Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

Alex Vinokur
Holon, Israel
alexvn@barak-online.net
alex.vinokur@gmail.com

Abstract

A non-decreasing sequence of positive integer weights $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ ($n=N^{*}(m-1)+1, N$ is number of non-leaves of m-ary tree) is called absolutely ordered if the intermediate sequences of weights produced by m-ary Huffman algorithm for initial sequence P on i-th step satisfy the following conditions $p_{m}^{(i)}<p_{m+1}^{(i)}, i=\overline{0, N-2}$. Let T be an m-ary tree of size n and $M=M(T)$ be a set of such sequences of positive integer weights that $\forall P \in M$ the tree T is the m-ary Huffman tree of $P(|P|=n)$. A sequence $P_{\min }$ of n positive integer weights is called a minimizing sequence of the m-ary tree T in the class $M\left(P_{\text {min }} \in M\right)$ if $P_{\text {min }}$ produces the minimal Huffman cost of the tree T over all sequences from M, i.e., $E\left(T, P_{\text {min }}\right) \leq E(T, P) \forall P \in M$. Theorem 1. A minimizing absolutely ordered sequence of size $n=N^{*}(m-1)+1$ for the maximum height m-ary Huffman tree $(m>1)$ is $$
\begin{gathered} \quad \operatorname{Pmin}_{\mathrm{abs}}(N, m)= \\ \{G_{0}(m-1), \underbrace{G_{1}(m-1), \ldots, G_{1}(m-1)}_{(m-1) \text { times }}, \underbrace{G_{2}(m-1), \ldots, G_{2}(m-1)}_{(m-1) \text { times }}, \ldots, \underbrace{G_{N}(m-1), \ldots, G_{N}(m-1)}_{(m-1) \text { times }}\}, \end{gathered}
$$

where $G_{0}(m)=1, G_{1}(m)=1, G_{2}(m)=2, G_{i}(m)=G_{i-1}(m)+m * G_{i-2}(m)$ when $i=\overline{2, N}$ Polynomials $G_{i}(x)$ are called Fibonacci-like polynomials. Theorem 2. The cost of maximum height m-ary Huffman tree T of size $n=N^{*}(m-1)+1$ for the minimizing absolutely ordered sequence $\operatorname{Pmin}_{\text {abs }}(N, m)$ is

$$
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, m)\right)=\frac{G_{N+4}(m-1)-2}{m-1}-(N+3) .
$$

Samples of Fibonacci-like polynomials and costs of maximum height m-ary Huffman trees are shown.

0. Preface

Absolutely ordered and k-ordered sequences for binary Huffman trees those have maximum height have been investigated in [1] and [2]. In this article the generalization of absolutely ordered sequences for m-ary Huffman trees those have maximum height is considered.

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences Alex Vinokur

1. Main Conceptions and Terminology
 1.1. m-ary trees

A (strictly) $\underline{m \text {-ary tree }}$ is an oriented ordered tree where each nonleaf node has exactly m children (siblings). Size of an m-ary tree is the total number of leaves of this tree. Let N be number of nonleaves (internal nodes), n be number of leaves of m-ary tree. Number of leaves in m-ary tree satisfies the following condition

$$
\begin{equation*}
n=N^{*}(m-1)+1 . \tag{1}
\end{equation*}
$$

An m-tree ($m \geq 2$) is called elongated if at least $(m-1)$ of any m sibling nodes are leaves. An elongated binary tree of size n has maximum height among all binary trees of size n. An elongated m-ary tree is called left-sided if only the left node in each m-tuple of sibling nodes can be nonleaf.

A m-ary tree is called labeled if a certain positive integer (weight) is set in correspondence with each leaf.

Definition. Let T be an m-ary tree with positive weights $P=\left\{p_{1}, . ., p_{n}\right\}$ at its leaf nodes. The weighted external path length of T is

$$
E(T, P)=\sum_{i=1}^{n} l_{i} p_{i}
$$

where l_{i} is the length of the path from the root to leaf i.

1.2. Generalized \boldsymbol{m}-ary Huffman algorithm

Problem definition. Given a sequence of n positive weights $P=\left\{p_{1}, \ldots, p_{n}\right\},(n-1)=0(\bmod (m-1))$. The problem is to find m-ary tree $T_{\min n}$ with n leaves labeled p_{1}, \ldots, p_{n} that has minimum weighted external path length over all possible m-ary trees of size n with the same sequence of leaf weights. $T_{\min }$ is called the m-ary Huffman tree of the sequence $P ; E\left(T, P_{\text {min }}\right)$ is called the Huffman cost of the tree T.

