f), y) = (x, y)±(xf, y) = (x, y)±(xf 2, yf) = (x, y)∓(x, yf).
The other statements are easy to prove. �

Notation 6.3. Let L be a lattice and f a fourvolution in Aut(L). Define
S[k] := S(1−f)k, for S ⊆ Q⊗L and k ∈ Z. Note that this makes sense since
the linear map 1−f is invertible, with inverse 1

2
(1+f). Call a transformation

of the form 1− f a sultry tranformation and call S[k] the kth sultry (1− f)-
twist of S or the kth sultry twist of S. (The terminology is explained in
9.1.)

We have S[0] = S. Note that for all k, (Sp)[k] = (S[k])p, where p is any
polynomial expression in f . Also, S[k][ℓ] = S[k + ℓ].
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Lemma 6.4. If S is an f -invariant lattice in Q ⊗ L, then for k ≤ ℓ, |S[k] :

S[ℓ]| = 2
1

2
rank(S)(ℓ−k).

Proof. This follows since (1 − f)2 = −2f and because for all integers p, q
and all integers r ≥ 0, S(1 − f)p/S(1 − f)p+r ∼= S(1 − f)q/S(1 − f)q+r. �

Lemma 6.5. Let S, T be subsets of C ⊗ L. Then
(i) (S[1], T ) = −(S, Tf [1]).
Now assume that S and T are f -invariant. Then S = Sf = −S, T =

Tf = −T and the following hold.
(ii) For all integers k, ℓ, we have (S[k], T [ℓ]) = 2(S[k − 1], T [ℓ− 1]) and

(S[k], T [ℓ]) = 2(S[k − 2], T [ℓ]) = 2(S[k], T [ℓ− 2]).
(iii) S∗[k] = S[k]∗f−k.
(iv) (S[k], T [ℓ]) = (S[k′], T [ℓ′]), for all integers k, k′, ℓ, ℓ′ such that k+ℓ =

k′ + ℓ′; and
(v) Assume that the integer ℓ satisfies S∗ = S[ℓ]. Then S∗[k] = S[k + ℓ].

Proof. (i) and (v) are clear.
(ii) follows since 1 − f is an isometry scaled by

√
2.

(iii) We have x ∈ S[k]∗ if and only if (x, S[k]) ∈ Z if and only if x(1+f)k =
(−1)kxfk(1 − f)k ∈ S∗ if and only if x ∈ (−1)kS∗[−k]f−k = S∗[−k]f−k.

(iv) is trivial for k = 0 and for k ≥ 1 it follows from (i) and easy induction.
If k is negative, use (ii) and the case k ≥ 0.

Example 6.6. If L ∼= LD4
then L[−1] ∼= LF4

, where we take the latter to be

the span of a standard version of the F4 root system: (±104), (±1202), (±1
2

4
).

Definition 6.7. Let L be a lattice with fourvolution f . Suppose that there
is an integer r such that L∗ = L[−r] (see 6.3). We call r the duality level of
L. Such a modular lattice (see 5.10 and 6.4) is called an r-sultrified dual and
is 2r-modular (see 5.10).

Definition 6.8. Given a group E acting on a lattice L and character λ ∈
Hom(E, {±1}), define the eigenlattice Lλ to be {a ∈ L|ay = λ(y)a, for all y ∈
E}. Define the total eigenlattice to be Tel(E,L) :=

∑
λ∈Hom(E,{±1}) L

λ. The
notation extends naturally a set of automorphisms. When t has order 1 or
2, define L+, L− to be the lattice of fixed, negated points, respectively. To
denote dependence on t, we write L(±, t) or L±(t) for L±.
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Remark 6.9. In case E is 2-elementary abelian, L/Tel(E,L) is finite, and
is in fact a 2-group, but in general is not elementary abelian. For an exam-
ple, let E be a fourgroup and L = Z[E], the regular representation. Then,
L/Tel(E,L) ∼= 2 × 2 × 4.

Lemma 6.10. Suppose that the involution t acts on the additive group A.
Let Aε := {a ∈ A|at = εa}. Suppose furthermore that the minimal number
of generators of A as an abelian group is r < ∞. Define integers k, ℓ by
2k := |A:A− + A+| and 2ℓ := |A:B|, where B := {x ∈ A|x(1 − t) ∈ 2A}.

Then: (i) 2A ≤ A− + A+ ≤ B, whence ℓ ≤ k;
(ii) Then ℓ ≤ r/2.
(iii) In the notation of (ii), A− ≥ A(1−t) ≥ 2A− and |A(1−t)/2A−| = 2k,

whence rank(A−) ≥ k.
(iv) In the notation of (ii), A+ ≥ A(1+t) ≥ 2A+ and |A(1+t)/2A+| = 2k,

whence rank(A+) ≥ k.
(v) If A is free abelian, Aε is a direct summand of A and A+ + A− =

A+ ⊕ A−.
(vi) If A is free abelian, k = ℓ (whence k ≤ r/2).
(vii) Suppose that multiplication by 2 is a monomorphism of A (e.g., A

is free abelian). If k = 0 (i.e., if t is trivial on A/2A), A = A+ + A−.

Proof. (i) The proof follows from the equation 2a = (a+ at) + (a− at).
(ii) Let B := {x ∈ A|x(1 − t) ∈ 2A}. Then the map (1 − t) induces an

injection of A/B ∼= 2ℓ into B/2A, so in particular ℓ ≤ k. If x1, x2, . . . , xℓ ∈ A
form a basis modulo B, then x1, x

t
1, x2, x

t
2, . . . , xℓ, x

t
ℓ are independent modulo

2A. Therefore, 2ℓ ≤ r.
(iii) For the first statement, notice that the kernel of the map φ : A →

A−/2A−, x 7→ x(1 − t) is A+ ⊕A− and then use Im(φ) ∼= A/Ker(φ), which
has rank k.

(iv) This follows from (iii) by replacing t with −t.
(v) Clearly, A/Aε is torsionfree. The second statement follows from A+ ∩

A− = 0.
(vi) This follows from the general classification of free abelian groups

which are modules for cyclic groups of prime order, e.g., 15.10; (74.3) in [9].
(The result for a cyclic group of order 2 is easy to prove directly.) It states
that such a module A has the form F1 ⊕· · ·⊕Fp⊕E1 ⊕· · ·⊕Eq, where each
Fi is a copy of the regular representation Z〈t〉 and where each Ej is infinite
cyclic. By reducing such a decomposition modulo 2, one deduces that k = ℓ.
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(vii) This is easy to prove directly (of course it is a consequence of the
nontrivial result mentioned in (vi)). Suppose that the involution t is trivial on
A/2A. Then t = 1+2S for some S ∈ End(A). From 1 = t2 = 1+4(S+S2),
we deduce that S + S2 = 0. For a ∈ A, a = a(1 + S) − aS. One checks that
aS ∈ A− and a(1 + S) ∈ A+. �

Definition 6.11. The defect of the involution t acting on the free abelian
group A is the integer k = ℓ, as in 6.10. It is the number of nontrivial Jordan
blocks for the action of t on A/2A.

Lemma 6.12. Let L be a unimodular lattice and t an involution acting on L.
Then the eigenlattices Lε := {x ∈ L|xt = εx} satisfy D(L+) ∼= D(L−) ∼= 2k,
where k is the defect of t in the sense of Definition 6.11.

Proof. Since each Lε is a direct summand of L, which is unimodular, the
orthogonal projection takes L onto [Lε]∗. The kernel of the map from L
to [Lε]∗/Lε is Lε + L−ε, so from Lemma 6.10, we deduce that the image is
elementary abelian, of order 2k. �

Remark 6.13. The notion of SSD involution is essentially the same as that
of an involution on a lattice. Let L be a lattice. An involution t ∈ Aut(L)
creates a pair of eigenlattices, L±. Since L+ ⊥ L− is 2-coelementary abelian
in L and t acts trivially on 1

2
[L+ ⊥ L−]/[L+ ⊥ L−], t is an SSD involution

which preserves L (see 6.10, 5.11 and [19]).

Definition 6.14. For a group G acting on the RG-module M , where R is a
commutative ring, the scalar subgroup is

Scalar(G,M) := {g ∈ G|g acts on M as multiplication by an element of R×}.

When M is a free abelian group, this is just the subgroup of group ele-
ments which act as ±1.

Definition 6.15. A frame or plain frame in a rank n lattice is a set of 2n
vectors of common norm, two of which are linearly dependent or orthogonal.

Later in 8.7, we work with a special case of this.
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6.1 Commutator density, 3/4-generation and 2/4-generation

The concepts 6.17, 6.20 and results in this section seem to be new. Com-
mutator density is an unusual property which is very useful for controlling
commutators of an extraspecial 2-group acting on a lattice.

Note that we will be mixing additive and multiplicative commutator no-
tation.

Definition 6.16. We recall a few defintions involving groups and modules.
Let Q be a (multiplicative) group and S a subset of Q. For s, t ∈ Q, as usual
[s, t] = s−1t−1st. For a module M , [M,S] is the commutator submodule,
meaning as usual the additive group spanned by all commutators [x, s] =
x(s − 1), x ∈ M, s ∈ S. Higher commutators are interpreted by extending
these definitions, for example [x, s, t] = x(s − 1)(t − 1), [s, t, x] = −[x, [s, t]]
and [t, x, s] = −[x, t, s].

Definition 6.17. Let Q be a group and S a subset of Q.
S-CD: A module M for Q is called S-commutator dense if [M,Q] =

[M,S]. (When S = {f}, a single element, every element of [M,Q] = M(f−1)
is a commutator.)

S-kCD: As is common, for the natural number k, we use the notation
[M,Q; k] for [M,Q,Q, . . . , Q] (k times). We say that M is degree k S-
commutator dense or if [M,Q; k] = [M,S; k].

S-HCD: If M has such properties for all k ≥ 1, we say that M is S-higher
commutator dense.

S-TCD: A module M is S-commutator dense on submodules if all its
submodules are S-commutator dense. In this spirit, we define degree k CD
and S-HCD on submodules.

When the set S is understood, we may drop S from the preceeding no-
tations. Note that commutator density is inherited by quotient modules but
may not be for submodules.

Lemma 6.18. Suppose that the group Q acts on the ZQ-module L and that
L is f -commutator dense for a fourvolution f ∈ Q such that [Q, f ] is scalar
on L. Then [L,Q; k] = [L, f ; k], for all k ≥ 1, i.e., L is f -HCD. In fact,

[L,Q; k] = [L, f ; k] = 2
k
2L if k is even, and [L,Q; k] = [L, f ; k] = 2

k−1

2 [L, f ]
if k is odd.

Proof. We have [L,Q] = [L, f ], whence [L,Q, f ] = [L, f, f ] = 2Lf = 2L.
Also, [Q, f, L] ≤ [Scalar(Q,L), L] ≤ 2L. The Three Subgroups Lemma
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[11, 21] implies that [f, L,Q] ≤ 2L, or [L,Q,Q] ≤ 2L, which is [L, f, f ]. The
statements [L,Q; k] = [L, f ; k], for all k ≥ 1 are proven by induction. �

Lemma 6.19. Suppose that the lattice L contains the orthogonal direct sum
of sublattices L1 ⊥ L2, that L1 and L2 have rank n = 2m ∈ 2Z and L/L1 ⊥
L2 is elementary abelian of order 2m. Suppose that involutions t, u act on L
so that L1 = L−(t), L2 = L+(t) (see 5.11) and u interchanges L1 and L2.
Then:

(i) u acts trivially on L/L1 ⊥ L2 if and only if det(L±(u)) = det(L1) =
det(L2).

(ii) If the conditions of (i) hold, then L is the sum of any three of the
four sublattices L±(t), L±(u).

