Fibonacci connection between Huffman codes and Wythoff array

Alex Vinokur Holon, Israel alexvn@barak-online.net alex.vinokur@gmail.com

Abstract. A non-decreasing sequence of positive integer weights $P = \{p_1, p_2, ..., p_n\}$ is called *k-ordered* if an intermediate sequence of weights produced by Huffman algorithm for initial sequence P on *i*-th step satisfy the following conditions: $p_2^{(i)} = p_3^{(i)}, i = \overline{0,k}; p_2^{(i)} < p_3^{(i)}, i = \overline{k+1,n-3}$. Let *T* be a binary tree of size *n* and M=M(T) be a set of such sequences of positive *integer* weights that $\forall P \in M$ the tree *T* is the Huffman tree of *P* (|P|=n). A sequence P_{\min} of *n* positive integer weights is called a *minimizing* sequence of the binary tree T in the class M $(P_{\min} \in M)$ if P_{\min} produces the minimal Huffman cost of the tree T over all sequences from *M*, i.e., $E(T, P_{\min}) \le E(T, P) \forall P \in M$. Fibonacci related connection between minimizing k-ordered sequences of the maximum height Huffman tree and the Wythoff array [Sloane, A035513] has been proved. Let $M_{n,k}$ (k = 0, n-3) denote the set of all k-ordered sequences of size n for which the Huffman tree has maximum height. Let F(i) denote *i*-th Fibonacci number. **Theorem**: A minimizing k-ordered sequence of the maximum height Huffman tree in the class $M_{n,k}$ $(k = \overline{0, n-3})$ is $Pmin_{n,k} = \{p_1, p_2, ..., p_n\}$, where $p_1 = 1, p_2 = F(1), ..., p_{k+2} = F(k+1)$, $p_{k+3} = F(k+2) = w_{F(k+2),0}, p_{k+4} = w_{F(k+2),1}, p_{k+5} = w_{F(k+2),2}, \dots, p_n = w_{F(k+2),n-k-3}, w_{i,j}$ is (i,j)-th element of the Wythoff array. The cost of Huffman trees for those sequences has been computed. Several examples of minimizing ordered sequences for Huffman codes are shown.

1. Main Conceptions and Terminology 1.1. Binary Trees

A (strictly) <u>binary tree</u> is an oriented ordered tree where each nonleaf node has exactly two children (siblings). A binary tree is called <u>elongated</u> if at least one of any two sibling nodes is a leaf. An elongated binary tree of size n has maximum height among all binary trees of size n. An elongated binary tree is called <u>left-sided</u> if the right node in each pair of sibling nodes is a leaf.

A binary tree is called *labeled* if a certain positive integer (weight) is set in correspondence with each leaf.

<u>Size of a tree</u> is the total number of *leaves* of this tree.

Definition. Let *T* be a binary tree with positive weights $P = \{p_1, ..., p_n\}$ at its leaf nodes. The <u>weighted</u> <u>external path length</u> of *T* is

$$E(T,P) = \sum_{i=1}^{n} l_i p_i$$

where l_i is the length of the path from the root to leaf *i*.

1.2. Huffman Algorithm

Problem definition. Given a sequence of *n* positive weights $P = \{p_1, ..., p_n\}$. The problem is to find binary tree T_{\min} with *n* leaves labeled $p_1, ..., p_n$ that has minimum weighted external path length over all possible binary trees of size *n* with the same sequence of leaf weights. T_{\min} is called the Huffman tree of the sequence *P*; $E(T, P_{\min})$ is called the Huffman cost of the tree *T*.

The problem was solved by Huffman algorithm [1]. That algorithm builds T_{\min} in which each leaf (weight) is associated with a (prefix free) codeword in alphabet {0, 1}.

Note. A code is called a prefix (free) code if no codeword is a prefix of another one.

Algorithm description (in the reference to the discussed issue).

