Fibonacci connection between Huffman codes and Wythoff array

Alex Vinokur
Holon, Israel
alexvn@barak-online.net
alex.vinokur@gmail.com

Abstract

A non-decreasing sequence of positive integer weights $P=\left\{p_{1}, p_{2}, \ldots, p_{\mathrm{n}}\right\}$ is called k-ordered if an intermediate sequence of weights produced by Huffman algorithm for initial sequence P on i-th step satisfy the following conditions: $p_{2}^{(i)}=p_{3}^{(i)}, i=\overline{0, k} ; p_{2}^{(i)}<p_{3}^{(i)}, i=\overline{k+1, n-3}$. Let T be a binary tree of size n and $M=M(T)$ be a set of such sequences of positive integer weights that $\forall P \in M$ the tree T is the Huffman tree of $P(|P|=n)$. A sequence $P_{\min }$ of n positive integer weights is called a minimizing sequence of the binary tree T in the class M ($P_{\text {min }} \in M$) if $P_{\text {min }}$ produces the minimal Huffman cost of the tree T over all sequences from M, i.e., $E\left(T, P_{\min }\right) \leq E(T, P) \forall P \in M$. Fibonacci related connection between minimizing k-ordered sequences of the maximum height Huffman tree and the Wythoff array [Sloane, A035513] has been proved. Let $M_{n, k}(k=\overline{0, n-3})$ denote the set of all k-ordered sequences of size n for which the Huffman tree has maximum height. Let $F(i)$ denote i-th Fibonacci number. Theorem: A minimizing k-ordered sequence of the maximum height Huffman tree in the class $M_{n, k}$ $(k=\overline{0, n-3})$ is $\operatorname{Pmin}_{n, k}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, where $p_{1}=1, p_{2}=F(1), \ldots, p_{k+2}=F(k+1)$, $p_{k+3}=F(k+2)=w_{F(k+2), 0}, p_{k+4}=w_{F(k+2), 1}, p_{k+5}=w_{F(k+2), 2}, \ldots, p_{n}=w_{F(k+2), n-k-3}, w_{i, j}$ is (i, j)-th element of the Wythoff array■. The cost of Huffman trees for those sequences has been computed. Several examples of minimizing ordered sequences for Huffman codes are shown.

1. Main Conceptions and Terminology
 1.1. Binary Trees

A (strictly) binary tree is an oriented ordered tree where each nonleaf node has exactly two children (siblings). A binary tree is called elongated if at least one of any two sibling nodes is a leaf. An elongated binary tree of size n has maximum height among all binary trees of size n. An elongated binary tree is called left-sided if the right node in each pair of sibling nodes is a leaf.

A binary tree is called labeled if a certain positive integer (weight) is set in correspondence with each leaf.

Size of a tree is the total number of leaves of this tree.

Definition. Let T be a binary tree with positive weights $P=\left\{p_{1}, . ., p_{n}\right\}$ at its leaf nodes. The weighted external path length of T is

$$
E(T, P)=\sum_{i=1}^{n} l_{i} p_{i}
$$

where l_{i} is the length of the path from the root to leaf i.

1.2. Huffman Algorithm

Problem definition. Given a sequence of n positive weights $P=\left\{p_{1}, \ldots, p_{n}\right\}$. The problem is to find binary tree $T_{\min }$ with n leaves labeled p_{1}, \ldots, p_{n} that has minimum weighted external path length over all possible binary trees of size n with the same sequence of leaf weights. $T_{\text {min }}$ is called the Huffman tree of the sequence $P ; E\left(T, P_{\min }\right)$ is called the Huffman cost of the tree T.

The problem was solved by Huffman algorithm [1]. That algorithm builds $T_{\min }$ in which each leaf (weight) is associated with a (prefix free) codeword in alphabet $\{0,1\}$.

Note. A code is called a prefix (free) code if no codeword is a prefix of another one.
Algorithm description (in the reference to the discussed issue).
Algorithm input. A non-decreasing sequence of positive weights

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\left(p_{k} \leq p_{k+1} ; k=\overline{1, n-1}\right) .
$$

Algorithm output. The sum of all the weights.
The algorithm is performed in n-1 steps. i-th step $(i=\overline{1, n-1})$ is as follows.