Proof. Clearly u acts on 1
2
L1 ⊥ 1

2
L2 and on 1

2
L1 ⊥ 1

2
L2/L1 ⊥ L2, it acts

with n Jordan blocks of size 2. Also, det((L1 ⊥ L2)
±(u)) = det(L1)2

n and
det(1

2
(L1 ⊥ L2)

±(u)) = det(L1)2
−n.

(i) The equivalence of the two conditions follows from comparision of
the determinants of the lattices L±(u) ≥ (L1 ⊥ L2)

±(u). Let 2r be the
index |L±(u):(L1 ⊥ L2)

±(u)|. Then det(L±(u)) = 2n−2rdet(L1). The second
condition in (i) implies that n = 2r, whence L±(u) covers L/[L1 ⊥ L2].
Conversely, take x ∈ L. It is fixed by u modulo L1 ⊥ L2, which is a free
module. Therefore there is y ∈ L1 with x(u − 1) = y(u − 1). The coset
x+ [L1 ⊥ L2] therefore contains the fixed point x− y.

(ii) The hypotheses imply that L1 + L2 + L+(u) = L, and a similar
statement applies to −u. Finally, we may interchange the roles of t and u to
deduce the remaining statements. �

Definition 6.20. Let the dihedral group D of order 8 be generated by invo-
lutions t, u. An action of D on the abelian group L has the 3/4 generation
property if the central involution of D acts as −1 on L and L is the sum of
any three of L±(t), L±(u). An action has the 2/4-generation property if L is
the sum of the fixed points of a pair of generating involutions.

Proposition 6.21. Suppose that the dihedral group D acts on the lattice L
with the central involution acting as −1. For this action, equivalent are the
properties of 3/4-generation, 2/4-generation and commutator density for a
fourvolution in D.

Proof. Let f be an element of order 4 in D and t, u a pair of generating
involutions. Set L1 := L+(t), L2 := L−(t). Note that rank(L) is even.
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Assume the 3/4 generation property, and assume the notations of 6.20.
Then L has even rank 2n and [L,D] ≤ (L1 + L2) ∩ (L+(u) ⊥ L−(u)), which
has index 2n in L. Since (f − 1)2 = −2f , this intersection equals L(f − 1),
whence density.

Assume density. Consider the action of D on 1
2
(L1 ⊥ L2)/L1 ⊥ L2. The

action of t is trivial and f acts as an involution with n Jordan blocks (as
f 2 = −1 = [t, u]).

We have L > L(f − 1) ≥ L(t − 1) + L(u − 1) + L(t + 1) + L(u + 1).
Since ±t,±u is a normal subset of generators of D, the right side is [L,Q]
which by density equals L(f − 1). Note that L(t + 1) + L(t − 1) ≥ 2L and
L(u− 1) + 2L = L(u+ 1) + 2L. It follows that L(f − 1) = L(t− 1) +L(u−
1) + L(t+ 1) ≤ L−(t) + L−(u) + L+(u).

Similar arguments apply if we replace t,−t, u by any 3-subset of {t,−t, u,−u}.
This completes the proof that density implies 3/4-generation.

Obviously, 2/4-generation implies 3/4-generation. Assume 3/4-generation
and let t, u be any generating pair of involutions. Set M := L+(t) + L+(u),
a sublattice of L. Since the central involution of D acts as −1, the sum-
mands meet trivially, whence M has rank 2n. Since L+(t) is RSSD in L (see
5.11), it is RSSD in M , i.e. M is t-invariant. It follows that M contains
L−(u) = L+(ut), whence M = L by the 3/4-generation property. �

We can actually drop reference to the quadratic form in the previous
result.

Proposition 6.22. Suppose that the dihedral group D acts on the free abelian
group L with the central involution acting as −1. For this action, equivalent
are the properties of 3/4-generation, 2/4-generation and commutator density
for a fourvolution in D.

Proof. This follows from 6.21 once we define a D-invariant positive def-
inite integer valued quadratic form. One uses the familiar trick of taking
any integer valued positive definite quadratic form on L, then summing its
transforms under D. �

7 Sultry twists and the NextBW procedure

We discuss some procedures for proving the main theorem. We continue to
let BW abbreviate “Barnes-Wall”.
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We first show how to start from a BW-type lattice of rank 2d−1 and create
one of rank 2d. Later, in 10.2 we show how a BW-type lattice of rank 2d

is uniquely determined by an ancestor of rank 2d−1. Eventually, we use an
induction argument which will show that a BW-type lattice is unique, so is
the same (up to rescaling) as the lattices constructed in [1, 6].

An important technique here is to use the commutator density enjoyed
by these lattices. The twisting by sultry transformations helps control the
analysis.

Notation 7.1. Let M be a BW lattice of rank 2d−1 ≥ 3. Let Q be a lower
group (see 15.2) in Aut(M), i.e. in some BRW 0(2d,+) subgroup of Aut(M),
which by induction is isomorphic to BRW 0(2d,+) or d−1 = 3 and Aut(M) ∼=
WE8

. Also,let f ∈ Q be a fourvolution, F := NAut(M)(Q) ∼= BRW 0(2d,+);
see 15.2. Now let r be duality level of M (see 6.7). Then r ∈ {0, 1} and
r ≡ d(mod 2).

Definition 7.2. The Next BW Procedure. We use notations M,F,Q, f as
in 7.1.

Form M1 ⊥ M2, two orthogonal copies of M based on the isometries
ψi : M → Mi and let Vi := Q ⊗Mi be their ambient rational vector spaces.
Set V := V1 ⊥ V2. Also, we use ψij := ψ−1

i ψj , the natural isometry from Mi

to Mj , extended to Vi → Vj . See Notation 5.2.
Define Qi, Fi and fi and the groups and element in End(Vi) corresponding

to Q,F and f under ψi. Extend their actions to V in the natural way. Also,
define the group Q12 as the natural diagonal subgroup of Q1×Q2 and element
f12 := f1f2 ∈ Q12 acting on V (see 5.2).

For the SSD sublattices Mi[1 − r],Mij[1 − r],Mij′[−r], we denote the
respective SSD involutions by ti, tij , tij′. Observe that −1 = t1t2 = t12t12′ .
For convenience and symmetry, we define ti′ := −ti, ti′j := tij′, ti′j′ := tij .
Finally, we define D := 〈t1, t2, t12, t12′〉 ∼= Dih8 and R := 〈Q12, D〉 ∼= 21+2d

+ .
So, R = Q12D, a central product.

Define Ld := M1[1−r]+M2[1−r]+M12[−r], and R-invariant lattice. We
call Ld the type BW-successor to M . From 6.5 and M∗ = M [−r], we deduce
that Ld is an integral lattice and since elements of the the above generating
set have even norms, Ld is even.

Lemma 7.3. D(Ld) ∼= 1, 22d−1

as d is even, odd. Therefore, the duality level
is the remainder of d+ 1 modulo 2.
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Proof. When d is even, L := Ld is the kernel of the epimorphism M1 ⊥
M2 → M/M [1], defined by (xψ1 , yψ2) 7→ x + y + M [1]. Since M1 ⊥ M2 is
unimodular, D(L) ∼= 22d−1

.
When d is odd, this is the same as the kernel of the epimorphism M∗

1 ⊥
M∗

2 → M∗/M defined by (xψ1 , yψ2) 7→ x + y + M . Since M∗
1 ⊥ M∗

2 has
determinant 2−2d

, L is unimodular.
The statement about duality level follows from 6.4. �

Lemma 7.4. We take L := Ld (in the notation 7.2). Here, r ∈ {0, 1},
d = rank(L) and r ≡ d (mod 2). Then:

(i) L is the sum of any three of the four lattices

M1[1 − r],M2[1 − r],M12[−r],M12′ [−r].

(ii) L∗ is the sum of any three of the four lattices

M1[1 − r],M2[1 − r],M12[−1],M12′ [−1].

Proof. This follows from 6.19. Here is a different proof. (i) Let i = 1 or 2.
Define j by: {1, 2} = {i, j}.

Now, we observe that for any integer k,
(a) Mi[k] ≤Mj [k] +M12[k] ≤Mj [k] +M12[k − 1];
(b) M12′ [k] ≤M12′ [k]+M12[k] = M12[k]+Mi[2+k] ≤M12[k]+Mi[1+k].
At once, (i) follows.
For (ii), (a) and (b) prove equality of N = M1[1−r] ⊥M2[1−r]+M12[−1]

and N ′ = M12[−1] +M12′ [−1] +Mi[1− r]. It is clear by taking dot products
thatN = N ′ is in L∗. If r = 0, L = N and if r = 1, N/L ∼= M12[−1]/M12[0] ∼=
22d−1

, whence N = L∗ (see 7.3). �

Corollary 7.5. In the notation of 6.17 and 7.2, the R-module Ld is commu-
tator dense with respect to any fourvolution in R.

Proof. Since Q12 acts diagonally on Vi, we deduce [Mi[k], Q12] = [Mi[k], f ] =
Mi[k + 1] for all k and i = 1, 2. Also, [Mij [k], Q12] = Mij [k + 1]. Note also,
that [Mi[k], t] = Mij [k + 1] and [Mij [k], t] = 0 or 2Mij [k] = Mij [k + 2] for
t = tij or tij′ . Similar statements hold for the Mij′ [k]. Since R is generated
by Q12 and 〈t1, tij〉, [Ld, Q12] = [Ld, R].

We prove density first prove for a few special cases of f .
Take f = f1f2, which acts diagonally. Then, by induction, [Mij [k], f1f2] =

[Mij [k], Q12] = Mij [k + 1] and [Mi[k], f ] = Mi[k + 1] and similarly for Mj [k].
So we have density for this f .
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Now, let f = t1t12′ . Then for (x, y) ∈ V1 ⊥ V2, (x, y)(1−f) = (x−y, y+x).
Since (1 − f)2 = −2f , Ld(1 − f) contains 2Ld and the diagonal Mij [1 − r],
which generate [Ld, R] (see the first paragraph). So, we have density for this
f .

Finally, let f be an arbitrary fourvolution in R. Then |L : L(f − 1)| has

order |L : 2L| 12 so L(f − 1) ≤ [L,Q] implies that L(f − 1) = [L,Q]. �

Corollary 7.6. For i = 1, 2 and for all integers j ≥ 0, Mi[1 − r] ∩ L[j] =
Mi[1 − r + j].

Proof. Fix i. We choose fi for the twisting since it preserves the Mi[k]. The
equalities are valid for j even since L[2k] = 2kL, for all k ≥ 0 and Mi[1−r] is
a direct summand of L. Now, Mi[1−r]∩L[1] ≥Mi[2−r]. Applying one more
twist, which is a scaled isometry, we get Mi[2 − r] ∩ L[2] ≥ Mi[3 − r]. Since
Mi[2−r]∩L[2] = Mi[2−r]∩2L = Mi[2−r]∩2Mi[1−r] = 2Mi[1−r] = Mi[3−r],
whence all our containments are equalities. �

We give a fairly complete account of minimal vectors.

Lemma 7.7. (i) A minimal vector of Ld has norm 2⌊
d
2
⌋ and is in M1[1− r]

or M2[1 − r] or has the form x1 + x2, where each xi projects to a minimal

vector of Mi[1−r], for i = 1, 2. Its norm is µ(Mi[1−r]) = 21−rµ(M) = 2⌊
d
2
⌋.

(ii) The minimal vectors span Ld.

Proof. (i) Suppose that the minimal vector x is not in M1[1−r] or M2[1−r].
Write x = x1 + x2, where xi is the projection of x to Vi, i = 1, 2. Since
xi ∈Mi[−r], xi has norm at least 1

2
µ(Mi[1−r]), whence (x, x) ≥ µ(Mi[1−r]).

It follows that these inequalities are equalities. The last statement follows
from induction and 7.4.

Easily, (i) implies (ii) since Ld is the sum of three sublattices spanned by
minimal vectors. �

Corollary 7.8. Ld is a lattice of BW-type.

Definition 7.9. A minimal vector in Ld has type 1, 2 or 3, respectively,
as it is in M1[1 − r],M2[1 − r] or in neither. These three types partition
MinV ec(Ld).