Algorithm input. A non-decreasing sequence of positive weights

$$P = \{p_1, p_2, \dots, p_n\} \ (p_k \le p_{k+1}; k = 1, n-1).$$

<u>Algorithm output</u>. The sum of all the weights.

The algorithm is performed in *n*-1 steps. *i*-th step $(i = \overline{1, n-1})$ is as follows.

• <u>*i*-th step input</u>. A non-decreasing sequence of weights of size n-*i*+1.

$$P^{(i-1)} = \{ p_1^{(i-1)}, p_2^{(i-1)}, ..., p_{n-i+1}^{(i-1)} \} (p_k^{(i-1)} \le p_{k+1}^{(i-1)}; k = \overline{1, n-i}); |P^{(i-1)}| = n-i+1.$$

- <u>*i*-th step method</u>. Build a sequence $\{p_1^{(i)} + p_2^{(i)}, p_3^{(i)}, ..., p_{n-i+1}^{(i)}\}$ and sort its.
- <u>*i*-th step output. A non-decreasing sequence of weights of size *n*-*i*.</u>

$$P^{(i)} = \{ p_1^{(i)}, p_2^{(i)}, ..., p_{n-i}^{(i)} \} (p_k^{(i)} \le p_{k+1}^{(i)}; k = 1, n-i-1); |P^{(i)}| = n-i.$$

<u>Note 1</u>. $P^{(0)}$ is an input of Huffman algorithm, i.e.,

$$p_k^{(0)} = p_k \left(k = \overline{1, n}\right). \tag{1}$$

<u>Note 2</u>. If an input sequence on *i*-th step(s) of the algorithm satisfies condition

$$p_2^{(i)} = p_3^{(i)} (0 \le i \le n-3),$$

then several Huffman trees can result from initial sequence P of weights, but the weighted external path length is the same in all these trees.

Let $P = \{p_1, p_2, p_3, ..., p_n\}$ be a sequence of size *n* for which the binary Huffman tree is <u>elongated</u>. Then according to Huffman algorithm

$$p_1^{(i)} + p_2^{(i)} \le p_4^{(i)}, i = \overline{0, n-3}.$$
(2)

1.3. Wythoff Array

The Wythoff array is shown below, to the right of the vertical line. It has many interesting properties [2, 3, 4].

Row nu	umber	1	2	3	4	5	6	7	8	9	10	11	12	Note
	0	1	1	2	3	5	8	13	21	34	55	89	144	Fibonacci numbers
Fib[2]	1	3	4	7	11	18	29	47	76	123	199	322	521	Lucas numbers
Fib[3]	2	4	6	10	16	26	42	68	110	178	288	466	754	
Fib[4]	3	6	9	15	24	39	63	102	165	267	432	699	1131	
	4	8	12	20	32	52	84	136	220	356	576	932	1508	
Fib[5]	5	9	14	23	37	60	97	157	254	411	665	1076	1741	
	6	11	17	28	45	73	118	191	309	500	809	1309	2118	
	7	12	19	31	50	81	131	212	343	555	898	1453	2351	
Fib[6]	8	14	22	36	58	94	152	246	398	644	1042	1686	2728	
	9	16	25	41	66	107	173	280	453	733	1186	1919	3105	
	10	17	27	44	71	115	186	301	487	788	1275	2063	3338	
	11	19	30	49	79	128	207	335	542	877	1419	2296	3715	
	12	21	33	54	87	141	228	369	597	966	1563	2529	4092	
Fib[7]	13	22	35	57	92	149	241	390	631	1021	1652	2673	4325	

The two columns to the left of the vertical line consist respectively of the nonnegative integers *n*, and the lower Wythoff sequence whose *n*-th term is $[(n+1)^*\varphi]$, where $\varphi = (1+sqrt(5))/2$ (Golden Ratio). The rows are then filled in by the Fibonacci rule that each term is the sum of the two previous terms. The entry *n* in the first column is the index of that row.