The problem was solved for binary trees by Huffman algorithm [3]. That algorithm can be generalized for m-ary trees. A generalized Huffman algorithm builds $T_{\text {min }}$ in which each leaf (weight) of m-ary tree is associated with a (prefix free) codeword in alphabet $\{0,1, \ldots, m-1\}$.

Note. A code is called a prefix (free) code if no codeword is a prefix of another one.
\underline{m}-ary algorithm description (in the reference to the discussed issue).
Algorithm input. A non-decreasing sequence of positive weights
$P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \quad p_{k} \leq p_{k+1}, k=1, n-1 ; n=N^{*}(m-1)+1$, where N is number of non-leaves.
Algorithm output. The sum of all the weights.
The algorithm is performed in N steps. i-th step $(i=\overline{1, N})$ is as follows.

- i-th step input. A non-decreasing sequence of weights of size $n-(m-1) *(i-1)$.
$P^{(i-1)}=\left\{p_{1}^{(i-1)}, p_{2}^{(i-1)}, \ldots, p_{n-(m-1)^{*}(i-1)}^{(i-1)}\right\}\left(p_{k}^{(i-1)} \leq p_{k+1}^{(i-1)} ; k=\overline{1, n-(m-1) *(i-1)-1}\right) ;\left|P^{(i-1)}\right|=n-(m-1)^{*}(i-1)$.
- i-th step method. Build a sequence

$$
\left\{p_{1}^{(i-1)}+p_{2}^{(i-1)}+\ldots+p_{m}^{(i-1)}, p_{m+1}^{(i-1)}, \ldots, p_{n-(m-1)^{*}(i-1)}^{(i-1)}\right\}
$$

and sort its.

- $\quad i$-th step output. A non-decreasing sequence of weights of size $n-(m-1) * i$.

$$
P^{(i)}=\left\{p_{1}^{(i)}, p_{2}^{(i)}, \ldots, p_{n-(m-1)^{*} i}^{(i)}\right\}\left(p_{k}^{(i)} \leq p_{k+1}^{(i)} ; k=\overline{1, n-(m-1) * i-1}\right) ;\left|P^{(i)}\right|=n-(m-1)^{*} i .
$$

Note 1. $P^{(0)}$ is an input of m-ary Huffman algorithm, i.e.,

$$
p_{k}^{(0)}=p_{k}(k=\overline{1, n}) .
$$

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences Alex Vinokur

Note 2. If an input sequence on i-th step(s) of the algorithm satisfies condition

$$
p_{m}^{(i)}=p_{m+1}^{(i)}(0 \leq i \leq N-2),
$$

then several m-ary Huffman trees can result from initial sequence P of weights, but the weighted external path length is the same in all these trees.

Let $P=\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ be a sequence of size n for which the m-ary Huffman tree is elongated. Then according to generalized m-ary Huffman algorithm

$$
\begin{equation*}
p_{1}^{(i)}+p_{2}^{(i)}+\ldots+p_{m}^{(i)} \leq p_{2 m}^{(i)}, i=\overline{0, N-2} . \tag{2}
\end{equation*}
$$

2. Main Results

2.1. Minimizing absolutely ordered sequence of the elongated \boldsymbol{m}-ary Huffman tree

Let T be an m-ary tree ($m>1$) of size n (i.e., $n=N^{*}(m-1)+1$, where N is number of non-leaves and n is number of leaves) and $M=M(T)$ be a set of such sequences of positive integer weights that $\forall P \in M$ the tree T is the m-ary Huffman tree of $P(|P|=n)$.
Definition. A sequence $P_{\text {min }}$ of n positive integer weights is called a minimizing sequence of the m-ary tree T in the class $M\left(P_{\min } \in M\right)$ if $P_{\text {min }}$ produces the minimal Huffman cost of the m-ary tree T over all sequences from M, i.e.,

$$
E\left(T, P_{\min }\right) \leq E(T, P) \forall P \in M .
$$

Definition. A non-decreasing sequence of positive integer weights $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is called absolutely ordered if the intermediate sequences of weights produced by m-ary Huffman algorithm for initial sequence P satisfy the following conditions

$$
\begin{equation*}
p_{m}^{(i)}<p_{m+1}^{(i)}, i=\overline{0, N-2} . \tag{3}
\end{equation*}
$$