Lemma 7.10. For d ≥ 2, Ld is an indecomposable lattice.
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Proof. As in the proof of 5.1, we see that the minimal vectors of L are
partitioned into equivalence classes by membership in the Li. However, it is
clear from 7.7 and induction that there is just one equivalence class in the
sense of 5.1. �

The following terminology will be useful. It applies to lattices used in 7.2
and later.

Definition 7.11. A lattice M is a scaled BW-lattice, abbreviated sBW lat-
tice, if there is an integer s > 0 so that M ∼= √

sBW2e , for some e > 0.
A sublattice M of a BW-lattice L is called a suitably scaled Barnes-Wall
sublattice (relative to L), abbreviated ssBW sublattice, if M is a sBW lattice
and µ(M) = µ(L).

We use the notation BW2p,q , p ≤ q, for a scaled copy of BW2p whose
isometry type is suitable as a sublattice of BW2q , i.e. a sBW lattice with
minimum norm 2⌊

q

2
⌋.

8 The groups R2d, G2d and invariant lattices

Notation 8.1. In this section, L = Ld and d ≥ 2 have the meaning of 7.1
and 7.2.

Definition 8.2. We define R := R2d := 〈Q12, ti, tij〉 ∼= 21+2d
+ , where Q12 and

the involutions are as in 7.2. We define G2d := NAut(L)(R2d).

Definition 8.3. Elements and subsets of G2d are called lower if in R and
are otherwise called upper. In particular, a fourvolution 6.1 may be called
upper or lower.

Theorem 8.4. For d ≥ 2, G2d
∼= BRW 0(2d,+) ∼= 21+2d

+ Ω+(2d, 2).

Proof. The cases d ≤ 3 have been discussed earlier (and the case d = 4 was
treated explicitly in [19]). We may assume that d ≥ 4. Since G2d is finite,

containing R as a normal subgroup, G2d is contained in G̃ = BRW 0(2d,+),
the natural 21+2d

+ Ω+(2d, 2) subgroup ofGL(2d,C) containing R; see Appendix
A2.)

Let D be the dihedral group of order 8 described in 7.2. Then D ≤ G :=
Aut(L). Let t ∈ D be a noncentral involution. We claim that CG

2d
(t)R/R

corresponds to a maximal parabolic in G̃/R. For standard theory about
parabolic subgroups, see [7].
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Suppose t = t1 or t2. By induction, Aut(Mi[1 − r]) contains a copy of
G2d−1 as NAut(Mi[1−r])(Qi), and S := StabG(M1[1 − r] ⊥ M2[1 − r]) contains

a group T of the form [2
1+2(d−1)
+ × 2

1+2(d−1)
+ ].[Ω+(2(d− 1)× 2]. Also, since tij

interchanges M1[1 − r] and M2[1 − r], it normalizes this group. Its image in

G̃/R is a maximal parabolic, the stabilizer of a singular vector.
Suppose that t = tij or tij′. Then the above argument goes through with

Mi[1−r], ti replaced by Mij [−r], tij , and gives a distinct subgroup of the form

[2
1+2(d−1)
+ ×2

1+2(d−1)
+ ].[Ω+(2(d−1), 2)×2] containing R. (Proof of distinctness:

in both cases, the center of the respective stabilizer is {±1,±t}.)
Therefore, G/R contains two different maximal parabolics of G̃/R, whence

G = G̃, [7], so we are done. �

Remark 8.5. Note that the 8.4 uses only a basic result about orthogonal
groups (maximality of certain stabilizers) but nothing very explicit about
their interior structure, nor about particular elements. This is possible since
we have a suitable uniqueness statement.

Lemma 8.6. The subgroup of Aut(L) which is trivial on L/L[1] is just R.
In the notation 7.2, L[1] = M1[−r] +M2[−r] +M12[1 − r].

Proof. Let T be the subgroup trivial on L/L[1]. Note that [L,R] = L[1],
7.4. Therefore, T ≥ R.

Assuming T > R, we have a normal nontrivial 2-group T/R in G2d/R2d .
Since the latter quotient is simple, the shape of G2d given in 8.4 shows that
this is impossible. �

Notation 8.7. For x ∈ MinV ec(L), let SF (x) := xR. Call this the sultry
frame containing x. (See 9.1). From 8.6 and the structure of R ∼= 21+2d

+ ,
SF (x) is a double orthogonal basis, of cardinality 2d+1.

Proposition 8.8. Let x, y ∈ MinV ec(L). Equivalent are (i) y ∈ SF (x);
(ii) x− y ∈ L[1].

Proof. Trivially, (i) implies (ii). For (ii), we use a familiar argument. Let
z ∈ SF (x). First we note that z ± y ∈ L[1] is 0 or has norm at least 2µ(L).
Assuming y 6= ±z, we have (z± y, z± y) = 2µ(L)± 2(z, y) ≥ 2µ(L), whence
(z, y) = 0. This is not the case for every z ∈ SF (x). �

Proposition 8.9. The number of minimal vectors is (2d+2)(2d−1+2) . . . (22+
2)(2 + 2). The values for small d are:

26



d |MinV ec(L)| Prime Factorization
0 2 2
1 4 22

2 24 233
3 240 243.5
4 4320 25335
5 146880 26335.17
6 9694080 27345.11.17
7 1260230400 28345211.13.17
8 325139443200 293552.11.13.17.43
9 167121673804800 210355211.13.17.43.257
10 171466837323724800 211385211.13.17.19.43.257
11 351507016513635840000 212385411.13.17.19.41.43.257
12 1440475753672879672320000 213395411.13.17.19.41.43.257.683

Proof. Use 7.7, 8.7, 8.8 and induction. �

Corollary 8.10. If x ∈ MinV ec(L), StabG
2d

(x + L[1])/R2d is a maximal

parabolic subgroup of G2d/R2d of the shape 2(d

2):GL(d, 2).

Proof. The pairs {±x} of minimal vectors in this coset is an orbit of R2d for
which a point stabilizer E is elementary abelian of order 21+d; see 8.8. These
pairs of vectors are exactly the minimal vectors of the total eigenlattice of
E, so as a set are stable under NG

2d
(E), which has the indicated properties.

�

Corollary 8.11. When d is even, L ∩ 2L∗ = L[1], whence the lower group
is normal in Aut(L) and G2d = Aut(L).

Proof. When d is even, the duality level is 1, whence L∩2L∗ = L∩2L[−1] =
L∩L[1] = L[1] is invariant by the entire automorphism group. Now use 8.6.
�

When d is even, this result essentially solves the problem of determining
the automorphism group. The case d arbitrary is harder (it is finally proved
in 11.9, which does not use 8.11).

Proposition 8.12. For an odd prime, p, L/pL is an absolutely irreducible
module for G2d.
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Proof. This is trivial, since R acts absolutely irreducibly. �

Lemma 8.13. For all k, L[k]/L[k+1] is an absolutely irreducible F2-module
for G2d .

Proof. This is easy to check for d ≤ 4, so we assume that d ≥ 5 and use
induction.

We may assume that k = 0. Let D ∼= Dih8 be as in 7.2. For a noncentral
involution t of D, we get by induction that CG

2d
(t) acts irreducibly on each

L±(t)/[L±(t), CR(t)].
Since L is a sum of fixed point sublattices for the noncentral involutions

of D 6.21, it follows that L/L[1] has two absolutely irreducible composition
factors for CG

2d
(t), each of dimension 2d−2.

The group CG
2d

(t), of shape [2
1+2(d−1)
+ × 2

1+2(d−1)
+ ].Ω+(2(d − 1), 2) (dis-

cussed in the proof of 8.4), acts on L/L[1] and has exactly one irreducible
submodule, namely Tel(L, t)/L[1], and two composition factors (this follows
by induction on d, since on any eigenspace for t, we know the irreducible quo-
tients for any lattice invariant under CG

2d
(t)). These irreducible submodules

distinct as t ranges over a set of generators for D (e.g. t1, t12 for the group
of 7.2).

It follows that L/L[1] is irreducible for the action of G2d . We now prove
absolute irreducibility. If K is an extension field of F2 and K ⊗ L/L[1]
decomposes, then its restriction to CG

2d
(t) would have over 4 composition

factors (since O2(CG
2d

(t)) acts nontrivially), which is impossible since, by
induction, the composition factors for CG

2d
(t) are absolutely irreducible of

dimension 2d−2. �

Proposition 8.14. Let M be a lattice in Q ⊗ L which is invariant under
G2d. Then there is a rational number r so that rM = L or L[1].

Proof. We may assume that M ≤ L. By 8.12, we may assume that L/M is
a power of 2. For some positive integer n, 2nL ≤ M . Now use 8.13 and the
fact that [L[k], R2d ] = L[k + 1]. �

Later, in 11.9, we prove that G2d is all of Aut(Ld).

9 Sultriness

When f is a fourvolution on a lattice L, 1 − f (actually, any of ±1 ± f) is
an endomorphism of L which is also an isometry scaled by

√
2. Next, we
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see that a sulty transformation is naturally interpreted as a scaled lift of a
transvection, a point which suggested the term “sultry”.

Theorem 9.1. The function γf : Aut(L) → Aut(L), x 7→ (1− f)−1x(1− f),
normalizes R = R2d and G2d . Furthermore, γf is the identity on CR(f) and if
x ∈ R\CR(f), γf takes x to fx ∈ R\CR(f), hence normalizes and induces an
outer automorphism on the dihedral group 〈f, x〉. Hence, on R/Z(R), γf acts
as the transvection associated to the nonsingular point Z(R)f of R/Z(R).

Proof. Since 1√
2
(±1 ± f) is orthogonal, the image of γ := γf is a subgroup

of the orthogonal group. Since any ±1 ± f carries each L[k] onto L[k + 1],
the image of γ stabilizes L. We conclude that γ takes Aut(L) onto itself.

We calculate that x(1−f) = x−xf = x−f−1x = x+fx = (−f+1)(fx),
which proves the remaining statement. �

10 Proof of uniqueness

Notation 10.1. Given d ≥ 3 and L1, L2, we let X := X(L1, L2) be the set
of all X-quadruples of the form (L,L1, L2, t); see 3.3.

Theorem 10.2. We use the notation in 3.3, 7.1, 7.2, 8.2 and 10.1. Suppose
that d ≥ 3 and (L1, L2) is an orthogonal pair of lattices, so that each Li is
BW-type of rank 2d−1.

(i) X is an orbit under the natural action of F1 × F2, where Fi :=
StabAut(Li)(Li[1 − r]) (see 7.2; by induction, Fi ∼= G2d−1). Define Qi :=
CFi

(Li/Li[1]).
The elements of X are in correspondence with each of the following sets.
(a) F1/Q1;
(b) F2/Q2;
(c) Pairs of involutions {s,−s} in the orthogonal group on V which in-

terchange L1 and L2.
(d) Dihedral groups of order 8 which are generated by the SSD involutions

associated to L1, L2 and involutions as in (c).
(ii) (a) The subgroup G0

L of F1 × F2 which stabilizes L has structure
Q1 ×Q2 ≤ G0

L and G0
L/Q12 is the diagonal subgroup of F1/Q1 × F2/Q2 with

respect to the isomorphism induced by s, an involution as in (i.c).
(b) The subgroup GL of Aut(L1 ⊥ L2) ∼= Aut(Li) ≀ 2 which stabilizes L is

G0
L〈s〉. We have GL

∼= [21+2d−1
+ × 21+2d−1

+ ].[Ω+(2(d− 1), 2) × 2].
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(c) The subgroup of GL which acts trivially on L/L[1] is R := 〈Q12, s, ti〉,
where ti is the SSD involution associated to Li. The quotient GL/R ∼=
22d−2:Ω+(2d−2, 2) is a maximal parabolic subgroup of Out0(21+2d

+ ) ∼= Ω+(2d, 2).
(See Appendix A.0).