Note. The Wythoff array description above has been taken from [2]. Let $w_{i,j}$ denote an (i,j)-th element of the Wythoff array (row number $i \ge 0$, column number $j \ge 0$).

1.4. Fibonacci Numbers and Auxiliary Relations

Let F(i) denote *i*-th Fibonacci number, i.e., F(0) = 0, F(1) = 1, F(i) = F(i-1) + F(i-2) when i > 1, L(i) denote *i*-th Lucas number, i.e. L(1) = 1, L(2) = 3, L(i) = L(i-1) + L(i-1) when i > 2.

Note some property of the Wythoff array that is related to the discussed issue:

$$w_{F(i),j} = F(i+j) + F(j), \ i \ge 2, \ j \ge 0.$$
(3)

Note also the following property of Fibonacci numbers

$$1 + \sum_{j=1}^{i} F(j) = F(i+2).$$
(4)

2. Main Results

Let *T* be a binary tree of size *n* and M=M(T) be a set of such sequences of positive *integer* weights that $\forall P \in M$ the tree *T* is the Huffman tree of P(|P|=n).

Definition. A sequence P_{\min} of *n* positive *integer* weights is called a *minimizing* sequence of the binary tree *T* in the class $M(P_{\min} \in M)$ if P_{\min} produces the minimal Huffman cost of the tree *T* over all sequences from *M*, i.e.,

$$E(T, P_{\min}) \le E(T, P) \,\forall P \in M.$$

Definition. A non-decreasing sequence of positive integer weights $P = \{p_1, p_2, ..., p_n\}$ is called <u>absolutely</u> <u>ordered</u> if the intermediate sequences of weights produced by Huffman algorithm for initial sequence *P* satisfy the following conditions

$$p_2^{(i)} < p_3^{(i)}, \ i = \overline{0, n-3}.$$

Theorem 1. [5] A *minimizing* absolutely ordered sequence of the elongated binary tree is $Pmin_{abs} = \{F(1), F(2), ..., F(n)\},\$

where F(i) is *i*-th Fibonacci number.

The weighted external path length of elongated binary tree T of size n for the minimizing absolutely ordered sequence Pminabs is

$$E(T, Pmin_{abs}) = F(n+4) - (n+4).$$

Proof. The proof of Theorem 1 of [5].

Definition. A non-decreasing sequence of positive integer weights $P = \{p_1, p_2, ..., p_n\}$ is called <u>k-ordered</u> if the intermediate sequences of weights produced by Huffman algorithm for initial sequence P satisfy the following conditions

$$p_{2}^{(i)} = p_{3}^{(i)}, \ i = \overline{0, k};$$
(5)

$$p_2^{(i)} < p_3^{(i)}, \ i = \overline{k+1, n-3}.$$
 (6)

Let $M_{n,k}$ ($k = \overline{0, n-3}$) denote the set of all k-ordered sequences of size n for which the binary Huffman tree is <u>elongated</u>, i.e. $\forall P \in M_{n,k}$ an elongated binary tree of size *n* is the Huffman tree of *P*.

<u>Theorem 2</u>. A <u>minimizing</u> k-ordered sequence of the <u>elongated</u> binary tree in the class $M_{n,k}$ ($k = \overline{0, n-3}$) is

$$Pmin_{n,k} = \{p_1, p_2, ..., p_n\}, \text{ where}$$

$$p_1 = 1,$$

$$p_2 = F(1), \dots, p_{k+2} = F(k+1),$$

$$p_{k+3} = F(k+2),$$

$$p_{k+4} = F(k+3) + F(1), p_{k+5} = F(k+4) + F(2), \dots, p_n = F(n-1) + F(n-k-3).$$
her words, taking into account (3)

$$p_{1} = 1,$$

$$p_{2} = F(1), \dots, p_{k+2} = F(k+1),$$

$$p_{k+3} = F(k+2) = w_{F(k+2),0},$$

$$p_{k+4} = w_{F(k+2),1}, p_{k+5} = w_{F(k+2),2}, \dots, p_{n} = w_{F(k+2),n-k-3},$$
where $w_{i,i}$ is (i,j) -th element of the Wythoff array.