For an absolutely ordered sequence the equality-inequality relation (2) is transformed to the (strict) equality relation

$$
\begin{equation*}
p_{1}^{(i)}+p_{2}^{(i)}+\ldots+p_{m}^{(i)}<p_{2 m}^{(i)}, i=\overline{0, N-2} . \tag{4}
\end{equation*}
$$

Lemma 1. A minimizing absolutely ordered sequence of size $n=N^{*}(m-1)+1$ for the elongated m-ary tree $(m>1)$ is

$$
\operatorname{Pmin}_{\mathrm{abs}}(N, m)=\{Q_{0}(m), \underbrace{Q_{1}(m), \ldots, Q_{1}(m)}_{(m-1) \text { times }}, \underbrace{Q_{2}(m), \ldots, Q_{2}(m)}_{(m-1) \text { times }}, \ldots, \underbrace{Q_{N}(m), \ldots, Q_{N}(m)}_{(m-1) \text { times }}\},
$$

where $Q_{0}(m)=1, Q_{1}(m)=1, Q_{2}(m)=2, Q_{i}(m)=Q_{i-1}(m)+(m-1)^{*} Q_{i-2}(m)$ when $i=\overline{2, N}$.
Proof. Taking into account (3) (4) we obtain the following configurations of m-ary Huffman algorithm steps for absolutely ordered sequence of the elongated (left-sided) m-ary tree.

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

Alex Vinokur

Step 0 (Initial):

Step 0: $\quad p_{1}, p_{2}, \ldots, p_{m,} p_{m+1}, \ldots, p_{2 m-1}, p_{2 m}, p_{2 m+1}, \ldots, p_{n} ; \quad p_{m}<p_{m+1} ;$
Steps 1-(N-2):
Step 1: $\quad p_{m+1}, \ldots, p_{2 m-1}, \sum_{j=1}^{m} p_{j}, p_{2 m}, \ldots, p_{n} ;$

$$
\sum_{j=1}^{m} p_{j}<p_{2 m}
$$

Step 2:
$p_{2 m}, \ldots, p_{3 m-2}, \sum_{j=1}^{2 m-1} p_{j}, p_{3 m-1}, \ldots, p_{n} ;$ $\sum_{j=1}^{2 m-1} p_{j}<p_{3 m-1} ;$

Step 3:

$$
p_{3 m-1}, \ldots, p_{4 m-3}, \sum_{j=1}^{3 m-2} p_{j}, p_{4 m-2}, \ldots, p_{n}
$$

$$
\sum_{j=1}^{3 m-2} p_{j}<p_{4 m-2}
$$

Step i : $\quad p_{i^{*}(m-1)+2}, \ldots, p_{(i+1)^{*}(m-1)+1}, \sum_{j=1}^{i^{*}(m-1)+1} p_{j}, p_{(i+1)^{*}(m-1)+2, \ldots, p_{n} ; \quad \sum_{j=1}^{i^{*}(m-1)+1} p_{j}<p_{(i+1)^{*}(m-1)+2} ; ~ ; ~}^{\text {; }}$

Steps (N-1), N :

Step $N: \quad \sum_{j=1}^{N^{*}(m-1)+1} p_{j}=\sum_{j=1}^{n} p_{j}$.
On $\underline{\text { Step } 0} \mathbf{~ m e r g i n g ~} m$ leaves labeled by integers $p_{1}, p_{2}, \ldots, p_{m}$ are merged. Because $\operatorname{Pmin}_{\text {abs }}(N, m)=$ $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is minimizing sequence of positive integer values, $p_{1}, p_{2}, \ldots, p_{m}$ should have minimal positive integer values, i.e., at least they must be equal. So, we can write as follows

$$
\begin{aligned}
p_{1} & =q_{0}, \\
p_{2}=\ldots & =p_{m}=q_{1} ; \\
q_{0} & =q_{1} .
\end{aligned}
$$

On $\underline{\text { Step } 1} \mathbf{m e r g i n g ~ (~} m-1$) leaves labeled by integers $p_{m+1}, \ldots, p_{2 m-1}$ and one nonleaf are merged. Again, because $\operatorname{Pmin}_{\text {abs }}(N, m)=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is minimizing sequence of positive integer values, $p_{m+1}, \ldots, p_{2 m-1}$ should have minimal possible positive integer values, i.e., at least they must be equal. So, we can write as follows

$$
p_{m+1}=\ldots=p_{2 m-1}=q_{2} .
$$

In the same manner for Steps $2, \ldots,(\mathbf{N}-1)$ we obtain

$$
\begin{gathered}
p_{2 m}=\ldots=p_{3 m-2}=q_{3} ; \\
P_{3 m-1}=\ldots=p_{4 m-3}=q_{4} ; \\
\ldots \\
p_{i^{*}(m-1)+2}=\ldots=p_{(i+1)^{*}(m-1)+1}=q_{i+1} ; \\
\ldots \\
p_{(N-1)^{*}(m-1)+2}=\ldots=p_{N^{*}(m-1)+1}=q_{N} .
\end{gathered}
$$

So, the configurations of m-ary Huffman algorithm steps for absolutely ordered sequence of the elongated (left-sided) m-ary tree are transformed as follows.