The extension in (c) is split, despite G2e being nonsplit over R2e for e ≥ 4.
See Appendix A2.
Proof. (i) We prove the classification by induction. For d = 2, Aut(LD4

) ∼=
21+4

+ [Sym3 ≀ 2] and for d = 3, Aut(LE8
) ∼= WE8

. When d = 4, the main
theorem follows from the arguments of [19].

For the rest of the proof, we assume that d ≥ 4. By induction, a lattice
satisfying the X(2d−1) condition is uniquely determined up to isometry. This
applies to the lattices L1, L2.

Let L be any member of X and set G := Aut(L). There is an X-quadruple
(L,L1, L2, t). Then det(L) and |L:M1[1 − r] ⊥M2[1 − r]| are determined.

Let pi be the orthogonal projection of L to Vi := Q ⊗ Li, for i = 1, 2.
Then Lpi is a lattice containing Li with quotient isomorphic to 22d−2

. Since
Q acts trivially on L/[L1 ⊥ L2], Qi acts trivially on Lpi/Li. Therefore, Lpi is
the −1 twist of Li with respect to Qi, i.e., Lpi = Li(1 − fi)

−1, for a suitable
fourvolution fi ∈ Qi.

There is a dihedral subgroup D of R so that t ∈ D. If y ∈ D is an
involution which does not commute with t, then y interchanges L1 and L2.
Also, if J± are the eigenlattices for y, then L is the sum of any three of the
four L1, L2, J

+, J−, by 6.19.
It follows that L is determined by D in the sense that L = [L1 ⊥ L2] +

([L1 ⊥ L2]
+(y))(f − 1)−1, where f = ty.

is the sum of the fixed point sublattices of the involutions of D (see 6.19,
7.4).

Now, to what extent does L1 ⊥ L2 determine D? The answer is: up to
conjugacy in Aut(L1 ⊥ L2) ∼= G2d−1 ≀ 2 (note that d ≥ 2 here). Our group D
is generated by the center of the natural index 2 subgroup of Aut(L1 ⊥ L2)
and a wreathing involution. In general, wreathing involutions in a wreath
product of groups K ≀ 2 form an orbit under the action of either direct factor
isomorphic to K in the base group of the wreath product. This proves
correspondence with (c) and (d). The stabilizer subgroup is diagonal in
the base group K × K, and either direct factor represents all cosets of the
stabilizer (whence the equivalence with (a) and (b))
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It follows that, up to isometry preserving L1 ⊥ L2, D, hence L, is deter-
mined by the pair of indecomposable lattices L1 and L2.

Proof of statements (ii) and (iii) are easy. The statement about parabolic
subgroups is proven with a standard result from the theory of Chevalley
groups, e.g. [7]. Independently of that theory, the maximality could be
proved directly by showing that there is no system of imprimitivity on the
set of isotropic points. This is an exercise with Witt’s theorem. �

11 Minimal vectors, the zoop2 property and

Aut(BW2d)

We continue to use the notations of 8.1 and 8.2.

Remark 11.1. For L = BW2d a Barnes-Wall lattice and k ∈ Z, we have
MinV ec(L[k]) = MinV ec(L)[k] (see 6.5).

Theorem 11.2. We use notation of 7.2. The group G2d acts transitively on
the set of minimal vectors.

Proof. We use notation of 7.9. It is clear that the minimal vectors of types
1 and 2 are in a single G2d-orbit, say O. Consider a minimal vector u+ v of
type 3. We assume that L corresponds to the involution s = tij′ in the sense
of 10.2 (i). Then v and uti′j differ by an element of M2[1−r], so by induction,
these are in the same orbit under Q2, equivalently under Q12. Therefore, u
and v are in the same R-orbit.

By induction, we have transitivity on the minimal vectors of type 3 by
the group RF12, where the second factor is the natural diagonal subgroup of
F1 × F2. Call O′ the orbit containing the type 3 minimal vectors.

Suppose thatG2d is not transitive. First Contradiction. ThenMinV ec(L)
is the disjoint union of two orbits O and O′ and so G2d preserves the Z-span
of O, which is just M1[1 − r] ⊥ M2[1 − r], an orthogonal sum of two or-
thogonally indecomposable lattices. Thus G′

2d ≥ R leaves both summands
invariant, which is impossible since R is irreducible on C ⊗ L. Second Con-
tradiction. The lower involutions form a conjugacy class in G2d , so there is
g ∈ G2d which conjugates t1 to t12. Then g takes the set of minimal vectors
fixed by t1 (those of type 2) to those fixed by t12, which are contained in
those of type 3. Therefore O and O′ are not distinct orbits. Transitivity
follows. �
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Now we give a few results about stablilzers in G2d. These will be strength-
ened later.

Lemma 11.3. (i) If F is a sultry frame and x ∈ F , then {g ∈ R|xg = ±x} =
{g ∈ R|yg = ±y for all y ∈ F} is a maximal elementary abelian subgroup of
R. Call it RF . The quotient R/RF operates regularly on the eigenlattices.

(ii) Define CF := CG
2d

(F/{±1}) := {g ∈ G2d|yg = ±y for all y ∈ F}.
This is elementary abelian and has shape 21+d+(d

2).
(iii) Its normalizer NF := NG

2d
(CF ) = StabG

2d
(F ) in G2d satisfies NF/CF ∼=

AGL(d, 2). We have RF ≤ CF .

Proof. (i) Set P := {g ∈ R|xg = ±x}, Q := {g ∈ R|yg = ±y for all y ∈ F}.
Observe that Q ≤ P and Q is elementary abelian. Transitivity of R on F
and normality of P in R implies that P = Q has order 2d+1.

(ii) This follows from (i) and the order of the unipotent radical for the
stabilizer of a maximal totally isotropic subspace for Ω+(2d, 2).

(iii) This follows from the actions of R on RF together with the structure
of the stabilizer of a maximal totally isotropic subspace for Ω+(2d, 2). �

Definition 11.4. Suppose that F is a frame. A subset S ⊆ V has the zop2
property (with respect to F ) if |(x, y)| is 0 or a power of 2, for all x ∈ F and
y ∈ S. We say that S has the zoop2 property if is has the zop2 property and
just one power of 2 occurs among the scalars |(x, y)|, x ∈ F, y ∈ S.

Lemma 11.5. For all integers p, q, any minimal vector of L[q] has the zoop2
property with respect to any sultry frame in L[p].

Proof. We may assume that p = 0 and q ∈ {0, 1}. The property is easy to
check for d ≤ 3. We assume d ≥ 4. Say x ∈ MinV ec(L), y ∈ SF (x) and
z ∈ MinV ec(L[q]) so that (x, z) 6= 0 6= (y, z). Take a lower involution t so
that t fixes x and y. Then x, y ∈ L+(t), a ssBW lattice, and z projects to a
minimal vector in L+(t)[q], so we are done by induction. �

Definition 11.6. Given a sultry frame F of 2d+1 elements, there are 2d

subsets which form a basis. Suppose X is such a set. If v ∈ V , we write
v =

∑
x∈X axx and define the support of v to be the set {x ∈ X|ax 6= 0}.

This depends on the double basis F , not on the choice X ⊂ F .

Lemma 11.7. Suppose that d ≥ 2. Let x ∈ MinV ec(L) and A(x) := {y ∈
MinV ec(L)|(x, y) = 1

2
(x, x)}. Then A(x) ∪ {x} spans a lattice isometric to
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the Hamming code lattice described in 5.6. In particular, there is a labeling
of SF (x)/{±1} with Fd2 so that the elements of A(x) have support which is
an affine 2-space.

Proof. Define J0 to be the square lattice spanned by SF (x) and J the
lattice spanned by A(x) and SF (x). In a natural way, J/J0 corresponds to a
nonzero code in 1

2
J0/J0

∼= F2d

2 . Since µ(L) = (x, x), this code has minimum
weight at least 4. For y ∈ A(x), supp(y) is a 4-set with respect to the double
basis SF (x), 11.5. Therefore the minimum weight of C is 4.

Note that we have an action of AGL(d, 2) on 1
2
J0/J0 by coordinate per-

mutations. This follows from 11.3. This action is triply transitive. Since C
has minimum weight 4, its weight 4 codewords forms a Steiner system with
parameters (3, 4, 2d) which is stable under this action of AGL(d, 2). Such
a system is unique since in AGL(d, 2), the stabilizer of three points fixes a
unique fourth point. Therefore, C is the code He

d, up to equivalence.
Finally, we must show that A(x)∪{x} spans J . If d = 2, L ∼= LD4

and the
result is easy to check directly. We assume d ≥ 3. Let y ∈ SF (x), y 6= ±x.
Since d ≥ 3, we may choose a lower involution t which fixes both x and y (in
the notation of 11.3, t ∈ RF ). Let L+ be the sublattice of points of L fixed by
t, a sBW lattice. Then, induction implies that the sublattice of L+ spanned
by A(x)∩L+ contains y. We conclude that SF (x) ⊂ span(A(x)∪ {x}), and
we are done. �

Proposition 11.8. Suppose that d ≥ 4. For x ∈MinV ec(L),

StabAut(L)(x) ≤ StabAut(L)(SF (x)).

Proof. Define A(x) := {y ∈ MinV ec(L)|(x, y) = 1
2
(x, x)}. By 11.7 lattice

J := span(A(x)∪{x}) contains SF (x) and is a copy of the lattice in 5.6. Since
d ≥ 4, given a weight 4 codeword, there exists another weight 4 codeword
which meets it in a 1-set (this is not so for d = 3). Therefore, SF (x) = {z ∈
MinV ec(J)|(z, J) ≤ 1

2
(z, z)Z}, we are done (see the proof of 5.6). It follows

from 5.1 that StabAut(L)(x) ≤ StabAut(L)(J). �

Corollary 11.9. For d ≥ 4, Aut(Ld) = G2d.

Proof. This follows since G2d is transitive on minimal vectors and the sta-
bilizer of some minimal vector in G is contained in G2d. �
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Definition 11.10. Let x ∈ MinV ec(L) and SF (x) its sultry frame. Let
q ∈ Z and k ∈ Z. Define A(L, x, q, k) := {z ∈ MinV ec(L[q])|(z, y) ∈
{0,±2k} for all y ∈ SF (x)}. This is is the level k layer in MinV ec(L[q])
with respect to x or SF (x).

Lemma 11.11. Suppose that the group G0 factorizes as G0 := GZ, where
G,Z are subgroups so that [G,Z] = 1. Suppose that G0 acts on the set X
and that G stabilizes and acts transitively on a set of Z-orbit representatives.
Let S be the set of all G-invariant sets of orbit representatives. Then Z acts
transitively on S.

Proof. A member of S is determined by any element of X which it contains.
Therefore the members of S partition X.

Suppose that X1, X2 ∈ S. Let A be a Z-orbit and let ai be the unique
element of A ∩ Xi, for i = 1, 2. Take z ∈ Z so that az1 = a2. Then X2 and
Xz

1 are both G-invariant sets of orbit representatives and contain a2, hence
are equal. �

Note that the next result deals with minimal vectors in all sultry twists
of L.

Notation 11.12. For integers d ≥ 2 and p, q ∈ Z, define I(d, p, q) to be the
set of integers listed below. Here, r ∈ {0, 1} is the remainder of d modulo 2,
m := ⌊d

2
⌋ and s ∈ {0, 1} is the remainder of p− q modulo 2. We define

I(d, p, q) := ⌊p+ 1

2
⌋ + ⌊q + 1

2
⌋ + {−rs, 0, 1, . . . , m}.

As usual a + {b, c, . . . }, means {a + b, a + c, . . . }. We call I(d, p, q) the
interval of exponents for dot products of minimal vectors. (See 11.14 for an
explanation of this term.)