- i-th step input. A non-decreasing sequence of weights of size $n-i+1$.

$$
P^{(i-1)}=\left\{p_{1}^{(i-1)}, p_{2}^{(i-1)}, \ldots, p_{n-i+1}^{(i-1)}\right\}\left(p_{k}^{(i-1)} \leq p_{k+1}^{(i-1)} ; k=\overline{1, n-i}\right) ;\left|P^{(i-1)}\right|=n-i+1 .
$$

- $\quad i$-th step method. Build a sequence $\left\{p_{1}^{(i-1)}+p_{2}^{(i-1)}, p_{3}^{(i-1)}, \ldots, p_{n-i+1}^{(i-1)}\right\}$ and sort its.
- i-th step output. A non-decreasing sequence of weights of size $n-i$.

$$
P^{(i)}=\left\{p_{1}^{(i)}, p_{2}^{(i)}, \ldots, p_{n-i}^{(i)}\right\}\left(p_{k}^{(i)} \leq p_{k+1}^{(i)} ; k=\overline{1, n-i-1}\right) ;\left|P^{(i)}\right|=n-i .
$$

Note 1. $P^{(0)}$ is an input of Huffman algorithm, i.e.,

$$
\begin{equation*}
p_{k}^{(0)}=p_{k}(k=\overline{1, n}) . \tag{1}
\end{equation*}
$$

Note 2. If an input sequence on i-th step(s) of the algorithm satisfies condition

$$
p_{2}^{(i)}=p_{3}^{(i)}(0 \leq i \leq n-3),
$$

then several Huffman trees can result from initial sequence P of weights, but the weighted external path length is the same in all these trees.

Let $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ be a sequence of size n for which the binary Huffman tree is elongated. Then according to Huffman algorithm

$$
\begin{equation*}
p_{1}^{(i)}+p_{2}^{(i)} \leq p_{4}^{(i)}, i=\overline{0, n-3} . \tag{2}
\end{equation*}
$$

1.3. Wythoff Array

The Wythoff array is shown below, to the right of the vertical line. It has many interesting properties [2, 3, 4].

| Row number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Note |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 Fibonacci numbers |
| Fib[2] | 1 | 3 | 4 | 7 | 11 | 18 | 29 | 47 | 76 | 123 | 199 | 322 | 521 Lucas numbers |
| $\operatorname{Fib}[3]$ | 2 | 4 | 6 | 10 | 16 | 26 | 42 | 68 | 110 | 178 | 288 | 466 | 754 |
| Fib[4] | 3 | 6 | 9 | 15 | 24 | 39 | 63 | 102 | 165 | 267 | 432 | 699 | 1131 |
| | 4 | 8 | 12 | 20 | 32 | 52 | 84 | 136 | 220 | 356 | 576 | 932 | 1508 |
| Fib[5] | 5 | 9 | 14 | 23 | 37 | 60 | 97 | 157 | 254 | 411 | 665 | 1076 | 1741 |
| | 6 | 11 | 17 | 28 | 45 | 73 | 118 | 191 | 309 | 500 | 809 | 1309 | 2118 |
| | 7 | 12 | 19 | 31 | 50 | 81 | 131 | 212 | 343 | 555 | 898 | 1453 | 2351 |
| Fib[6] | 8 | 14 | 22 | 36 | 58 | 94 | 152 | 246 | 398 | 644 | 1042 | 1686 | 2728 |
| | 9 | 16 | 25 | 41 | 66 | 107 | 173 | 280 | 453 | 733 | 1186 | 1919 | 3105 |
| | 10 | 17 | 27 | 44 | 71 | 115 | 186 | 301 | 487 | 788 | 1275 | 2063 | 3338 |
| | 11 | 19 | 30 | 49 | 79 | 128 | 207 | 335 | 542 | 877 | 1419 | 2296 | 3715 |

The two columns to the left of the vertical line consist respectively of the nonnegative integers n, and the lower Wythoff sequence whose n-th term is $\left[(n+1)^{*} \varphi\right]$, where $\varphi=(1+\operatorname{sqrt}(5)) / 2$ (Golden Ratio). The rows are then filled in by the Fibonacci rule that each term is the sum of the two previous terms. The entry n in the first column is the index of that row.

Note. The Wythoff array description above has been taken from [2].
Let $w_{i, j}$ denote an (i, j)-th element of the Wythoff array (row number $i \geq 0$, column number $j \geq 0$).