<u>Proof</u>. Because $Pmin_{n,k} = \{p_1, p_2, ..., p_n\}$ is <u>minimizing</u> sequence of positive <u>integer</u> values, p_1 and p_2 should have minimal positive integer values, i.e.,

$$p_1 = p_2 = 1.$$

$$Pmin_{n,k} \text{ is } \underline{k}\text{-ordered } (k \ge 0) \text{ sequence, so according to (5)}$$

$$p_2^{(0)} = p_3^{(0)},$$

$$(7)$$

$$p_2^{(0)} = p_3^{(0)},$$

$$(7)$$

$$p_3 = 1.$$

Thus

$$p_1 = 1, p_2 = F(1), p_3 = F(2).$$
 (8)

Further, taking into account (2) and (6) we obtain the following Huffman algorithm steps for kordered ($k \ge 0$) sequence of the elongated (left-sided) binary tree.

Steps 0-k:

Step 0 (Initial):	$p_1, p_2, p_3, p_4, p_5, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n;$	$p_2 = p_3;$
Step 1:	$p_3, p_1 + p_2, p_4, p_5, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 = p_4;$
Step 2:	$p_4, p_1 + p_2 + p_3, p_5, \ldots, p_{k-1}, p_k, p_{k+1}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + p_3 = p_5;$
Step 3:	$p_5, p_1 + p_2 + p_3 + p_4, p_6, \dots, p_{k-1}, p_k, p_{k+1}, \dots, p_{n-1}, p_n;$	$p_1 + p_2 + p_3 + p_4 = p_6;$
 Step <i>k</i> -1:	$p_{k+1}, p_1 + p_2 + \ldots + p_k, p_{k+2}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_k = p_{k+2};$
Step k:	$p_{k+2}, p_1 + p_2 + \ldots + p_{k+1}, p_{k+3}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_{k+1} = p_{k+3};$

<u>Steps (k+1) - (n-3):</u>

Step $k+1$:	$p_{k+3}, p_1 + p_2 + \ldots + p_{k+2}, p_{k+4}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_{k+2} < p_{k+4};$
Step $k+2$:	$p_{k+4}, p_{\underline{l}} + p_2 + \ldots + p_{k+3}, p_{k+5}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_{k+3} < p_{k+5};$
 Step <i>n</i> -4: Step <i>n</i> -3:	$p_{n-2}, p_1 + p_2 + \ldots + p_{n-3}, p_{n-1}; p_n;$ $p_{n-1}, p_1 + p_2 + \ldots + p_{n-2}, p_n;$	$p_1 + p_2 + \ldots + p_{n-1} < p_{n-1};$ $p_1 + p_2 + \ldots + p_{n-2} < p_n;$

<u>Steps (n-2), (n-1)</u>:

Step <i>n</i> -2:	$p_n, p_1 + p_2 + \ldots + p_{n-1};$
Step <i>n</i> -1:	$p_1+p_2+\ldots+p_n$.

Consider two cases.

Case 1. Steps 0-k.

It follows from relations for steps 0-*k* that

$$p_i = \sum_{j=1}^{i-2} p_j, i = \overline{4, k+3}.$$

Thus,

$$p_i - p_{i-1} = \sum_{j=1}^{i-2} p_j - \sum_{j=1}^{i-3} p_j = p_{j-2}, \ i = \overline{4, k+3}.$$

So, we have

$p_i = p_{i-1} - p_{i-2}, \ i = \overline{4, k+3}.$

Taking into account (8), we obtain

$$p_i = F(i-1), \ i = \overline{2,k+3}.$$
 (9)

In particular,

$$p_{k+3} = F(k+2) = F(k+2) + F(0).$$
(10)