Example 11.13. Some examples:

I(3, p, p) =

{
{p, p+ 1} p even;

{p+ 1, p+ 2} p odd.
; I(3, p, p+ 1) = {p, p+ 1, p+ 2};

I(4, p, p) =

{
{p, p+ 1, p+ 2} p even;

{p+ 1, p+ 2, p+ 3} p odd.
; I(4, p, p+1) = {p+1, p+2, p+3}.
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Lemma 11.14. The set of integers

{(x, y)|x ∈ MinV ec(L[p]), y ∈MinV ec(L[q])}

is {0,±2k|k ∈ I(d, p, q)}; see 11.12.

Proof. Let m := ⌊d
2
⌋ and r := d− 2m ∈ {0, 1}.

First we take p = q = 0. Then for x ∈MinV ec(L), with respect to a basis
Ω ⊆ SF (x) an element y ∈ MinV ec(L[q]) has the form y = 2−t

∑
u∈A uεB,

where A ⊆ Ω is an affine subpace of Ω of dimension a ≤ d, and a satisfies
m = m−2t+a, or a = 2t. Then (x, y) = 0 or ±2m−t. Thus, the values of a, t,
m−t which occur are {0, 2, . . . 2m}, {0, 1, . . . , m}, {0, 1, . . . , m}, respectively.

Next, if p = 0 and q = −1, a similar discussion applies, but here
µ(L[−1]) = 1

2
µ(L), so we get the condition m−1 = m−2t+a, or a = 2t−1,

whence odd parity for a. Therefore, the values of a, t, m − t which occur
are {1, 3, . . . , d + r − 1}, {1, . . . , d −m}, {2m − d, 2m − d + 1, . . . , m − 1},
respectively.

Suppose that p = −1 and q = 0. We get the condition m = m−1−2t+a,
or a = 2t + 1 is odd. Therefore the values of a, t,m − t which occur are
{1, 3, . . . , d+ r− 1}, {0, 1, . . . , d−m− 1}, {2m− d+ 1, 2m− d+ 2, . . . , m},
respectively.

For the general case, just observe that I(d, p, q + 2) = 1 + I(d, p, q),
I(d, p+ 2, q) = 1 + I(d, p, q), and I(d, p+ 1, q + 1) = 1 + I(d, p, q). �

Lemma 11.15. Let G = AGL(d, 2) act naturally on the permutation module
A := FΩ

2 , where Ω := Fd2 with the natural G-action. Let B be the submodule
generated by the affine subspaces of codimension 1. For d ≥ 3, H1(G,B) = 0.

Proof. We have an exact sequence 0 → B → A → A/B → 0. From this,
the long exact cohomology sequence gives the exact sequence H0(G,A/B) →
H1(G,B) → H1(G,A). The right term is, by the Eckmann-Shapiro lemma,
isomorphic to H1(G0,F2), where G0

∼= GL(d, 2) is the stabilizer of 0 in G.
This is isomorphic to Hom(G0,F2), which is trivial for d ≥ 3. The module
A/B is indecomposable for AGL(d, 2), with a faithful module of dimension
d as the socle and quotient the trivial 1-dimensional module. Since the fixed
points are 0, H0(G,A/B) = 0. Exactness implies that H1(G,B) = 0. �

Theorem 11.16. Let d ≥ 2 and let F := SF (x), for a minimal vector
x ∈ L[p] (see 8.7). Also, define H := StabG

2d
(F ) (denoted NF in 11.3 (ii) ).
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(i) There exists a basis X contained in F and labeling of X by Fd2 so that
with respect to X, H is the monomial group ECX

:AGL(d, 2) (see 5.5), where
CX is the code generated by affine subspaces of codimension 2 in X and where
AGL(d, 2) is the natural subgroup of permutation matrices. The code CX has
parameters [2d, 1 + d+

(
d
2

)
, 2d−2].

(ii) Any two labelings as in (i) are conjugate by the action of H.
(iii) For fixed q, k, the sets A(L, x, q, k) (see 11.10) are the elements of

L[q] which are all linear combinations of X of the form 2−t
∑

x∈A xεB, where
A is an affine subpace of X of dimension a, p+a−2t = q and k = p+ ⌊d

2
⌋−

2t = ⌊d
2
⌋ + q − a and εB effects sign changes exactly at indices in B ⊆ A;

here B is in the code CA, which is spanned by all A∩S, where S is an affine
subspace of codimension 2 in X.

(iv) For a fixed integer a, the sets A(L, x, q, k) are nonempty exactly for
the indices k ∈ I(d, p, q) and they are the orbits of H on MinV ec(L[q]).

Proof. (i): We use notation of 7.2. We may and do assume that d ≥ 4.
There is by induction a basis X1 of V1 contained in F and labeling of X1 by
Ω1 := Fd−1

2 so that we get an identification of the stabilizer of SF (x) ∩ V1

with ECΩ1
:AGL(d− 1, 2), in analogous notation.

The frame is a double basis for the total eigenspace of E1, a maximal
elementary abelian subgroup of a lower group R1 on M1. Using our standard
diagonal notation 5.2, 10.2, take involution s = t12′ in dihedral group D
and the corresponding subgroup E12 of R12. Then s interchanges M1 and
M2. Let t ∈ D be the SSD involution associated to M1. Then E := 〈E1, t〉
is a maximal elementary abelian group in R and its total eigenlattice has
the frame F as a double basis. Identify Ω1 with a codimension 1 affine
subspace of Ω := Fd2. We define Ω2 to be the complement in Ω of Ω1. Choose
any vector v0 ∈ Ω2. Let v1 ∈ X1 be a frame vector labeled by 0 and let
v2 := vs1 ∈ X2 := SF (x) ∩ V2. Since the action of s is an isomorphism of
the transitive CH(s)-sets X1 and X2, the labeling on X1 transfers uniquely
to X2 and we translate this labeling to X2 via vector addition by v0 to make
a labeling of X2 by Ω2. The resulting labeling of X is uniquely determined
(depending on v0, s, X1).

From 15.3, we see that in G2d, a frame stabilizer contains a subgroup J
isomorphic to AGL(d, 2) in the normalizer of E which permutes a basis of
the eigenlattice. Its intersection, K, with a natural G2d−1 subgroup is an
analogous AGL(d−1, 2) subgroup. Let Z be the group generated by {±1V }.

There are just two J-invariant sets of Z-orbit representatives in F . When

36



one of them is restricted to K, we get two orbits. If X1 is one of these, the
other is Xs

1 or −Xs
1 . We replace s by −s if necessary to arrange for the other

to be Xs
1 . Then s ∈ J . The labeling on X1 now extends to all of X, which

is an H-invariant set.
(ii): Let ℓ, ℓ′ be two labelings for which H is the indicated monomial

group. We shall transform one to the other by action of H . Call the domain
of a labeling to be the points of SF (x) which get a label.

The stabilizer Hℓ in H of the labeling ℓ (equivalently, of its domain) is
a complement to the normal subgroup of sign changes. Such a subgroup
is isomorphic to AGL(d, 2). We first note that any two complements are
conjugate. This follows from a cohomology argument, 11.15. From this, we
may and do arrange for the two labelings to have the same domain, which
we call D. Since H acts 3-transitively and leaves invariant a unique Steiner
system with parameters [3, 4, 2d], addition of labels of vectors is determined
by H once an origin is chosen. Given an origin, a partial labeling of D by
a basis of Fd2 determines the labeling. Any two such choices lie in one orbit
under the action of H .

(iii) and (iv): It is clear from induction and the form of the types 1, 2
and 3 minimal vectors that a minimal vector has the zoop2 property 11.4
with respect to a given sultry frame. So, the nonempty sets A(L, x, q, k),
for k ∈ I(d, p, q), partition MinV ec(L[q]). It remains to show that they are
orbits for the frame stabilizer.

The action of AGL(d, 2) is transitive on affine subspaces of given dimen-
sion.

Write v = v1 + v2, where vi is the projection to Vi, i = 1, 2. Either
v = v1, v = v2 or v1 6= 0 6= v2 and there exist integers ti and affine subspaces
Ai of Xi and Bi ∈ CAi

so that vi = 2−ti
∑

y∈Ai
yεBi

. The zoop2 property
implies that t1 = t2 and dim(A1) = dim(A2). Call these common values t, a,
respectively. We assume that v1 6= 0 6= v2.

If there exists an affine hyperplane X ′ of X so that U := supp(v) ⊆ X ′,
we use induction since the v is a minimal vector in the sBW sublattice of
rank d− 1 supported by U . Suppose that no such X ′ exists. Then we are in
the third case v1 6= 0 6= v2 and we use notation v1 6= 0 6= v2 as above. Let X ′

be any affine hyperplane. We claim that |U∩X ′| = 1
2
|U |. Suppose otherwise.

Then, replacing X ′ by its complement, we may assume that |U ∩X ′| < 1
2
|U |.

Then the sublattice S of L supported by X ′ has a vector in S∗ of norm less
than 1

2
µ(L), a contradiction. The claim follows. We get a final contradiction

by using 4.6. �
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Remark 11.17. The results 11.16 (iii), (iv), were proved in [6]; see Théorème
I.5, Théorème II.2.

12 Orbits on norm 4 frames in LE8.

We give an application of our theory by giving a short proof that the Weyl
group of E8 has just four orbits on plain frames 6.15 of norm 4 vectors
in LE8

, equivalently, of D8
1-sublattices. This result can be deduced from a

classification of Z4 codes [8].

Definition 12.1. Let L be any lattice. If M is a sublattice, 2L ≤ M ≤ L,
the d-invariant of the frame F (relative to M) is the dimension of the span
of F +M/M . Also, we say two plain frames E,F are congruent if and only
if E +M = F +M .

The d-invariant of a plain frame F is the dimension of the subspace of
L/2L spanned by F + 2L, i.e., the relative d-invariant for M = 2L.

Remark 12.2. Now suppose that L = BW23 . The d-invariant of a frame is
a number between 1 and 4 since the image is not trivial and spans a totally
singular subspace.

Remark 12.3. It is easy to see that the Weyl group of E8 is transtive on
frames of roots. This follows from Witt’s theorem since the Weyl group
induces the full orthogonal group on LE8

modulo 2 and any frame of roots
spans an index 16 sublattice with all even inner products, hence corresponds
mod 2 to a totally isotropic subspaces with nonsingular vectors. The next
result refers to action of the proper subgroup G23 on frames of roots and
norm 4 vectors.

Proposition 12.4. (i) In the action of G23 on frames of norm 2 vectors,
there are four orbits. They are distinguished by their d-invariants relative to
the sultry twist L[1].

(ii) In the action of WE8
on frames of norm 4 vectors, there are four

orbits. They are distinguished by their d-invariants.

Proof. (i) It is easy to determine the orbits of G23 on frames of roots. They
are represented by the following vectors with respect to x1, . . . , x8, a standard
orthogonal basis of roots (see 5.4):

F1 : ±x1, . . . ,±x8.

38



F2 : ±xi, i 6∈ A; 1
2

∑
j∈A±xj , where A is a 4-set of indices representing a

Hamming codeword, and evenly many signs over A are minus.
F3 := ±xi, i ∈ B; 1

2
(00aaaa00), 1

2
(0000pqrs), 1

2
(00tu00cc), where B is a

2-set of indices (which we take to be {1, 2}) and the indicated partition of
the eight indices into 2-sets has the property that the union of any two of
them is a Hamming codeword. Also, a, b, c, p, q, r, s, t, u ∈ {±1} and where
p = −q, r = −s, t = −u.

F4 := ±x1 and ±1
2
(01111000),±1

2
(0001,−1, 110),±1

2
(0,−1, 0, 0, 1, 0, 1, 1).

The proof is an easy exercise with the action of the monomial group
H ∼= 27:AGL(3, 2), a subgroup of G23 , where the group of sign changes at
evenly many indices is indicated by 27. Since G23 is transitive on roots, an
orbit of such a frame has a member containing x1. We now restrict ourselves
to transformations by elements of H ≤ G23 . If the remaining members of
the frame are the xi, we are in case F1. If not, one can arrange for the next
member of the frame to be something of the form mentioned in case F2,
supported by a 4-set, A. If all remaining members of the frame are some
±xj or supported by the same 4-set, we are in the orbit of F2. If not, similar
reasoning brings us to case F3 or F4.