1.4. Fibonacci Numbers and Auxiliary Relations

Let $F(i)$ denote i-th Fibonacci number, i.e., $F(0)=0, F(1)=1, F(i)=F(i-1)+F(i-2)$ when $i>1, L(i)$ denote i-th Lucas number, i.e. $L(1)=1, L(2)=3, L(i)=L(i-1)+L(i-1)$ when $i>2$.

Note some property of the Wythoff array that is related to the discussed issue:

$$
\begin{equation*}
w_{F(i), j}=F(i+j)+F(j), i \geq 2, j \geq 0 \tag{3}
\end{equation*}
$$

Note also the following property of Fibonacci numbers

$$
\begin{equation*}
1+\sum_{j=1}^{i} F(j)=F(i+2) . \tag{4}
\end{equation*}
$$

2. Main Results

Let T be a binary tree of size n and $M=M(T)$ be a set of such sequences of positive integer weights that $\forall P \in M$ the tree T is the Huffman tree of $P(|P|=n)$.
Definition. A sequence $P_{\min }$ of n positive integer weights is called a minimizing sequence of the binary tree T in the class $M\left(P_{\min } \in M\right)$ if $P_{\min }$ produces the minimal Huffman cost of the tree T over all sequences from M, i.e.,

$$
E\left(T, P_{\min }\right) \leq E(T, P) \forall P \in M
$$

Definition. A non-decreasing sequence of positive integer weights $P=\left\{p_{1}, p_{2}, \ldots, p_{\mathrm{n}}\right\}$ is called $\underline{\text { absolutely }}$ ordered if the intermediate sequences of weights produced by Huffman algorithm for initial sequence P satisfy the following conditions

$$
p_{2}^{(i)}<p_{3}^{(i)}, i=\overline{0, n-3} .
$$

Theorem 1. [5] A minimizing absolutely ordered sequence of the elongated binary tree is

$$
\operatorname{Pmin}_{\text {abs }}=\{F(1), F(2), \ldots, F(n)\},
$$

where $F(i)$ is i-th Fibonacci number.
The weighted external path length of elongated binary tree T of size n for the minimizing absolutely ordered sequence $P m i n_{\text {abs }}$ is

$$
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}\right)=F(n+4)-(n+4) .
$$

Proof. The proof of Theorem 1 of [5].
Definition. A non-decreasing sequence of positive integer weights $P=\left\{p_{1}, p_{2}, \ldots, p_{\mathrm{n}}\right\}$ is called \underline{k}-ordered if the intermediate sequences of weights produced by Huffman algorithm for initial sequence P satisfy the following conditions

$$
\begin{gather*}
p_{2}^{(i)}=p_{3}^{(i)}, i=\overline{0, k ;} \tag{5}\\
p_{2}^{(i)}<p_{3}^{(i)}, i=\overline{k+1, n-3 .} \tag{6}
\end{gather*}
$$

Let $M_{n, k}(k=\overline{0, n-3})$ denote the set of all k-ordered sequences of size n for which the binary Huffman tree is elongated, i.e. $\forall P \in M_{n, k}$ an elongated binary tree of size n is the Huffman tree of P.

Theorem 2. A minimizing k-ordered sequence of the elongated binary tree in the class $M_{n, k}(k=\overline{0, n-3})$

 is$$
\begin{gathered}
\operatorname{Pmin}_{n, k}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, \text { where } \\
p_{1}=1, \\
p_{2}=F(1), \ldots, p_{k+2}=F(k+1), \\
p_{k+3}=F(k+2), \\
p_{k+4}=F(k+3)+F(1), p_{k+5}=F(k+4)+F(2), \ldots, p_{n}=F(n-1)+F(n-k-3) .
\end{gathered}
$$

In other words, taking into account (3)

$$
\begin{gathered}
p_{1}=1, \\
p_{2}=F(1), \ldots, p_{k+2}=F(k+1), \\
p_{k+3}=F(k+2)=w_{F(k+2), 0}, \\
p_{k+4}=w_{F(k+2), 1,} p_{k+5}=w_{F(k+2), 2, \ldots, p_{n}=w_{F(k+2), n-k-3},} \text { where } w_{i, j} \text { is }(i, j) \text {-th element of the Wythoff array. }
\end{gathered}
$$