<u>Case 2. Steps (k+1) – (n-3).</u>

Because $Pmin_{n,k} = \{p_1, p_2, ..., p_n\}$ is <u>minimizing</u> sequence of positive <u>integer</u> values, inequalities for steps (k+1) - (n-3) are transformed to the following equalities:

Step $k+1$:	$p_{k+3}, p_1 + p_2 + \ldots + p_{k+2}, p_{k+4}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_{k+2} + 1 = p_{k+4};$
Step $k+2$:	$p_{k+4}, p_{\underline{l}} + p_2 + \ldots + p_{k+3}, p_{k+5}, \ldots, p_{n-1}, p_n;$	$p_1 + p_2 + \ldots + p_{k+3} + 1 = p_{k+5};$
Step <i>n</i> -4:	$p_{n-2}, p_1 + p_2 + \ldots + p_{n-3}, p_{n-1}; p_n;$	$p_1 + p_2 + \ldots + p_{n-1} + 1 = p_{n-1};$
Step <i>n</i> -3:	$p_{n-1}, p_1 + p_2 + \ldots + p_{n-2}, p_n;$	$p_1 + p_2 + \ldots + p_{n-2} + 1 = p_n;$

From the equality for step
$$(k+1)$$
, (9), (7) and (4) results
 $p_{k+4} = F(k+3) + 1 = F(k+3) + F(1).$ (11)

Further, it follows from relations with equalities for steps (k+1) - (n-3) that

$$p_i = 1 + \sum_{j=1}^{i-2} p_j, i = \overline{k+5,n}$$
.

Thus,

$$p_i - p_{i-1} = (1 + \sum_{j=1}^{i-2} p_j) - (1 + \sum_{j=1}^{i-3} p_j) = p_{j-2}, \ i = \overline{k+5, n}.$$

So, we have

$$p_i = p_{i-1} - p_{i-2}, \ i = \overline{k+5,n}$$
.

Therefore, taking into account (10) and (11), we have

$$p_i = F(i - 1) + F(i - k - 3), \ i = k + 4, n$$

From this and (3) it follows that

$$p_i = w_{F(k+2), i-k-3}, \ i = \overline{k+4, n},$$
 (12)

where $w_{i,j}$ is (i,j)-th element of the Wythoff array.

The statement of the theorem follows from (7), (9) and (12).

Corollary 1. A minimizing 0-ordered sequence of size *n* for the elongated binary tree in is the Lucas sequence shifted two places right, i.e. $\{1, 1, L(1), L(2), ..., L(n-2)\}$, where L(i) is *i*-th Lucas number. **Corollary 2**. A minimizing (*n*-3)-ordered sequence of size *n* for the elongated binary tree in is the Fibonacci sequence shifted one place right, i.e., $\{1, F(1), F(2), ..., F(n-1)\}$, where F(i) is *i*-th Fibonacci number.

Note that *normalized* (n - 3)-ordered sequence of size n

$$\{1/F(n+1), F(1)/F(n+1), F(2)/F(n+1), ..., F(n-1)/F(n+1)\}$$

has maximum weighted external path length over all possible normalized sequences of size n for which Huffman tree is elongated[6].

Theorem 3. The weighted external path length of the elongated binary tree *T* of size *n* for the minimizing *k*-ordered sequence $Pmin_{n,k}$ is

 $E(T, Pmin_{n,k}) = F(n+3) + F(n-k+1) - (n-k+3).$

<u>Proof</u>. Let $Pmin_{n,k} = \{p_1, p_2, ..., p_n\}$ be the minimizing *k*-ordered sequence of the elongated binary tree *T* of size *n*.

According to Theorem 2

 $Pmin_{n,k} = \{1, F(1), F(2), \dots, F(k+2), F(k+3) + F(1), F(k+4) + F(2), \dots, F(n-1) + F(n-k-3)\}.$ Weighted external path length $E(T, Pmin_{n,k})$ is

$$E(T, Pmin_{n,k}) = \sum_{i=1}^{n} l_i p_i \, .$$

where l_i is the length of the path from the root to leaf *i*.