One must show that these frames represent different orbits, and that
is accomplished by showing that their images in L/L[1] span subspaces of
dimensions 1, 2, 3 and 4, respectively. (This is verified by Smith canonical
forms, easy to do by hand or with a software package like Maple): in our
notation, L[1] is the Z-span of the xi ± xj and 1

2
(x1 + · · · + x8). These

dimensions are the d-invariants of the original orbits.
(ii) Let Oi, for i = 1, . . . , r be the orbits. Since WE8

induces the full
orthogonal group on L/2L, any orbit has a representative contained in L[1]
since L[1]/2L is a maximal totally singular subspace. Now consider the
subgroup G23 , which is normalized by (the nonorthogonal transformation)
1 − f , where f is a fourvolution. The action of (1 − f) takes the set of
240 roots bijectively to the union of the nonempty sets Oi ∩ L[1], and this
correspondence preserves orbits of G23 . We are done by (i). �

39



13 Clean pictures, dirty pictures and transi-

tivity

We next prove transitivity results for certain kinds of sublattices. In partic-
ular, we can classify certain scaled embeddings of BW2k in BW2d , for certain
k ≤ d. See 15.4 for the clean and dirty terminology.

Theorem 13.1. Let L = BW2d , for d ≥ 4. There is a G2d-invariant bijection
between sublattices of L which are ssBW of rank 2d−1 and noncentral lower
involutions, via the SSD correspondence.

Proof. LetM be such a sublattice and t = tM the associated SSD involution.
Since t normalizes R and has trace 0, it is dirty (see Appendix A2), whence
there is an element g ∈ R so that [t, g] = −1. We may arrange for g to
be an involution. Then g interchanges M and N := L ∩M⊥, whence N is
a ssBW2d−1 . By 6.19, the condition det(L±(g)) = det(M) implies that L
is part of an X-quadruple (L,L+(g), L−(g), t), whence the classification 10.2
implies that t is lower. �

Remark 13.2. There are cases of sublattices X of BW2d of rank 2d−1 which
satisfy L/[X ⊥ X⊥] elementary abelian, but X is not isometric to a scaled
BW2d−1 . For d = 3, one can take X to be the sublattice spanned by a
root system of type A4

1 which is not contained in a D4 subsystem. Such a
sublattice is SSD and corresponds to a SSD involution of trace 0 which is
upper with respect to any conjugate of G23 which contains it. The noncentral
involutions of R3 have trace 0 and fixed point sublattice isometric to LD4

.

Theorem 13.3. Suppose that L = BW2d and that M,M ′ are sublattices
which are the fixed point lattices for clean isometries of order 2. If rank(M) =
rank(M ′), then there is an isometry g of L so that M ′ = Mg.

Proof. Such sublattices correspond to SSD involutions with nonzero traces.
Now use 15.8. �

The following is an application of 13.3.

Corollary 13.4. Suppose that d ≥ 5 is odd. Then in BW2d any two ssBW
sublattices of rank 2d−2 are in the same orbit under G2d.

Proof. Such sublattices must be SSD. �
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Definition 13.5. Let L = BW2d. A first generation sublattice of L is a
sublattice L1 so that there exists a sublattice L2 and an involution t so that
(L,L1, L2, t) ∈ X.

A chain of lattices L = L(0) ≥ L(1) ≥ · · · ≥ L(d) is a generational chain
if there exists an elementary abelian group E ≤ R and a chain of subspaces
E = E(d) > E(1) > · · · > E(0) = 〈−1〉 so that for each k, |E(k)| = 2k+1

and L(k) is the total eigenlattice of E(k), 6.8.
In each L(k), each orthogonally indecomposable summand is a ssBW

sublattice, all of common rank 2d−k if k ≤ d−2, and L(d−1) is a direct sum
of isometric rank 1 lattices. Call L(k) a kth generation sublattice and E(k)
its defining lower group. A sublattice is ancestral if it is a kth generation
sublattice, for some k.

Theorem 13.6. Let d ≥ 4. If L = BW2d and Z is a kth-generation sub-
lattice, k ≤ d − 2, then the stabilizer of Z in Aut(L), is just NAut(L)(E),
where E is its defining lower group, as in 13.5. It contains R2d and its im-
age in G2d/R2d is a maximal parabolic which modulo the unipotent radical
has shape GL(k, 2) × Ω+(2(d − k), 2). The kth generation sublattices are in
G2d-equivariant bijection with the elementary abelian subgroups of R2d which
contain Z(R2d).

Proof. The direct summands of Z realize all the linear characters of E
which do not have −1 in their kernel. Thus, Z determines E. By definition
of ancestral sublattices, E determines Z. �

Definition 13.7. A sublattice of L = BW2d is an k-generation ancestor
lookalike if it is an orthogonal direct sum of 2k copies of ssBW lattices, all of
rank 2d−k.

The transitivity situation for lookalikes is unclear. Here is a simple result.

Proposition 13.8. For L = BW23 , there is just one orbit of the automor-
phism group on third generation ancestral lookalike sublattices and there are
four orbits for G23. For BW24 , there are at least 4 orbits of the automorphism
group on third generation ancestral lookalike sublattices.

Proof. For the case L = BW23
∼= LE8

, this was covered in 12.4.
Now take the case L = BW24 . Let F be such a frame. Then F + L[1]

spans a totally singular subspace of L/L[1]. Since Aut(L) induces on L/L[1]
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its simple orthogonal group, we may assume that F lies in the ancestor
sublattice L1 + L2

∼=
√

2LE8
⊥

√
2LE8

.
Since norm 4 elements in L1+L2 are indecomposable, we have F = F1∪F2

where Fi := F ∩ Li. By using the ideas in the proof of 12.4, we find that
the dimension of the span of F2 + L1[1] in L1/L1[1] can be 1, 2, 3 or 4. We
conclude that the image of F in L/L[1] spans a space of dimension at most
8 and dimensions 1,2,3 and 4 actually do occur. This gives a lower bound of
4 on the number of orbits. �

14 The Ypsilanti lattices

We now set up a procedure for creating many isometry types of lattices
in sufficiently large dimensions divisible by 8. Here is a rough idea. We
take several isometric “good” lattices (indecomposable, high minimum norm,
elementary abelian discriminant group) and study overlattices L of their
orthogonal direct sum L1 ⊥ · · · ⊥ Ls. We consider conditions like X (3.3)
but without (e). A suitable concept of avoidance allows us to build many
lattices L with enough but not too many minimal vectors. We gain enough
control over the automorphism groups to get a fairly high lower bound on
the number of isometry types.

We start with a generalization of the maps f−1 where f is a fourvolution.

14.1 Michigan lattices and Washtenawizations

Definition 14.1. A 2-special endomorphism on a lattice L is an endomor-
phism p so that

(i) (xp, yp) = 2(x, y) for all x, y ∈ L;
(ii) Lp2 = 2L (thus, 1

2
p2 ∈ Aut(L));

(iii) there is an integer r so that L∗ = Lp−r (r is called the duality level).
If L has a 2-special endomorphism, call L a 2-special lattice. Call L

normalized if the duality level is 0 or 1.

Remark 14.2. A 2-special lattice is scale-isometric by a power of a 2-special
endomorphism to a normalized lattice.

Notation 14.3. We adapt notations used earlier and set L[k] := Lpk, for
k ∈ Z. When, CAut(L)(L[k]/L[k + 1]) is independent of k ∈ Z, we define
Lower(L) := CAut(L)(L/L[1]) and Upper(L) := StabAut(L)(L[−1])/Lower(L).
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Notation 14.4. The sublattice of the lattice L spanned by the minimal
vectors is denoted SMV (L). When L has a 2-special endomorphism, define
SMV (L,L[1]) := SMV (L) + L[1]/L[1] and define mvd(L,L[1]) to be the
dimension of SMV (L,L[1]). This number is called the mv-dimension and
is positive if L 6= 0. In case p or L[1] is understood, we write mvd(L) for
mvd(L,L[1]) and note that this invariant could depend on choice of 2-special
endomorphism.

Define the Washtenaw number or Washtenaw ratio of L 6= 0 to be the
ratio

Washtenaw(L) := 2mvdim(L)/rank(L) = mvdim(L)/dim(L/L[1]) ∈ (0, 1].

Definition 14.5. A Michigan lattice is a lattice M
(i) with a 2-special endomorphism, p;
(ii) SMV (M) has finite index in M ;
(iii) Aut(M) fixes each Mpk, k ∈ Z;
(iv) g ∈ Aut(M) is trivial on Mpk/Mpk+1 if and only if g is trivial on

Mpℓ/Mpℓ+1, for all k, ℓ ∈ Z.

Note that a Michigan lattice L is indecomposable if SMV (L) is indecom-
posable.

Definition 14.6. We are given a normalized Michigan lattice M such that
SMV (M) is indecomposable. Let t ≥ 3 be an integer.

Let M1, . . . ,M2t denote pairwise orthogonal copies of M , identified by
isometries ψi : M →Mi, with 2-special endomorphism pi corresponding to p
by ψi. The direct sum has a 2-special endomorphism, q, which is the direct
sum of the pi.

A degree t Washtenawization of M is a lattice W contained in Q⊗ (M1 ⊥
· · · ⊥M2t) so that

(i) W contains (M1 ⊥ · · · ⊥ M2t)[1 − r] and is a sublattice of (M1 ⊥
· · · ⊥ M2t)[−r]; (r is the duality level of M) and the quotient M/(M1 ⊥
· · · ⊥M2t)[1 − r] is elementary abelian of dimension 2t−2 rank(M);

(ii) For all i, W ∩ (Q ⊗Mi) = Mi[1 − r];
(iii) µ(W ) = 21−rµ(M);

(iv) SMV (W ) =
∑2t

i=1 SMV (Mi) andWashtenaw(W ) = 1
2
Washtenaw(M);

(v) Aut(W ) has the form [
∏2t

i=1 Lower(Mi)].[Upper(M)×Aut(C)], where
C is an indecomposable (4.8) self orthogonal doubly even binary code of
length 2t; furthermore, Aut(M) embeds in Aut(W ) by diagonal action.
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A minimal Washtenawization is a degree 3 Washtenawization, using the
extended Hamming code (which is essentially the only choice here). It is
unique up to isometry.

Remark 14.7. By 5.1, Washtenawizations are indecomposable, since the
code is indecomposable. In the notation of 14.6, the duality level of W is
1 − r and |Upper(W )| divides |Upper(M)|(2t!). Also, Aut(W ) permutes the
set {M1, . . . ,M2t}.
Proposition 14.8. For all t ≥ 3, degree t Washtenawizations exist.

Proof. Let M be a normalized Michigan lattice. Take the lattice W between
(M1 ⊥ · · · ⊥ M2t)[1 − r] and (M1 ⊥ · · · ⊥ M2t)[−r] which corresponds to
some indecomposable doubly even self orthogonal code, C (for example, see
4.9). Since nonzero code words have weight at least 4, the minimal vectors
of W lie in SMV ((M1 ⊥ · · · ⊥ M2t)[1 − r]) (use 5.8).

Since q acts diagonally as p on (M1 ⊥ · · · ⊥ M2t)[1 − r], the defini-
tion of W implies that the image of SMV ((M1 ⊥ · · · ⊥ M2t)[1 − r]) in
W/Wp has dimension 2t−1mvdim(M). This implies that Washtenaw(W ) =
1
2
Washtenaw(M).