Proof. Because Pmin $_{n, k}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is minimizing sequence of positive integer values, p_{1} and p_{2} should have minimal positive integer values, i.e.,

$$
\begin{equation*}
p_{1}=p_{2}=1 . \tag{7}
\end{equation*}
$$

$\operatorname{Pmin}_{n, \mathrm{k}}$ is \underline{k}-ordered $(k \geq 0)$ sequence, so according to (5)

$$
p_{2}^{(0)}=p_{3}^{(0)},
$$

therefore according to (1) and (7)

$$
p_{3}=1
$$

Thus

$$
\begin{equation*}
p_{1}=1, \mathrm{p}_{2}=F(1), p_{3}=F(2) . \tag{8}
\end{equation*}
$$

Further, taking into account (2) and (6) we obtain the following Huffman algorithm steps for k ordered ($k \geq 0$) sequence of the elongated (left-sided) binary tree.

Steps 0-k:
Step 0 (Initial): $p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, \ldots, p_{k-1}, p_{k}, p_{k+1}, \ldots, p_{n-1}, p_{n} ; \quad p_{2}=p_{3}$;
Step 1: $\quad p_{3}, p_{1}+p_{2}, p_{4}, p_{5}, \ldots, p_{k-1}, p_{k}, p_{k+1}, \ldots, p_{n-1}, p_{n} ; \quad p_{1}+p_{2}=p_{4}$
Step 2: $\quad p_{4}, p_{1}+p_{2}+p_{3}, p_{5}, \ldots, p_{k-1}, p_{k}, p_{k+1}, \ldots, p_{n-1}, p_{n} ; \quad p_{1}+p_{2}+p_{3}=p_{5}$;
Step 3: $\quad p_{5}, p_{1}+p_{2}+p_{3}+p_{4}, p_{6}, \ldots, p_{k-1}, p_{k}, p_{k+1}, \ldots, p_{n-1}, p_{n} ; \quad p_{1}+p_{2}+p_{3}+p_{4}=p_{6} ;$
...
Step k-1: $\quad p_{k+1}, p_{1}+p_{2}+\ldots+p_{k}, p_{k+2}, \ldots, p_{n-1}, p_{n} ; \quad p_{1}+p_{2}+\ldots+p_{k}=p_{k+2} ;$
Step k :
$p_{k+2}, p_{1}+p_{2}+\ldots+p_{k+1}, p_{k+3}, \ldots, p_{n-1}, p_{n} ;$
$p_{1}+p_{2}+\ldots+p_{k+1}=p_{k+3} ;$
Steps $(k+1)-(n-3)$:

Step $k+1:$	$p_{k+3}, p_{1}+p_{2}+\ldots+p_{k+2}, p_{k+4}, \ldots, p_{n-1}, p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{k+2}<p_{k+4} ;$
Step $k+2:$	$p_{k+4}, p_{l-}+p_{2}+\ldots+p_{k+3}, p_{k+5}, \ldots, p_{n-1}, p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{k+3}<p_{k+5} ;$
\ldots		$p_{1}+p_{2}+\ldots+p_{n-1}<p_{n-1} ;$
Step $n-4:$	$p_{n-2}, p_{1}+p_{2}+\ldots+p_{n-3}, p_{n-1} ; p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{n-2}<p_{n} ;$

Steps ($n-2$), ($n-1$):
Step $n-2: \quad p_{n}, p_{1}+p_{2}+\ldots+p_{n-1} ;$
Step n-1: $\quad p_{1}+p_{2}+\ldots+p_{n}$.
Consider two cases.

Case 1. Steps 0-k.

It follows from relations for steps $0-k$ that

$$
p_{i}=\sum_{j=1}^{i-2} p_{j}, i=\overline{4, k+3} .
$$

Thus,

$$
p_{i}-p_{i-1}=\sum_{j=1}^{i-2} p_{j}-\sum_{j=1}^{i-3} p_{j}=p_{j-2}, i=\overline{4, k+3} .
$$

So, we have

$$
p_{i}=p_{i-1}-p_{i-2}, i=\overline{4, k+3} .
$$

Taking into account (8), we obtain

$$
\begin{equation*}
p_{i}=F(i-1), i=\overline{2, k+3} . \tag{9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
p_{k+3}=\mathrm{F}(k+2)=F(k+2)+F(0) . \tag{10}
\end{equation*}
$$

Case 2. Steps $(k+1)-(n-3)$.