T is the elongated binary tree, therefore $l_1 = 1$, $l_i = n - i + 1$ ($i = \overline{2, n}$). Then

$$E(T, Pmin_{n,k}) = \sum_{i=1}^{n} l_i p_i = (n-1)p_1 + \sum_{i=2}^{n} (n-i+1)p_i$$

= $(n-1) + \sum_{i=2}^{k+3} (n-i+1)F(i-1) + \sum_{i=k+4}^{n} (n-i+1)(F(i-1) + F(i-k-3))$
= $(n-1) + \sum_{i=1}^{k+2} (n-i)F(i) + \sum_{i=k+3}^{n-1} (n-i)(F(i) + F(i-k-2))$

Fibonacci connection between Huffman codes and Wythoff array Alex Vinokur

$$= (n-1) + \sum_{i=1}^{n-1} (n-i)F(i) + \sum_{i=k+3}^{n-1} (n-i)F(i-k-2) = (n-1) + \sum_{i=1}^{n-1} (n-i)F(i) + \sum_{i=1}^{n-k-3} (n-k-i-2)F(i)$$
$$= (n-1) + \sum_{i=1}^{n-1} \sum_{j=1}^{n-i} F(i) + \sum_{i=1}^{n-k-3} \sum_{j=1}^{n-k-i-2} F(i) = (n-1) + \sum_{j=1}^{n-1} \sum_{i=1}^{j} F(i) + \sum_{j=1}^{n-k-3} \sum_{i=1}^{j} F(i) .$$

Thus, taking into account (4), we obtain

$$E(T, Pmin_{n,k}) = (n-1) + \sum_{j=1}^{n-1} (F(j+2)-1) + \sum_{j=1}^{n-k-3} (F(j+2)-1)$$

$$= (n-1) + \sum_{j=1}^{n-1} F(j+2) - (n-1) + \sum_{j=1}^{n-k-3} F(j+2) - (n-k-3) = \sum_{j=3}^{n+1} F(j) + \sum_{j=3}^{n-k-1} F(j) + (n-k-3)$$

$$= (\sum_{j=1}^{n+1} F(j) - F(2) - F(1)) + (\sum_{j=1}^{n-k-1} F(j) - F(2) - F(1)) - (n-k-3)$$

$$= (F(n+3) - 1 - F(2) - F(1)) + (F(n-k+1) - 1 - F(2) - F(1)) - (n-k-3)$$

$$= (F(n+3) - 3) + (F(n-k+1) - 3) - (n-k-3)$$

$$= F(n+3) + F(n-k+1) - (n-k+3).$$

The statement of the theorem proved.

<u>Corollary 3</u>. The weighted external path length of the elongated binary tree *T* of size *n* for the minimizing 0-ordered sequence $Pmin_{n,0}$ (the Lucas sequence shifted two places right) is $E(T, Pmin_{n,0}) = F(n+3) + F(n+1) - (n+3).$

Corollary 4. The weighted external path length of the elongated binary tree *T* of size *n* for the minimizing (n - 3)-ordered sequence $Pmin_{n,n-3}$ (the Fibonacci sequence shifted one place right) is $E(T, Pmin_{n,n-3}) = F(n + 3) + F(n - (n - 3) + 1) - (n - (n - 3) + 3) = F(n + 3) + F(4) - 6 = F(n + 3) - 3$.

3. Examples

Several examples of minimizing ordered sequences for Huffman codes are shown below. An underlined integer in the tables means a nonleaf node cost obtained as a result of merging two leaf nodes on the previous step of the Huffman algorithm. Shaded columns mean leaf nodes selected to be merged on the current step.