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

Step 0 (Initial):

Step 0: $\quad q_{0}, \underbrace{q_{1}, \ldots, q_{1}}_{(m-1) \text { times }}, \underbrace{q_{2}, \ldots, q_{2}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} \quad q_{1}<q_{2} ;$

Steps 1-(N-2):

Step 1: $\underbrace{q_{2}, \ldots, q_{2}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{1} q_{j}, \underbrace{q_{3}, \ldots, q_{3}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} ; \quad q_{0}+(m-1) \sum_{j=1}^{1} q_{j}<q_{3} ;$
Step 2: $\underbrace{q_{3}, \ldots, q_{3}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{2} q_{j}, \underbrace{q_{4}, \ldots, q_{4}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} ; \quad q_{0}+(m-1) \sum_{j=1}^{2} q_{j}<q_{4}$;
Step 3: $\underbrace{q_{4}, \ldots, q_{4}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{3} q_{j}, \underbrace{q_{5}, \ldots, q_{5}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} ; \quad q_{0}+(m-1) \sum_{j=1}^{3} q_{j}<q_{5}$;

Step $i: \quad \underbrace{q_{i+1}, \ldots, q_{i+1}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{i} q_{j}, \underbrace{q_{i+2}, \ldots, q_{i+2}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} ; q_{0}+(m-1) \sum_{j=1}^{i} q_{j}<q_{i+2} ;$
Step $N-2: \underbrace{q_{N-1}, \ldots, q_{N-1}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{N-2} q_{j}, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }} ; \quad q_{0}+(m-1) \sum_{j=1}^{N-2} q_{j}<q_{N}$;

Steps ($N-1$),N :

Step $N-1: \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }}, q_{0}+(m-1) \sum_{j=1}^{N-1} q_{j} ;$
Step $N: \quad q_{0}+(m-1) \sum_{j=1}^{N} q_{j}$.
Because $\operatorname{Pmin}_{\mathrm{abs}}(N, m)=\{q_{0}, \underbrace{q_{1}, \ldots, q_{1}}_{(m-1) \text { times }}, \underbrace{q_{2}, \ldots, q_{2}}_{(m-1) \text { times }}, \ldots, \underbrace{q_{N}, \ldots, q_{N}}_{(m-1) \text { times }}\}$ is $\underline{\text { minimizing }}$ sequence of positive integer values, q_{0} and q_{1} should have minimal positive integer values, and q_{2} should have minimal possible positive integer value. So, we have

$$
\begin{align*}
& q_{0}=1, \tag{5}\\
& q_{1}=1, \tag{6}
\end{align*}
$$

and, taking into account (3)

$$
\begin{gather*}
q_{2}=q_{1}+1=2, \tag{7}\\
q_{i}=(m-1) \sum_{j=1}^{i-2} q_{j}+1, \text { when } i=\overline{2, N} .
\end{gather*}
$$

Consider, $q_{i}-q_{i-1}$ when $i=\overline{3, N}$.

$$
\begin{equation*}
q_{i}-q_{i-1}=\left((m-1) \sum_{j=1}^{i-2} q_{j}+1\right)-\left((m-1) \sum_{j=1}^{i-3} q_{j}+1\right)=(m-1) q_{i-2} . \tag{8}
\end{equation*}
$$

i.e.

$$
q_{i}=q_{i-1}+(m-1) q_{i-2}, \text { when } i=\overline{2, N} .
$$

From (5), (6), (7) and (8) we obtain that q_{i} is a function of m, i.e., $q_{i}=Q_{i}(m)$ and thus

$$
\begin{equation*}
Q_{0}(m)=1, Q_{1}(m)=1, Q_{2}(m)=2, Q_{i}(m)=Q_{i-1}(m)+(m-1) * Q_{i-2}(m) \text { when } i=\overline{2, N} . \tag{9}
\end{equation*}
$$

The lemma has been proved.