Because Pmin $_{n, k}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is minimizing sequence of positive $\underline{\text { integer }}$ values, inequalities for steps $(k+1)-(n-3)$ are transformed to the following equalities:

Step $k+1:$	$p_{k+3}, p_{1}+p_{2}+\ldots+p_{k+2}, p_{k+4}, \ldots, p_{n-1}, p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{k+2}+1=p_{k+4} ;$
Step $k+2:$	$p_{k+4}, p_{l-}+p_{2}+\ldots+p_{k+3}, p_{k+5}, \ldots, p_{n-1}, p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{k+3}+1=p_{k+5} ;$
\ldots		
Step $n-4:$	$p_{n-2}, p_{1}+p_{2}+\ldots+p_{n-3}, p_{n-1} ; p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{n-1}+1=p_{n-1} ;$
Step $n-3:$	$p_{n-1}, p_{1}+p_{2}+\ldots+p_{n-2}, p_{n} ;$	$p_{1}+p_{2}+\ldots+p_{n-2}+1=p_{n} ;$

From the equality for step ($k+1$), (9), (7) and (4) results

$$
\begin{equation*}
p_{k+4}=F(k+3)+1=F(k+3)+F(1) \tag{11}
\end{equation*}
$$

Further, it follows from relations with equalities for steps $(k+1)-(n-3)$ that

$$
p_{i}=1+\sum_{j=1}^{i-2} p_{j}, i=\overline{k+5, n} .
$$

Thus,

$$
p_{i}-p_{i-1}=\left(1+\sum_{j=1}^{i-2} p_{j}\right)-\left(1+\sum_{j=1}^{i-3} p_{j}\right)=p_{j-2}, i=\overline{k+5, n}
$$

So, we have

$$
p_{i}=p_{i-1}-p_{i-2}, i=\overline{k+5, n} .
$$

Therefore, taking into account (10) and (11), we have

$$
p_{i}=F(i-1)+F(i-k-3), i=\overline{k+4, n} .
$$

From this and (3) it follows that

$$
\begin{equation*}
p_{i}=w_{F(k+2), i-k-3}, i=\overline{k+4, n}, \tag{12}
\end{equation*}
$$

where $w_{i, j}$ is (i, j)-th element of the Wythoff array.
The statement of the theorem follows from (7), (9) and (12).
Corollary 1. A minimizing 0 -ordered sequence of size n for the elongated binary tree in is the Lucas sequence shifted two places right, i.e. $\{1,1, L(1), L(2), \ldots, L(n-2)\}$, where $L(i)$ is i-th Lucas number.
Corollary 2. A minimizing ($n-3$)-ordered sequence of size n for the elongated binary tree in is the Fibonacci sequence shifted one place right, i.e., $\{1, F(1), F(2), \ldots, F(n-1)\}$, where $F(i)$ is i-th Fibonacci number.

Note that normalized ($n-3$)-ordered sequence of size n

$$
\{1 / F(n+1), F(1) / F(n+1), F(2) / F(n+1), \ldots, F(n-1) / F(n+1)\}
$$

has maximum weighted external path length over all possible normalized sequences of size n for which Huffman tree is elongated[6].

Theorem 3. The weighted external path length of the elongated binary tree T of size n for the minimizing k-ordered sequence $P_{m i n}^{n, k}$ is

$$
E\left(T, \operatorname{Pmin}_{n, k}\right)=F(n+3)+F(n-k+1)-(n-k+3) .
$$

Proof. Let $\operatorname{Pmin}_{n, k}=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the minimizing k-ordered sequence of the elongated binary tree T of size n.

According to Theorem 2
Pmin $_{n, k}=\{1, F(1), F(2), \ldots, F(k+2), F(k+3)+F(1), F(k+4)+F(2), \ldots, F(n-1)+F(n-k-3)\}$.
Weighted external path length $E\left(T, \operatorname{Pmin}_{n, k}\right)$ is

$$
E\left(T, \operatorname{Pmin}_{n, k}\right)=\sum_{i=1}^{n} l_{i} p_{i} .
$$

where l_{i} is the length of the path from the root to leaf i.
T is the elongated binary tree, therefore $l_{1}=1, l_{i}=n-i+1(i=\overline{2, n})$.
Then

$$
\begin{gathered}
E\left(T, \text { Pmin }_{n, k}\right)=\sum_{i=1}^{n} l_{i} p_{i}=(n-1) p_{1}+\sum_{i=2}^{n}(n-i+1) p_{i} \\
=(n-1)+\sum_{i=2}^{k+3}(n-i+1) F(i-1)+\sum_{i=k+4}^{n}(n-i+1)(F(i-1)+F(i-k-3)) \\
=(n-1)+\sum_{i=1}^{k+2}(n-i) F(i)+\sum_{i=k+3}^{n-1}(n-i)(F(i)+F(i-k-2))
\end{gathered}
$$