Since Aut(W ) permutes the minimal vectors, it permutes the indecom-
posable direct summands of the lattice they generate, which are just the 2t

SMV (Mi), which in turn define the Mi as the summands of W (as abelian
groups) which contain the SMV (Mi). It follows that Aut(W ) is contained in
a natural wreath product Aut(Mi) ≀ Sym2t which permutes {M1, . . . ,M2t}.
Obviously, Aut(W ) contains a group G0 of the form indicated in 14.6(v).
Now, use 5.8(ii) and the fact that Aut(M) leaves each twist M [k] invariant.
�

14.2 Overlattices of direct sums of 2-special lattices

Notation 14.9. Throughout this section, M is a normalized 2-special lat-
tice (14.1) and M1,M2 are pairwise orthogonal lattices isometric to M with
duality level r ∈ {0, 1}. Let t be an isometry of order 2 which interchanges
them.

Definition 14.10. The ith admissible component group Ki is the full general
linear group on Mi[−r]/Mi[1− r] when the duality level of M is 0 and when
the duality level of M is 1, it is the full orthogonal group on the nonsingular
quadratic space Mi[−r]/Mi[1 − r], x+M [1 − r] 7→ 2r−1(x, x)(mod 2).
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Notation 14.11. Let d ≥ 5 be an integer and let M1,M2 be isometric
normalized 2-special lattices of ranks 2d−1 and duality level 1. Set Vi :=
Q ⊗Mi. Let Y := Y(M1[1 − r],M2[1 − r]) denote the set of even integral
lattices M which contain M1[1−r] ⊥M2[1−r] and satisfy M∩Vi = Mi[1−r]
for i = 1, 2 and whose projection to Vi is Mi[−r]. This is a set of rank 2d

unimodular lattices. (Note differences with 10.1, which results in unimodular
lattices for ranks 2d, d odd only. )

Remark 14.12. A member L of Y is determined by an isomorphism of vector
spaces ζ : M1[−r]/M1[1 − r] → M2[−r]/M2[1 − r], namely L/(M1[1 − r] +
M2[1−r]) is just the diagonal in the identification of the two Mi[−r]/Mi[1−r]
based on ζ . We may write L/(M1[1− r] +M2[1− r]) = {(x+M1[1− r], (x+
M1[1 − r])ζ)|x ∈M1[1 − r]}.

Conversely, given a linear isomorphism ζ , we get an L ∈ Y by taking the
diagonal as above provided (a) when d−1 is odd, no condition; (b) when d−1
is even, ζ is an isometry of nonsingular quadratic spaces M1[−r]/M1[1−r] →
M2[−r]/M2[1 − r].

The reason for the isometry condition in (b) is that the nonsingular
cosets (respectively, the singular cosets) of the two Mi[−r]/Mi[1 − r] must
be matched to create a diagonal which gives an even lattice L. In (a), since
the two Mi[−r] are even integral lattices, any matching by a linear isomor-
phism results in an element of Y, whence no conditions are demanded. The
requirement in (b) of taking M1[−r]/M1[1 − r] to M2[−r]/M2[1 − r] comes
from the definition of Y, 14.11.

Notation 14.13. We use the notations L 7→ ζ(L), ζ 7→ L(ζ) to express the
bijection between Y and such isomorphisms.

Such ζ are in bijection with K1 and with K2 (see 14.10) by ζ 7→ ζi ∈ Ki,
where the latter are defined by the formulas ζ : x+M1[1−r] 7→ (xt+M2[1−
r])ζ2 = yt + M2, where y + M2 = (x + M1)

ζ1t, where t is as in 14.9. Call ζi
the Ki-component of ζ , or of L = L(ζ).

14.3 Avoidance

Definition 14.14. We say that two subspaces of a vector space avoid each
other if their intersection is 0. If g : V → V ′ is an invertible linear transfor-
mation, W ≤ V and W ′ ≤ V ′, we say that g is a (W,W ′)-avoiding map if
W g ∩W ′ = 0. Let A(W1,W2) be the set of avoiding maps.
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We need some terminology for discussing asymptotic behavior.

Notation 14.15. Suppose that f(x) is a real-valued function on (0,∞). The
dominant term in f(x) (abbreviated DT (f(x)) is the expression of the form
a0log2(x)

a12a2xxa3 which is asymptotic to f(x) (the ai are constants). We
may indicate dependence on the variable x by DTx. (This definition applies
to a limited family of real-valued functions, but suffices for our purposes.)

Similarly, if f is as above, we define the dominant term of the logarithm
(DTL or DTLx) of 2f(x) to be DT (f(x)). For example,

DTL(2(0.43)log2(2x−3)23x−4+22x−log2(x+1)5x3−log2(x)7(x2+1)) = 0.43
16

log2(x)2
3x−4.

Proposition 14.16. Suppose that a ≤ b are positive integers. Suppose that
V := F2b

2 has a maximal Witt index nonsingular quadratic form and that W1

and W2 are two a-dimensional totally singular subspaces. We set q := a
b

and
think of q as a constant and a as a function of b.

(i) Let H be the stabilizer in O(V ) of W1. Then,

DTLb(|H|) = DTb(
1
2
a(3a− 1) + 2(b− a)b) = b2(2 − 2q + 3

2
q2).

(ii) For an integer k, let A(W1,W2; k) be the set of avoiding maps as in
14.14 so that dim(W g

1 ∩W⊥
2 ) = k. Then A(W1,W2; k) is nonempty precisely

for k = 0, 1, . . . , min{a, b−a} and for each such k, A(W1,W2; k) is a regular
orbit for the action of H.

Proof. (i): We have DTLk(|Ω+(2k, 2)|) = 2k2 − k. We may assume W1 =
W2. Let H be the subgroup of the orthogonal group which fixes W1 globally.
It follows from 15.1 thatDTL(|H|) is the DTL of 1

2
a(3a−1)+2(b−a)b−(b−a).

(ii) : By Witt’s theorem, two nonavoiding maps g, g′ are in the same
H-orbit if the dimensions of the images of W1 under g, g′ intersect W⊥

1 in
spaces of the same dimensions. All H-orbits are regular. For a nonempty
A(W1,W2; k), we have k ≤ dim(W1) = a and since the image of an avoiding
W1 in V/W⊥

2 has dimension at most a = dim(V/W⊥
2 ), we have k + a =

k + dim(W2) ≤ b, the dimension of any maximal totally isotropic subspace.
The value k = min{a, b− a} can be achieved. �

Corollary 14.17. We use the notations of 14.16 and assume that q ≤ 1
2
.

Then

DTLb(|A(W1,W2)|) = υ(q)log2(b)b
2,where υ(q) := (2 − 2q + 3

2
q2).

Proof. Note that q ≤ 1
2

means a = min{a, b− a} in 14.16. �
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14.4 Down Washtenaw Avenue to Ypsilanti

We next create large families of lattices in dimensions 2d >> 0.

Definition 14.18. LetW be a normalized Michigan lattice which has duality
level r = 1 and Washtenaw ratio q ≤ 1

2
.

Take orthogonal copiesM1,M2 ofW and consider the set Y := Y(M1,M2)
as in 14.11. Consider the associated maps ζ(L), L ∈ Y (see 14.13) which are
avoiding maps 14.14 for the subspaces SMV (M1[−1],M1), SMV (M2[−1],M2)
of M1[−1]/M1, M2[−1]/M2, respectively. The corresponding lattices form a
subset Yav(M1,M2) of Y(M1,M2) in the notation of 14.11. Their ranks are
2 rank(W ). They are called Ypsilanti lattices. Let IsomTypes(M1,M2) be
the set of isometry types of lattices in Yav(M1,M2).

When W is a Washtenawization of a BW lattice, the Ypsilanti lattices of
rank 2d = 2 rank(W ) are called the Ypsilanti cousins of BW2d .

Lemma 14.19. We use the notations of 14.18.
(i) If N ∈ Yav(M1,M2), SMV (N) = SMV (M1) ⊥ SMV (M2).
(ii) N ∈ Yav(M1,M2) is indecomposable.

Proof. (i) Obviously, µ(N) ≥ µ(Mi), i = 1, 2. Consider a vector x = x1 +
x2 ∈ N \ (M1 ⊥M2). Then the xi have norms at least µ(Mi[−1]) = 1

2
µ(Mi).

For (x, x) to equal µ(Mi), we need xi to be a minimal vector of Mi[−1] for
i = 1, 2. This is not the case since N was defined with an avoiding map.

(ii) Use 5.9. �

Lemma 14.20. Suppose that we are given q = 2−j for some j > 0. For all
k ≥ 5 + 3j, there exists a Michigan lattice W (k) so that rank(W (k)) = 2k,
Washtenaw(W (k)) = q and the duality level of W (k) is 1. We may also

arrange for µ(W (k)) = 21−r+⌊ j

2
⌋+⌊ e

2
⌋, where e = k − 3j if k is even and

e = k − 3j − 1 if k is odd.

Proof. If we start with BW2e and perform the minimal Washtenawization
procedure s times, we get a lattice W (e, s) of rank 2e+3s. We may take a
degree 4 Washtenawization to W (e, s) and get a lattice W ′(e, s + 1) of rank
2e+3s+4.

Each Washtenawization changes duality level. We define W (k) according
to the following cases. When k is even, we require k − 3j ≥ 4, which means
k is at least 8. When k is odd, we require k − 3j − 1 ≥ 4, which means that
k is at least 9.
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W (k) :=

{
W (k − 3j, j) k even;

W ′(k − 3j − 1, j) k odd.
�

Definition 14.21. We call a sequence of lattices as in 14.20 the j-Washtenaw
series, for the fixed ratio q = 2−j. It starts at rank 25+3j . The isometry types
of certain members of the series depend on choice of indecomposable doubly
even code of length 16. Ypsilanti cousins associated to such series are called
Ypsilanti j-cousins. The set of such isometry types is denoted Y psi(2d, j).

Lemma 14.22. We use the notations of 14.18, 14.20 and let W (k) be the
Washtenaw series.

(i) If N and N ′ are two cousins of rank 2d, Isom(N,N ′) is contained in
the group G0(e, h) of orthogonal transformations which stabilize L1 ⊥ · · · ⊥
L2h, the indecomposable direct summands of SMV (N) = SMV (N ′) (in fact,
the Li are the pairwise isometric scaled Barnes-Wall lattices, of rank 2e, on
which the Washtenawizations M1,M2 were based; the notation means d =
k + 1 = e+ h, wih h = 3j or 3j + 1).

(ii) DTLd(|G0(e, h)|) is bounded above by a constant times d2.

Proof. (i) Given N,N ′ ∈ Yav(M1,M2), an isometry of N to N ′ takes
SMV (N) to SMV (N ′). Both of these equal SMV (M1 ⊥M2).

(ii) This follows from DTLf(|Ω+(2f, 2)|) = 2f 2 and boundedness of h. �

Notation 14.23. When W (k) runs through the j-Washtenaw series 14.21,
we let Υ(2d, j) := |Y psi(2d, j)|.
Lemma 14.24. Υ(2d, j) ≥ |Yav(M1,M2)|/|G0(e, h)|, whence
DTLd(Υ(2d, j)) ≥ 1

16
υ(2−j)d 22d, as in 14.17.

Proof. In 14.17, take b = 2d−2, because the admissible component group
14.10 is O+(2d−1, 2) since the duality level has been arranged to be 1. Then
use 14.22(ii) and 14.23.�

Remark 14.25. For a fixed large value of d, we can make the families
Y psi(2d, j), q = 2−j, for all 1 ≤ j ≤ ⌊d−5

3
⌋. This would make roughly

d/3 times as many as one of the Y psi(2d, j), so would not increase the DTL.

We summarize our counting in dimensions 2d.

Theorem 14.26. For any j > 0, the number of Ypsilanti lattices in di-
mension 2d has DTL at least 1

16
υ(2−j)d 22d. In particular, the number of

indecomposable even unimodular lattices in dimensions 2d has DTL at least
c d 22d, for any c ∈ (0, 1

8
).
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Remark 14.27. With a bit more work, we could define lattices like Ypsilanti
cousins for d < 9, though we would not expect them to represent more than
a fraction of mass(2d) isometry types. In dimension 32, the mass formula
gives value about 107 and the number of isometry types (still not known) has
been bounded below by about 1010 (see [22]).