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

Alex Vinokur

2.2. Fibonacci-like polynomials

From Lemma 1 we can see that m-ary Huffman tree ($m>1$) is connected with polynomials $Q_{i}(m)$ (9). From that we can told that $(m+1)$-ary Huffman tree $(m>0)$ is connected with polynomials

$$
G_{0}(m)=1, G_{1}(m)=1, G_{2}(m)=2, G_{i}(m)=G_{i-1}(m)+m^{*} G_{i-2}(m) \text { when } i=\overline{2, N} .
$$

So, we have polynomials that are defined by the recurrence relation

$$
G_{i}(x)=G_{i-1}(x)+x^{*} G_{i-2}(x) \text { when } i>2
$$

with

$$
G_{0}(x)=1, G_{1}(x)=1, G_{2}(x)=2 .
$$

Thus, Lemma 1 can be reformulate as
Theorem 1. A $\underline{\text { minimizing }}$ absolutely ordered sequence of size $n=N^{*}(m-1)+1$ for the elongated m-ary Huffman tree $(m>1)$ is
$\operatorname{Pmin}_{\mathrm{abs}}(N, m)=\{G_{0}(m-1), \underbrace{G_{1}(m-1), \ldots, G_{1}(m-1)}_{(m-1) \text { times }}, \underbrace{G_{2}(m-1), \ldots, G_{2}(m-1)}_{(m-1) \text { times }}, \ldots, \underbrace{G_{N}(m-1), \ldots, G_{N}(m-1)}_{(m-1) \text { times }}\}$,
where $G_{0}(m)=1, G_{1}(m)=1, G_{2}(m)=2, G_{i}(m)=G_{i-1}(m)+m^{*} G_{i-2}(m)$ when $i=\overline{2, N}$.
Huffman related polynomials $G_{i}(x)$ are Fibonacci-like ones in contrast to Fibonacci polynomials that are defined by another recurrence relation [4]

$$
F_{i}(x)=x^{*} F_{i-1}(x)+F_{i-2}(x) \text { when } x>2 \text {; }
$$

with

$$
F_{1}(x)=1, F_{2}(x)=x .
$$

The first few Fibonacci-like (Huffman related) polynomials are

$$
\begin{aligned}
& G_{0}(x)=1 \\
& G_{1}(x)=1 \\
& G_{2}(x)=2 \\
& G_{3}(x)=x+2 \\
& G_{4}(x)=3 x+2 \\
& G_{5}(x)=x^{2}+5 x+2 \\
& G_{6}(x)=4 x^{2}+7 x+2 \\
& G_{7}(x)=x^{3}+9 x^{2}+9 x+2 \\
& G_{8}(x)=5 x^{3}+16 x^{2}+11 x+2 \\
& G_{9}(x)=x^{4}+14 x^{3}+25 x^{2}+13 x+2 \\
& G_{10}(x)=6 x^{4}+30 x^{3}+36 x^{2}+15 x+2 \\
& G_{11}(x)=x^{5}+20 x^{4}+55 x^{3}+49 x^{2}+17 x+2 \\
& G_{12}(x)=7 x^{5}+50 x^{4}+91 x^{3}+64 x^{2}+19 x+2 \\
& G_{13}(x)=x^{6}+27 x^{5}+105 x^{4}+140 x^{3}+81 x^{2}+21 x+2 \\
& G_{14}(x)=8 x^{6}+77 x^{5}+196 x^{4}+204 x^{3}+100 x^{2}+23 x+2 \\
& G_{15}(x)=x^{7}+35 x^{6}+182 x^{5}+336 x^{4}+285 x^{3}+121 x^{2}+25 x+2 \\
& G_{16}(x)=9 x^{7}+112 x^{6}+378 x^{5}+540 x^{4}+385 x^{3}+144 x^{2}+27 x+2 \\
& G_{17}(x)=x^{8}+44 x^{7}+294 x^{6}+714 x^{5}+825 x^{4}+506 x^{3}+169 x^{2}+29 x+2 \\
& G_{18}(x)=10 x^{8}+156 x^{7}+672 x^{6}+1254 x^{5}+1210 x^{4}+650 x^{3}+196 x^{2}+31 x+2 \\
& G_{19}(x)=x^{9}+54 x^{8}+450 x^{7}+1386 x^{6}+2079 x^{5}+1716 x^{4}+819 x^{3}+225 x^{2}+33 x+2 \\
& G_{20}(x)=11 x^{9}+210 x^{8}+1122 x^{7}+2640 x^{6}+3289^{x 5}+2366 x^{4}+1015 x^{3}+256^{x 2}+35 x+2 .
\end{aligned}
$$

The Fibonacci-like polynomials $G_{i}(x)$ are normalized, i.e.

$$
\begin{equation*}
\mathrm{G}_{i}(1)=F i b_{i+1}, \tag{10}
\end{equation*}
$$

where $F i b_{i}$ is i-th Fibonacci number.