Step i	$P^{(i)}$	$p_1^{(i)}$	$p_2^{(i)}$	$p_3^{(i)}$	$p_4^{(i)}$	$p_5^{(i)}$	$p_6^{\scriptscriptstyle (i)}$	$p_7^{(i)}$	$p_8^{(i)}$	$p_9^{(i)}$	$p_{\rm 10}^{(i)}$
Initial (0)	$P^{(0)}$	1	1	2	3	5	8	13	21	34	55
1	$P^{(1)}$	2	2	3	5	8	13	21	34	55	
2	$P^{(2)}$	3	4	5	8	13	21	34	55		
3	$P^{(3)}$	5	7	8	13	21	34	55			
4	$P^{(4)}$	8	12	13	21	34	55				
5	$P^{(5)}$	13	20	21	34	55					
6	$P^{(6)}$	21	33	34	55						
7	$P^{(7)}$	34	54	55							
8	$P^{(8)}$	55	88								
9	$P^{(9)}$	143									

Example 1. Absolutely minimizing ordered sequence *Pmin*_{abs} of size 10.

 ${p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}} = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55} - Fibonacci sequence of size 10.$

Step i	$P^{(i)}$	$p_1^{(i)}$	$p_2^{(i)}$	$p_3^{(i)}$	$p_4^{(i)}$	$p_5^{(i)}$	$p_6^{(i)}$	$p_7^{(i)}$	$p_8^{(i)}$	$p_9^{(i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	1	1	3	4	7	11	18	29	47
1	$P^{(1)}$	1	2	3	4	7	11	18	29	47	
2	$P^{(2)}$	3	3	4	7	11	18	29	47		
3	$P^{(3)}$	4	6	7	11	18	29	47			
4	$P^{(4)}$	7	10	11	18	29	47				
5	$P^{(5)}$	11	17	18	29	47					
6	$P^{(6)}$	18	28	29	47						
7	$P^{(7)}$	29	46	47							
8	$P^{(8)}$	47	75								
9	$P^{(9)}$	122									
			1	$p_1 \equiv$	1:						

Example 2. Minimizing 0-ordered sequence *Pmin*_{10,0}

 ${p_2, p_3} = {1, 1} = {F(1), F(2)}$ - Fibonacci sequence of size 2; ${p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}} = {1, 3, 4, 7, 11, 18, 29, 47}$ -Wythoff array row#1 (row#F(2)) sequence of size 8 (the Lucas sequence).

Step i	$P^{(i)}$	$p_1^{(i)}$	$p_2^{(i)}$	$p_3^{(i)}$	$p_4^{(i)}$	$p_5^{(i)}$	$p_6^{(i)}$	$p_7^{(i)}$	$p_8^{\scriptscriptstyle (i)}$	$p_9^{\scriptscriptstyle (i)}$	$p_{10}^{(i)}$
Initial (0)	$P^{(0)}$	1	1	1	2	4	6	10	16	26	42
1	$P^{(1)}$	1	2	2	4	6	10	16	26	42	
2	$P^{(2)}$	2	3	4	6	10	16	26	42		
3	$P^{(3)}$	4	5	6	10	16	26	42			
4	$P^{(4)}$	6	9	10	16	26	42				
5	$P^{(5)}$	10	15	16	26	42					
6	$P^{(6)}$	16	25	26	42						
7	$P^{(7)}$	26	41	42							
8	$P^{(8)}$	42	67								
9	$P^{(9)}$	109									

Example 3. Minimizing 1-ordered sequence Pmin_{10,1}

 $p_1 = 1;$

 ${p_2, p_3, p_4} = {1, 1, 2} = {F(1), F(2), F(3)}$ - Fibonacci sequence of size 3; ${p_4, p_5, p_6, p_7, p_8, p_9, p_{10}} = {2, 4, 6, 10, 16, 26, 42} -$ Wythoff array row#2 (row#F(3)) sequence of size 7.