$$
\begin{aligned}
=(n-1)+ & \sum_{i=1}^{n-1}(n-i) F(i)+\sum_{i=k+3}^{n-1}(n-i) F(i-k-2)=(n-1)+\sum_{i=1}^{n-1}(n-i) F(i)+\sum_{i=1}^{n-k-3}(n-k-i-2) F(i) \\
& =(n-1)+\sum_{i=1}^{n-1} \sum_{j=1}^{n-i} F(i)+\sum_{i=1}^{n-k-3} \sum_{j=1}^{n-k-i-2} F(i)=(n-1)+\sum_{j=1}^{n-1} \sum_{i=1}^{j} F(i)+\sum_{j=1}^{n-k-3} \sum_{i=1}^{j} F(i)
\end{aligned}
$$

Thus, taking into account (4), we obtain

$$
\begin{gathered}
E\left(T, \operatorname{Pmin}_{n, k}\right)=(n-1)+\sum_{j=1}^{n-1}(F(j+2)-1)+\sum_{j=1}^{n-k-3}(F(j+2)-1) \\
=(n-1)+\sum_{j=1}^{n-1} F(j+2)-(n-1)+\sum_{j=1}^{n-k-3} F(j+2)-(n-k-3)=\sum_{j=3}^{n+1} F(j)+\sum_{j=3}^{n-k-1} F(j)+(n-k-3) \\
==\left(\sum_{j=1}^{n+1} F(j)-F(2)-F(1)\right)+\left(\sum_{j=1}^{n-k-1} F(j)-F(2)-F(1)\right)-(n-k-3) \\
=(F(n+3)-1-F(2)-F(1))+(F(n-k+1)-1-F(2)-F(1))-(n-k-3) \\
=(F(n+3)-3)+(F(n-k+1)-3)-(n-k-3) \\
=F(n+3)+F(n-k+1)-(n-k+3) .
\end{gathered}
$$

The statement of the theorem proved.
Corollary 3. The weighted external path length of the elongated binary tree T of size n for the minimizing 0 -ordered sequence $\operatorname{Pmin}_{n, 0}$ (the Lucas sequence shifted two places right) is

$$
E\left(T, \operatorname{Pmin}_{n, 0}\right)=F(n+3)+F(n+1)-(n+3)
$$

Corollary 4. The weighted external path length of the elongated binary tree T of size n for the minimizing $(n-3)$-ordered sequence $\operatorname{Pmin}_{n, n-3}$ (the Fibonacci sequence shifted one place right) is $E\left(T\right.$, Pmin $\left._{n, n-3}\right)=F(n+3)+F(n-(n-3)+1)-(n-(n-3)+3)=F(n+3)+F(4)-6=F(n+3)-3$.

3. Examples

Several examples of minimizing ordered sequences for Huffman codes are shown below. An underlined integer in the tables means a nonleaf node cost obtained as a result of merging two leaf nodes on the previous step of the Huffman algorithm. Shaded columns mean leaf nodes selected to be merged on the current step.

Example 1. Absolutely minimizing ordered sequence Pmin $_{\text {abs }}$ of size 10.

Step i	$P^{(i)}$	$p_{1}^{(i)}$	$p_{2}^{(i)}$	$p_{3}^{(i)}$	$p_{4}^{(i)}$	$p_{5}^{(i)}$	$p_{6}^{(i)}$	$p_{7}^{(i)}$	$p_{8}^{(i)}$	$p_{9}^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	$\mathbf{1}$	$\mathbf{2}$	3	5	8	13	21	34	55
1	$P^{(1)}$	2	$\mathbf{2}$	$\mathbf{3}$	5	8	13	21	34	55	
2	$P^{(2)}$	3	$\mathbf{4}$	$\mathbf{5}$	8	13	21	34	55		
3	$P^{(3)}$	5	$\mathbf{7}$	$\mathbf{8}$	13	21	34	55			
4	$P^{(4)}$	8	$\underline{\mathbf{1 2}}$	$\mathbf{1 3}$	21	34	55				
5	$P^{(5)}$	13	$\mathbf{2 0}$	$\mathbf{2 1}$	34	55					
6	$P^{(6)}$	21	$\underline{\mathbf{3 3}}$	$\mathbf{3 4}$	55						
7	$P^{(7)}$	34	$\mathbf{5 4}$	$\mathbf{5 5}$							
8	$P^{(8)}$	55	$\mathbf{8 8}$								
9	$P^{(9)}$	143									

$\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}\right\}=\{1,1,2,3,5,8,13,21,34,55\}-$
Fibonacci sequence of size 10 .