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

According to Theorem 1 the sequence $G_{0}(m), \underbrace{G_{1}(m), \ldots, G_{1}(m)}_{(m-1) \text { times }}, \underbrace{G_{2}(m), \ldots, G_{2}(m), \ldots, \underbrace{G_{N}(m), \ldots, G_{N}(m)}_{(m-1) \text { times }}, ~(m+1)}_{(m-1) \text { times }}$ is minimizing absolutely ordered sequence of size $n=N^{*}(m-1)+1$ for the elongated $(m+1)$-ary Huffman tree ($m>0$).
Definition. Sequence $G_{0}(m), G_{1}(m), G_{2}(m), \quad, G_{N}(m)$ is called a representative Huffman m-sequence, i.e., representative sequence of the elongated ($m+1$)-ary Huffman tree $(m>0)$.

Several examples of representative Huffman m-sequences are shown in Table 1.
Table 1. Samples of representative Huffman m-sequences

m	$G_{i}(m): i=0,1,2, \ldots, 12$													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	1	1	2	3	5	8	13	21	34	55	89	144	233	377
2	1	1	2	4	8	16	32	64	128	256	512	1024	2048	4096
3	1	1	2	5	11	26	59	137	314	725	1667	3842	8843	20369
4	1	1	2	6	14	38	94	246	622	1606	4094	10518	26894	68966
5	1	1	2	7	17	52	137	397	1082	3067	8477	23812	66197	185257
6	1	1	2	8	20	68	188	596	1724	5300	15644	47444	141308	425972
7	1	1	2	9	23	86	247	849	2578	8521	26567	86214	272183	875681
8	1	1	2	10	26	106	314	1162	3674	12970	42362	146122	485018	1653994
9	1	1	2	11	29	128	389	1541	5042	18911	64289	234488	813089	2923481
10	1	1	2	12	32	152	472	1992	6712	26632	93752	360072	1297592	4898312
11	1	1	2	13	35	178	563	2521	8714	36445	132299	533194	1988483	7853617
12	1	1	2	14	38	206	662	3134	11078	48686	181622	765854	2945318	12135566
13	1	1	2	15	41	236	769	3837	13834	63715	243557	1071852	4238093	18172169
14	1	1	2	16	44	268	884	4636	17012	81916	320084	1466908	5948084	26484796
15	1	1	2	17	47	302	1007	5537	20642	103697	413327	1968782	8168687	37700417

2.3. Some properties of Fibonacci-like polynomials

Let

$$
\begin{equation*}
S(N, m)=\sum_{i=0}^{N} G_{i}(m) \tag{11}
\end{equation*}
$$

Calculate $S(N, m)$. Consider

$$
\begin{gathered}
(m+1) * S(N, m)=(m+1) * \sum_{i=0}^{N} G_{i}(m) \\
=\sum_{i=0}^{N} G_{i}(m)+m^{*} \sum_{i=0}^{N} G_{i}(m) \\
=\left(G_{0}(x)+G_{1}(x)+\sum_{i=2}^{N} G_{i}(m)\right)+\left(m * G_{0}(x)+m^{*} \sum_{i=1}^{N} G_{i}(m)\right) \\
=(m+1) * G_{0}(x)+G_{1}(x)+\sum_{i=1}^{N-1}\left(G_{i+1}(m)+m^{*} G_{i}(m)\right)+m^{*} G_{N}(m) \\
=(m+1) * G_{0}(x)+G_{1}(x)+\sum_{i=1}^{N-1} G_{i+2}(m)+m^{*} G_{N}(m)
\end{gathered}
$$

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences
Alex Vinokur

$$
\begin{gathered}
=(m+1) * G_{0}(x)+G_{1}(x)+\sum_{i=3}^{N+1} G_{i}(m)+m^{*} G_{N}(m) \\
=(m+1) * G_{0}(x)+G_{1}(x)+\sum_{i=0}^{N+1} G_{i}(m)-\left(G_{0}(x)+G_{1}(x)+G_{2}(x)\right)+m * G_{N}(m) \\
=m^{*} G_{0}(x)-G_{2}(x)+\sum_{i=0}^{N} G_{i}(m)+G_{N+1}(m)+m^{*} G_{N}(m) \\
=m^{*} 1-2+S(N, m)+G_{N+2}(m) \\
=S(N, m)+G_{N+2}(m)+m-2 .
\end{gathered}
$$