14.5 From dimensions 2d to arbitrary dimensions

Notation 14.28. For an integer n > 0 divisible by 8, let 2d be the largest
power of 2 less than or equal to n. Fix some q−j, j > 0. Let Y psi(n, j) be
the set of isometry types of even integral unimodular lattices which contain
a Ypsilanti j-cousin of rank 2d as an orthogonal direct summand. Clearly,
Υ(n, j) := |Y psi(n, j)| ≥ Υ(2d, j).

Corollary 14.29. We use the notation of 14.28. For any constant c ∈
[0, 1

32
), we take j > 0 so that q = 2−j satisfies 2 − q + 3

2
q2 > 64c.

Then log2(Υ(n, j)|) ≥ c log2(n)n2.

Proof. Take the integer d which satisfies 2d ≤ n < 2d+1. Then d < log2(n) ≤
d + 1 and 2d > n

2
. We have Υ(n, j)| ≥ Υ(2d, j) and DTL(Υ(n, j)|) ≥

DTL(Υ(2d, j)) > 4c d 2d ≥ 4c(log2(n)−1)(n
2
)2 whose DT is at least c log2(n)n2.

�

14.6 Number of Ypsilanti cousins compared with the

mass formula

Notation 14.30. We follow the notations of [29], pp. 54, 90, except we write

mass(n) instead of “Mn”. Stirling’s formula (n! ∼ nn+ 1

2 e−n(2π)
1

2 ) implies
that DTL(n!) = log2(n)n. Let Bj be the jth Bernoulli number. Let n ∈ 8Z,
k := n

8
.

Proposition 14.31. DTLn(mass(n)) = 1
4
log2(n)n2.

Proof. We have mass(n) = B2k

8k

∏4k−1
j=1

Bj

4j
. Because ζ(2j) ∈ (1, 2) for

all j ≥ 1, the formula Bj = 2ζ(2j).(2j)!/(2π)2j shows that DTLj(Bj) =
DT (log2(2j)2j).

We have

log2(mass(n)) = log2(B2k)+

4k−1∑

j=1

log2(Bj)−(8k+1)−log2((4k−1)!)−log2(k).
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SinceDTLk(B2k) = DTLk((4k)!),DTLn(mass(n)) = DTn(
∑4k−1

j=1 log2(2j)2j).
The latter summation can be thought of as Riemann sums, which can be esti-
mated with integrals (think of

∫
2x ln(2x) dx =

∫
2x ln(x) dx+ln(2)

∫
2x dx =

x2 ln(x)− 1
2
x2+ ln(2)x2+c, which has dominant term x2 ln(x)). We conclude

that DTLn(mass(n)) = DTn(log2(8k)(4k)
2) = 1

4
log2(n)n2. �

Proposition 14.32. For positive integers n, q, define A(n, q) :=
∑

i≥0⌊ n
qi(q−1)

⌋
and let P be the set of prime numbers at most n+1. Set f(n) :=

∏
q∈P q

A(n,q).
Then a finite subgroup of GL(n,Q) has order dividing f(n).

Proof. This is a result of Minkowski [26]. See the discussions in exercises
for Section 7 of [5]. �

Lemma 14.33. DTLn(f(n)) = n log2(n).

Proof. Well known? A proof may be deduced from [27], Th. 8.8(b), p. 369.
�

Remark 14.34. The DTL n log2(n) is small compared to DTL(mass(n)).
It follows that the DTL of the number of isometry types of rank n even
unimodular lattices is the same as that of DTL(mass(n)).

We summarize:

Corollary 14.35. For any a ∈ (0, 1
8
), there is an integer j so that DTLn(Υ(n, j)) ≥

a·DTL(mass(n)). Furthermore, when n is a power of 2, and b ∈ (0, 1
2
), there

is an integer j so that DTLn(Υ(n, j)) ≥ b ·DTL(mass(n)).

Remark 14.36. We conclude with some numerical comparisions.
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Asymptotics for Υ(2d, j), Υ(n, j)| and mass(n).

j q = 2−j υ(q) = constant coefficient of Lower bound for
16DTL(Υ(2d, j))(see 14.24) DTL(Υ(2d, j)|)/DTL(mass(2d))

1 .5000000000 1.375000000 .3437500000
2 .2500000000 1.593750000 .3984375000
3 .1250000000 1.773437500 .4433593750
4 .06250000000 1.880859375 .4702148438
5 .03125000000 1.938964844 .4847412109
6 .01562500000 1.969116211 .4922790527
7 .007812500000 1.984466553 .4961166382
8 .003906250000 1.992210388 .4980525970
9 .001953125000 1.996099472 .4990248680
10 .0009765625000 1.998048306 .4995120764

15 Appendices

15.1 A1. Group orders

Proposition 15.1. (i) For q a power of 2, the order of Ω+(2n, q) is qn(n−1)(qn−
1)

∏n−1
i=1 (q2i − 1).

(ii) The stabilizer in Ω+(2n, q) of an isotropic point has shape q2(n−1):[Ω+(2(n−
1), q) × q − 1].

(iii) The stabilizer in Ω+(2n, q) of a maximal totally singular subspace

has shape q(
n

2):GL(n, q), and this is a maximal subgroup.
(iii) The stabilizer in Ω+(2n, q) of a totally singular subspace of dimension

m < n has the form RL, where the unipotent radical has order 2(m

2 )+2m(n−m)

and L ∼= Ω+(2(n−m), 2) ×GL(m, 2). These are maximal subgroups.

Proof. These are well-known properties of the orthogonal groups. Proofs
may be obtained from [7, 13]. �

15.2 A2. Aut0(21+2d
ε ), Out0(21+2d

ε ) and BRW 0(2d, ε).

Basic theory of extraspecial groups extended upwards by their outer auto-
morphism group has been developed in several places. We shall use [15, 17,
12, 16, 21, 2, 3, 4].
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Notation 15.2. Let R ∼= 21+2d
ε be an extraspecial group which is a subgroup

of G := GL(2d,F), for a field F of characteristic 0. Let N := NG(R) ∼=
F×.22dOε(2d, 2). The Bolt-Room-Wall group is a subgroup of this of the form
21+2d
ε .Ωε(2d, 2). If d ≥ 3 or d = 2, ε = −, N ′ has this property. For the

excluded parameters, we take a suitable subgroup of such a group for larger
d. We denote this group by BRW 0(2d,+) or D(d). It is uniquely determined
up to conjugacy in G by its isomorphism type if d ≥ 3 or d = 2, ε = −. It is
conjugate to a subgroup of GL(2d,Q) if ε = +. Let R = R2d denote O2(G2d).
We call Rd the lower group of BRW 0(2d,+) and call Gd/Rd the upper group
of BRW 0(2d,+).

For g ∈ N , define CR mod R′(g) := {x ∈ R|[x, g] ∈ R′}, B(g) := Z(CR mod R′(g))
and let A(g) be some subgroup of CR mod R′(g) which contains R′ and comple-
ments B(g) modulo R′, i.e., CR mod R′(g) = A(g)B(g) and A(g)∩B(g) = R′.
Thus, A(g) is extraspecial or cyclic of order 2. Define c(d) := dim(CR/R′(g)),
a(g) := 1

2
|A(g)/R′|, b(g) := 1

2
|B(g)/R′|. Then c(d) = 2a(d) + 2b(d).

Corollary 15.3. Let L be any Z-lattice invariant under H := BRW 0(2d,+).
Then H contains a subgroup K ∼= AGL(d, 2) and L has a linearly indepen-
dent set of vectors {xi|i ∈ Ω} so that there exists and identification of Ω
with Fd2 which makes the Z-span of {xi|i ∈ Ω} a permutation module for
AGL(d, 2) on Ω.

Proof. In H , let E,F be maximal elementary abelian subgroups and let
K be their common normalizer. It satisfies K/R ∼= GL(d, 2). Now, let
z generate Z(R) and let E1 complement 〈z〉 in E and F1 complement 〈z〉
in F . The action of K on the hyperplanes of E which complement Z(R)
satisfies NK(E1)F = K,NF (E1) = Z(R). Now consider the action of NK(E1)
on the hyperplanes of F which complement Z(R). We have that K1 :=
NK(E1) ∩ NK(F1) covers NK(E1)/E. Therefore, K1/Z(R) ∼= GL(d, 2). Let
K0 be the subgroup of index 2 which acts trivially on the fixed points on
L of E1, a rank 1 lattice. So, K0

∼= GL(d, 2). Let x be a basis element of
this fixed point lattice. Then the semidirect product F1:K0 is isomorphic to
AGL(d, 2) and {xg|g ∈ F1} is a permutation basis of its Z-span. �

Definition 15.4. We use the notation of 15.2. An element x ∈ N is dirty
if there exists g so that [x, g] = xz, where z is an element of order 2 in the
center. If g can be chosen to be of order 2, call x really dirty or extra dirty.
If x is not dirty, call x clean.
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Lemma 15.5. Let F2d
2 be equipped with a nondegenerate quadratic form

with maximal Witt index. The set of maximal totally singular subspaces
has two orbits under Ω+(2d, 2) and these are interchanged by the elements of
O+(2d, 2) outside Ω+(2d, 2).

Proof. This is surely well known. For a proof, see [13]. �

Theorem 15.6. We use the notation of 15.2, 15.4. Let g ∈ N . Then
Tr(g) = 0 if and only if g is dirty. Assume now that g is clean and has
finite order. Then Tr(g) = ±2a(g)+b(g)η, where η is a root of unity. If
g ∈ BRW (d,+), we may take η = 1. Furthermore, every coset of R in
BRW (d, ε) contains a clean element and if g is clean, the set of clean ele-
ments in Rg is just gR ∪ −gR.

Proof. [17]. �

Lemma 15.7. Suppose that t, u are involutions in Ω+(2d, 2), for d ≥ 2.
Suppose that their commutators on the natural module W := F2d

2 are totally
singular subspaces of the same dimension, e. Suppose that e < d or that
e = d and that [W, t] and [W,u] are in the same orbit under Ω+(2d, 2). Then
t and u are conjugate.

Proof. Induction on d. �

Corollary 15.8. Suppose that t, u are clean involutions in H with Tr(t) =
Tr(u) 6= 0. Then t and u are conjugate in G2d.

Proof. We may assume that t, u are noncentral. These involutions are not
lower and have the same dimension of fixed points on R/R′ ∼= F2d

2 . Let
T, U ≤ R be their respective centralizers in R. Since both t, u are clean,
[R, t] and [R, u] are elementary abelian subgroups of T, U , respectively. From
15.7, we deduce that Rt and Ru are conjugate in G2d . We may assume that
Rt = Ru. Now use 15.6 to deduce that t is R-conjugate to u or −u. The
trace condition implies that t is conjugate to u. �

Remark 15.9. The extension 1 → R2d → G2d → Ω+(2d, 2) → 1 is nonsplit
for d ≥ 4. This was proved first in [3], then later in [6] and in [15] (for both
kinds of extraspecial groups, though with an error for d = 3; see [12] for a
correction). The article [15] gives a sufficient condition for a subextension
1 → R2d → H → H/R2d → 1 to be split, and there are interesting appli-
cations, e.g. to the centralizer of a 2-central involution in the Monster. A
general discussion of exceptional cohomology in simple group theory is in
[16].
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15.3 A3. Indecomposable integral representations for

a group of order 2

Proposition 15.10. Let G be a cyclic group of order 2 and M a finitely
generated Z-freeG-module. ThenM is a direct sum of modules isomorphic to
Z[G], the group algebra; the Z-rank 1 trivial module; the Z-rank 1 nontrivial
G-module.

Proof. [9], Section 74. The case where G has order any prime number is
treated. �
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