Example 2. Minimizing 0-ordered sequence Pmin $_{10,0}$

Step i	$P^{(i)}$	$p_{1}^{(i)}$	$p_{2}^{(i)}$	$p_{3}^{(i)}$	$p_{4}^{(i)}$	$p_{5}^{(i)}$	$p_{6}^{(i)}$	$p_{7}^{(i)}$	$p_{8}^{(i)}$	$p_{9}^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	$\mathbf{1}$	$\mathbf{1}$	3	4	7	11	18	29	47
1	$P^{(1)}$	1	$\mathbf{2}$	$\mathbf{3}$	4	7	11	18	29	47	
2	$P^{(2)}$	3	$\mathbf{3}$	$\mathbf{4}$	7	11	18	29	47		
3	$P^{(3)}$	4	$\mathbf{6}$	$\mathbf{7}$	11	18	29	47			
4	$P^{(4)}$	7	$\underline{\mathbf{1 0}}$	$\mathbf{1 1}$	18	29	47				
5	$P^{(5)}$	11	$\mathbf{1 7}$	$\mathbf{1 8}$	29	47					
6	$P^{(6)}$	18	$\underline{\mathbf{2 8}}$	$\mathbf{2 9}$	47						
7	$P^{(7)}$	29	$\mathbf{4 6}$	$\mathbf{4 7}$							
8	$P^{(8)}$	47	$\mathbf{7 5}$								
9	$P^{(9)}$	122									

$\left\{p_{2}, p_{3}\right\}=\{1,1\}=\{F(1), F(2)\}$ - Fibonacci sequence of size 2;
$\left\{p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}\right\}=\{1,3,4,7,11,18,29,47\}$ -
Wythoff array row\#1 (row\#F(2)) sequence of size 8 (the Lucas sequence).

Example 3. Minimizing 1-ordered sequence Pmin $_{10,1}$

Step i	$P^{(i)}$	$p_{1}^{(i)}$	$p_{2}^{(i)}$	$p_{3}^{(i)}$	$p_{4}^{(i)}$	$p_{5}^{(i)}$	$p_{6}^{(i)}$	$p_{7}^{(i)}$	$p_{8}^{(i)}$	$p_{9}^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	$\mathbf{1}$	$\mathbf{1}$	2	4	6	10	16	26	42
1	$P^{(1)}$	1	$\mathbf{2}$	$\mathbf{2}$	4	6	10	16	26	42	
2	$P^{(2)}$	2	$\mathbf{3}$	$\mathbf{4}$	6	10	16	26	42		
3	$P^{(3)}$	4	$\mathbf{5}$	$\mathbf{6}$	10	16	26	42			
4	$P^{(4)}$	6	$\mathbf{9}$	$\mathbf{1 0}$	16	26	42				
5	$P^{(5)}$	10	$\mathbf{1 5}$	$\mathbf{1 6}$	26	42					
6	$P^{(6)}$	16	$\mathbf{2 5}$	$\mathbf{2 6}$	42						
7	$P^{()}$	26	$\underline{\mathbf{4 1}}$	$\mathbf{4 2}$							
8	$P^{(8)}$	42	$\mathbf{\underline { \mathbf { 6 7 } }}$								
9	$P^{(9)}$	109									

$$
p_{1}=1 ;
$$

$\left\{p_{2}, p_{3}, p_{4}\right\}=\{1,1,2\}=\{F(1), F(2), F(3)\}$ - Fibonacci sequence of size 3;
$\left\{p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}\right\}=\{2,4,6,10,16,26,42\}-$
Wythoff array row\#2 (row\#F(3)) sequence of size 7 .