So,

$$
\begin{gathered}
(m+1) * S(N, m)=S(N, m)+G_{N+2}(m)+m-2, \text { i.e., } \\
m * S(N, m)=G_{N+2}(m)+m-2 .
\end{gathered}
$$

Therefore

$$
\begin{equation*}
S(N, m)=\frac{G_{N+2}(m)+m-2}{m}=\frac{G_{N+2}(m)-2}{m}+1 . \tag{12}
\end{equation*}
$$

In particular,

$$
S(N, 1)=\frac{G_{N+2}(1)+1-2}{1}=G_{N+2}(1)-1=F i b_{N+3}-1 \text {. }
$$

2.4. Cost of minimizing absolutely ordered sequence of the elongated \boldsymbol{m}-ary Huffman tree

 Theorem 2. The cost (i.e., weighted external path length) of elongated m-ary Huffman tree T of size $n=N^{*}(m-1)+1$ for the minimizing absolutely ordered sequence $\operatorname{Pmin}_{\mathrm{abs}}(N, m)$ is$$
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, m)\right)=\frac{G_{N+4}(m-1)-2}{m-1}-(N+3)=\frac{{\frac{G_{n+4 m-5}}{m-1}(m-1)-(n+3 m-2)}_{m-1}^{m} . . .}{}
$$

Proof. Let $\operatorname{Pmin}_{\text {abs }}(N, m)=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ be the minimizing k-ordered sequence of the elongated binary tree T of size n.

According to Theorem 1
$\operatorname{Pmin}_{\mathrm{abs}}(N, m)=\{G_{0}(m-1), \underbrace{G_{1}(m-1), \ldots, G_{1}(m-1)}_{(m-1) \text { times }}, \underbrace{G_{2}(m-1), \ldots, G_{2}(m-1)}_{(m-1) \text { times }}, \ldots, \underbrace{G_{N}(m-1), \ldots, G_{N}(m-1)}_{(m-1) \text { times }}\}$.
Weighted external path length $E\left(T, \operatorname{Pmin}_{n, k}\right)$ is

$$
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, m)\right)=\sum_{i=1}^{n} l_{i} p_{i} .
$$

where l_{i} is the length of the path from the root to leaf i.
T is the elongated binary tree, therefore

$$
\begin{gathered}
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, m)\right)=\sum_{i=1}^{n} l_{i} p_{i} \\
=N^{*} G_{0}(m-1)+(m-1) \sum_{i=1}^{N}(N-i+1) * G_{i}(m-1) \\
=N^{*} G_{0}(m-1)+(m-1) \sum_{i=0}^{N}(N-i+1) * G_{i}(m-1)-(m-1) *(N+1) * G_{0}(m-1) \\
=(m-1) \sum_{i=0}^{N}(N-i+1) * G_{i}(m-1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1)
\end{gathered}
$$

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences

$$
\begin{aligned}
& =(m-1) \sum_{i=0}^{N} \sum_{j=0}^{N-i} G_{i}(m-1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
& =(m-1) \sum_{j=0}^{N} \sum_{i=0}^{j} G_{i}(m-1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) .
\end{aligned}
$$

Thus, taking into account (11) and (12), we obtain

$$
\begin{gathered}
E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, m)\right)=(m-1) \sum_{j=0}^{N} \sum_{i=0}^{j} G_{i}(m-1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
=(m-1) \sum_{i=0}^{N} S(i, m-1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
=(m-1) \sum_{i=0}^{N} \frac{G_{i+2}(m-1)+(m-1)-2}{m-1}-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
=\sum_{i=0}^{N}\left(G_{i+2}(m-1)+(m-1)-2\right)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
=\sum_{i=0}^{N} G_{i+2}(m-1)+(m-3) *(N+1)-(m-2) *(N+1) * G_{0}(m-1)-G_{0}(m-1) \\
=\sum_{i=0}^{N} G_{i+2}(m-1)+(m-3) *(N+1)-(m-2) *(N+1)-1 \\
=\sum_{i=0}^{N} G_{i+2}(m-1)-(N+1)-1 \\
=\sum_{i=0}^{N} G_{i+2}(m-1)-(N+2) \\
=\sum_{i=0}^{N+2} G_{i}(m-1)-\left(G_{0}(m-1)+G_{1}(m-1)\right)-(N+2) \\
= \\
=S(N+2, m-1)-2-(N+2) \\
=S(N+2, m-1)-(N+4) \\
= \\
=\frac{G_{N+4}(m-1)-2}{m-1}+1-(N+4) \\
=
\end{gathered}
$$