Step i	$P^{(i)}$	$p_1^{(i)}$	$p_2^{(i)}$	$p_3^{(i)}$	$p_4^{(i)}$	$p_5^{(i)}$	$p_6^{(i)}$	$p_7^{(i)}$	$p_8^{\scriptscriptstyle (i)}$	$p_9^{\scriptscriptstyle (i)}$	$p_{\rm 10}^{(i)}$
Initial (0)	$P^{(0)}$	1	1	1	2	3	5	8	14	22	36
1	$P^{(1)}$	1	2	2	3	5	8	14	22	36	
2	$P^{(2)}$	2	3	3	5	8	14	22	36		
3	$P^{(3)}$	3	5	5	8	14	22	36			
4	$P^{(4)}$	5	8	8	14	22	36				
5	$P^{(5)}$	8	13	14	22	36					
6	$P^{(6)}$	14	21	22	36						
7	$P^{(7)}$	22	35	36							
8	$P^{(8)}$	36	57								
9	$P^{(9)}$	93									

Example 4. Minimizing 4-ordered sequence *Pmin*_{10,4}

$p_1 = 1;$

 ${p_2, p_3, p_4, p_5, p_6, p_7} = {1, 1, 2, 3, 5, 8} = {F(1), F(2), F(3), F(4), F(5), F(6)} -$ Fibonacci sequence of size 6;

 ${p_7, p_8, p_9, p_{10}} = {8, 14, 22, 36}$ - Wythoff array row#8 (row#*F*(6)) sequence of size 4.

Step i	$P^{(i)}$	$p_1^{(i)}$	$p_2^{(i)}$	$p_3^{(i)}$	$p_4^{(i)}$	$p_5^{(i)}$	$p_6^{\scriptscriptstyle (i)}$	$p_7^{(i)}$	$p_8^{\scriptscriptstyle (i)}$	$p_9^{\scriptscriptstyle (i)}$	$p_{\rm 10}^{(i)}$
Initial (0)	$P^{(0)}$	1	1	1	2	3	5	8	13	21	34
1	$P^{(1)}$	1	2	2	3	5	8	13	21	34	
2	$P^{(2)}$	2	3	3	5	8	13	21	34		
3	$P^{(3)}$	3	5	5	8	13	21	34			
4	$P^{(4)}$	5	8	8	13	21	34				
5	$P^{(5)}$	8	13	13	21	34					
6	$P^{(6)}$	13	21	21	34						
7	$P^{(7)}$	21	34	34							
8	$P^{(8)}$	34	55								
9	$P^{(9)}$	89									

Example 5. Minimizing 7-ordered sequence *Pmin*_{10,7}

$p_1 = 1;$

 $\{p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9, p_{10}\} = \{1, 1, 2, 3, 5, 8, 13, 21, 34\} = \{F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8), F(9)\}$ - Fibonacci sequence of size 9; $\{p_{10}\} = \{34\}$ - Wythoff array row#34 (row#F(9)) sequence of size 1.

References

[1] **Huffman D**, A method for the construction of minimum redundancy codes, *Proc. of the IRE* **40** (1952) 1098-1101.

[2] **Sloane N.J.A.**, Classic Sequences In The *On-Line Encyclopedia of Integer Sequences*: The Wythoff Array and The Para-Fibonacci Sequence, published electronically at http://www.research.att.com/~njas/sequences/classic.html.

[3] **Sloane N.J.A.**, My Favorite Integer Sequences, published electronically at http://www.research.att.com/~njas/doc/sg.pdf.

[4] **Fraenkel A., Kimberling C.**, Generalized Wythoff arrays, shuffles and interspersions, *Discrete Math.* **126** (1994), 137-149.

[5] **Vinokur A.B**, Huffman trees and Fibonacci numbers, *Kibernetika* Issue **6** (1986) 9-12 (in Russian) – English translation in *Cybernetics* **21**, Issue **6** (1986), 692-696.

[6] **Vinokur A.B**, Huffman codes and maximizing properties of Fibonacci numbers, *Kibernetika i Systemnyi Analiz* Issue **3** (1992) 10-15 (in Russian) – English translation in *Cybernetics and Systems Analysis* **28**, Issue **3** (1993), 329-334.