Example 4. Minimizing 4-ordered sequence Pmin $_{10,4}$

Step i	$P^{(i)}$	$p_{1}^{(i)}$	$p_{2}^{(i)}$	$p_{3}^{(i)}$	$p_{4}^{(i)}$	$p_{5}^{(i)}$	$p_{6}^{(i)}$	$p_{7}^{(i)}$	$p_{8}^{(i)}$	$p_{9}^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	$\mathbf{1}$	$\mathbf{1}$	2	3	5	8	14	22	36
1	$P^{(1)}$	1	$\mathbf{2}$	$\mathbf{2}$	3	5	8	14	22	36	
2	$P^{(2)}$	2	$\mathbf{3}$	$\mathbf{3}$	5	8	14	22	36		
3	$P^{(3)}$	3	$\mathbf{5}$	$\mathbf{5}$	8	14	22	36			
4	$P^{(4)}$	5	$\mathbf{8}$	$\mathbf{8}$	14	22	36				
5	$P^{(5)}$	8	$\mathbf{1 3}$	$\mathbf{1 4}$	22	36					
6	$P^{(6)}$	14	$\mathbf{2 1}$	$\mathbf{2 2}$	36						
7	$P^{(7)}$	22	$\mathbf{3 5}$	$\mathbf{3 6}$							
8	$P^{(8)}$	36	$\mathbf{5 7}$								
9	$P^{(9)}$	93									

$$
p_{1}=1 ;
$$

$\left\{p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}\right\}=\{1,1,2,3,5,8\}=\{F(1), F(2), F(3), F(4), F(5), F(6)\}-$
Fibonacci sequence of size 6;
$\left\{p_{7}, p_{8}, p_{9}, p_{10}\right\}=\{8,14,22,36\}-$ Wythoff array row\#8 (row\#F(6)) sequence of size 4.

Example 5. Minimizing 7-ordered sequence Pmin $_{10,7}$

Step i	$P^{(i)}$	$p_{1}^{(i)}$	$p_{2}^{(i)}$	$p_{3}^{(i)}$	$p_{4}^{(i)}$	$p_{5}^{(i)}$	$p_{6}^{(i)}$	$p_{7}^{(i)}$	$p_{8}^{(i)}$	$p_{9}^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	$\mathbf{1}$	$\mathbf{1}$	2	3	5	8	13	21	34
1	$P^{(1)}$	1	$\mathbf{2}$	$\mathbf{2}$	3	5	8	13	21	34	
2	$P^{(2)}$	2	$\mathbf{3}$	$\mathbf{3}$	5	8	13	21	34		
3	$P^{(3)}$	3	$\mathbf{5}$	$\mathbf{5}$	8	13	21	34			
4	$P^{(4)}$	5	$\mathbf{8}$	$\mathbf{8}$	13	21	34				
5	$P^{(5)}$	8	$\mathbf{1 3}$	$\mathbf{1 3}$	21	34					
6	$P^{(6)}$	13	$\mathbf{2 1}$	$\mathbf{2 1}$	34						
7	$P^{(7)}$	21	$\mathbf{3 4}$	$\mathbf{3 4}$							
8	$P^{(8)}$	34	$\mathbf{5 5}$								
9	$P^{(9)}$	89									

$$
p_{1}=1 ;
$$

$\left\{p_{2}, p_{3}, p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}\right\}=\{1,1,2,3,5,8,13,21,34\}=$
$\{F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8), F(9)\}$ - Fibonacci sequence of size 9 ; $\left\{p_{10}\right\}=\{34\}-$ Wythoff array row\#34 (row\#F(9)) sequence of size 1 .

References

[1] Huffman D, A method for the construction of minimum redundancy codes, Proc. of the IRE 40 (1952) 1098-1101.
[2] Sloane N.J.A., Classic Sequences In The On-Line Encyclopedia of Integer Sequences: The Wythoff Array and The Para-Fibonacci Sequence, published electronically at http://www.research.att.com/~njas/sequences/classic.html.
[3] Sloane N.J.A., My Favorite Integer Sequences, published electronically at http://www.research.att.com/~njas/doc/sg.pdf.
[4] Fraenkel A., Kimberling C., Generalized Wythoff arrays, shuffles and interspersions, Discrete Math. 126 (1994), 137-149.
[5] Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian) English translation in Cybernetics 21, Issue 6 (1986), 692-696.
[6] Vinokur A.B, Huffman codes and maximizing properties of Fibonacci numbers, Kibernetika i Systemnyi Analiz Issue 3 (1992) 10-15 (in Russian) - English translation in Cybernetics and Systems Analysis 28, Issue 3 (1993), 329-334.