In particular, taking into account (10) we have for binary (i.e., $m=2, n=N+1$) Huffman elongated tree

$$
\begin{aligned}
& E\left(T, \operatorname{Pmin}_{\mathrm{abs}}(N, 2)\right)=\frac{G_{N+4}(1)-2}{1}-(N+3) \\
&= G_{N+4}(1)-2-(N+3) \\
&= G_{N+4}(1)-(N+5) \\
&=G_{N+4}(1)-(N+5) \\
&= F i b_{N+5}-(N+5) \\
&= F i b_{n+4}-(n+4) .
\end{aligned}
$$

Fibonacci-Like Polynomials Produced by m-ary Huffman Codes for Absolutely Ordered Sequences Alex Vinokur

Several examples of costs for several elongated m-ary Huffman trees are shown in Table 2.
Table 2. Costs for several elongated m-ary Huffman trees

| Arity
 \boldsymbol{m} | \boldsymbol{N} (number of non-leaves in an elongated Huffman tree) | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ |
| 2 | 2 | 6 | 13 | 25 | 45 | 78 | 132 | 220 | 363 | 595 |
| 3 | 3 | 10 | 25 | 56 | 119 | 246 | 501 | 1012 | 2035 | 4082 |
| 4 | 4 | 14 | 39 | 97 | 233 | 546 | 1270 | 2936 | 6777 | 15619 |
| 5 | 5 | 18 | 55 | 148 | 393 | 1014 | 2619 | 6712 | 17229 | 44122 |
| 6 | 6 | 22 | 73 | 209 | 605 | 1686 | 4752 | 13228 | 37039 | 103235 |
| 7 | 7 | 26 | 93 | 280 | 875 | 2598 | 7897 | 23540 | 70983 | 212290 |
| 8 | 8 | 30 | 115 | 361 | 1209 | 3786 | 12306 | 38872 | 125085 | 397267 |
| 9 | 9 | 34 | 139 | 452 | 1613 | 5286 | 18255 | 60616 | 206737 | 691754 |
| 10 | 10 | 38 | 165 | 553 | 2093 | 7134 | 26044 | 90332 | 324819 | 1137907 |
| 11 | 11 | 42 | 193 | 664 | 2655 | 9366 | 35997 | 129748 | 489819 | 1787410 |
| 12 | 12 | 46 | 223 | 785 | 3305 | 12018 | 48462 | 180760 | 713953 | 2702435 |
| 13 | 13 | 50 | 255 | 916 | 4049 | 15126 | 63811 | 245432 | 1011285 | 3956602 |
| 14 | 14 | 54 | 289 | 1057 | 4893 | 18726 | 82440 | 325996 | 1397847 | 5635939 |
| 15 | 15 | 58 | 325 | 1208 | 5843 | 22854 | 104769 | 424852 | 1891759 | 7839842 |
| 16 | 16 | 62 | 363 | 1369 | 6905 | 27546 | 131242 | 544568 | 2513349 | 10682035 |
| 17 | 17 | 66 | 403 | 1540 | 8085 | 32838 | 162327 | 687880 | 3285273 | 14291530 |
| 18 | 18 | 70 | 445 | 1721 | 9389 | 38766 | 198516 | 857692 | 4232635 | 18813587 |
| 19 | 19 | 74 | 489 | 1912 | 10823 | 45366 | 240325 | 1057076 | 5383107 | 24410674 |
| 20 | 20 | 78 | 535 | 2113 | 12393 | 52674 | 288294 | 1289272 | 6767049 | 31263427 |
| 21 | 21 | 82 | 583 | 2324 | 14105 | 60726 | 342987 | 1557688 | 8417629 | 39571610 |

References

[1] Vinokur A.B, Huffman trees and Fibonacci numbers, Kibernetika Issue 6 (1986) 9-12 (in Russian) English translation in Cybernetics 21, Issue 6 (1986), 692-696.
[2] Alex Vinokur, Fibonacci connection between Huffman codes and Wythoff array, E-print, 10 pagesArXiv - Oct. 2004. - cs.DM/0410013 - http://arxiv.org/abs/cs/0410013.
[3] Huffman D, A method for the construction of minimum redundancy codes, Proc. of the IRE 40 (1952) 1098-1101.
[4] Eric W. Weisstein. "Fibonacci Polynomial." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FibonacciPolynomial.html

