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STANDARD PATHS IN THE COMPOSITION POSET 

FRANÇOIS BERGERON*, MIREILLE BOUSQUET-MÉLOU AND SERGE DüLUCQ 

RÉsütd. Nous étudions différents problèmes d’énumération de chemins standard 
dans l’ensemble partiellement ordonné des compositions. Nous montrons comment 
plusieurs questions, analogues à celles que l’on étudie dans le cas du treillis des 
partages d’entiers, se révèlent plus simples dans ce contexte. Nous donnons des 
formules explicites pour les séries génératrices des chemins standard dans cet en- 
semble partiellement ordonné et dans certains sous-ensembles intéressants. Nous 
démontrons également une formule donnant le nombre de chemins standard - ou 
tableaux - de forme finale fixée. 

ABSTRACT. We study different problems of enumeration of standard paths in the 
poset of compositions of integers. We show that several problems similar to those 
considered in the poset of partitions of integers become simpler in this context. We 
give explicit formulas for generating functions of standard paths in this poset and 
interesting subposets, and a closed formula for the number of standard paths ending 
at a given composition. 

1. Introduction. The poset of partitions of integers, the so-called Young lattice, has 
been studied by many authors (see [3, 4, 101) and it is well known that this study is 
closely related to the study of irreducible representations of the symmetric group and 
their characters, as well as other subjects in algebraic geometry and algebra. Sergey 
Fomin, in the footsteps of Richard Stanley, has shown that several aspects of this study 
can be extended to other posets [4? 101. One of these aspects is the enumeration of 
up-going paths going from the minimal element of the poset to some given element. 
For instance, in the partition lattice these paths correspond to standard Young tableaux 
of a given shape. Fomin gives a general setup for the enumeration of such paths as well 
as for pairs of paths with same endpoint. However, the problem studied here does not 
fa11 into his framework in a straightforward manner. 

We study in this paper the poset of compositions of integers. Let us recall that a 
composition P is a sequence of positive ( > O) integers (pi  , p 2 , .  . . , p - ) .  The pi ’s  are 
called the parts of the composition and k, the number of parts, is said to be the length 
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140 Standard paths in the composition poset 

t ( P )  of P. The weight IPJ of a composition P is the sum of its parts 

k 

i= 1 

If ]PI = n, we Say that P is a composition of n and wnte P b n. Similarly, apartition 
X of n is a non-decreasing sequence of positive integers XI 5 A2 5 - . - 5 Xk that 
sum to n, and we write X l- n. The partition obtained by reordering the parts of a 
composition P in non-decreasing order is denoted X(P). 

We Say that a composition Q covers a composition P if Q is obtained either by 
adding 1 to a part of P, or by adding a part of size 1 to P. The partial order obtained by 
transitive closure of this covering relation is denoted 4 and the poset thus obtained is 
denoted r. For partitions, the analogous order corresponds to the inclusion of Ferrers 
diagrams. The poset of partitions is denoted A and the function X : I' + A, defined 
above, is a morphism of graded posets (graded by (PI). 

Our first objective will be the enumeration, with some parameters, of "standard" 
(up-going) paths starting with the composition (1) and finishing at P n. We will 
then consider such enumeration problems for several subposets obtained by restrictions 
on the compositions. 

A standard path of Zength n is a sequence y = (Pi, P2,. . . , P,) of compositions 
such that 

Pl 4 P2 -i P3 i -..  4 P,, 

with Pi i. The path y is said to end at the composition P,. We now give a geometric 
representation for standard paths. First, define the diagram of a composition P to be 
the set of points ( i , j )  E Z2 such that 1 5 j 5 p i .  It is convenient to replace the node 
( i , j )  by the square with corners (i - 1 , j  - l), (i - l , j ) ,  ( i , j  - 1) and ( i , j ) .  For a 
standard path ending at P,  we label the squares of the diagram of P in the order of their 
apparition in the path. If P is obtained by adding a part of size 1 to a composition, we 
consider that this new part has been added at the beginning of a sequence of ones (if 
any), for otherwise the encoding would be ambiguous. For instance, the step 

is encoded by the addition of the box labeled 12 in Figure 1. 

Figure 1. 
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The labeled diagram obtained in this manner is called the tableau of the path, and the 
underlying diagram (or composition) of the tableau is called its shape. This represen- 
tation suggests that the length (number of parts) of the endpoint P of a standard path y 
should be called the width of the path, and its largest part the height of the path. 

We obtain an explicit expression for the exponential generating function of standard 
paths counted according to their length: 

exP ( -4 
F ( x )  = 2 '  

( c o s h ( 3 )  - a s i n h ( 5 ) )  

and show that the enumeration of paths with bounded width is very different from the 
enumeration of paths with bounded height. This is best illustrated by the fact that the 
ordinary generating function of standard paths of width 2 is the rational function 

x2 + x3 
(1 - x)  (1 - 2 2 )  

whereas the exponential generating function of paths of height at most 2 is: 

1 
i - sin(x) * 

This is in sharp contrast with similar enurneration problems in the Young lattice, where 
the two problems coincide in view of the order preserving bijection between diagrams 
of height k and those of width k. In the sequel of this paper, we denote r(k) the subposet 
of compositions of width 5 k, and I' (k)  the subposet of compositions of height 5 I c .  

2. Standard paths in the poset r. Denote rn,i,j the set of compositions of n with i 
parts of size 1 and j parts of size > 1, and let yn,i,j be the number of standard paths 
with endpoint in rn,i,j. We wish to obtain an explicit expression for the following 
exponential generating function: 

We first encode standard paths using permutations, and then encode these permuta- 

As usual, a permutation a of [n] = { 1,2, . . . , n} is denoted by the word 
tions as increasing binary trees. 

a( 1 )a( 2) * * * a(n) . 

The set ofdescents of a is D ( a )  = {i 1 a(i)  > a(i -t 1)).  An increasing factor of a of 
lengthtisaworda(i+l)a(i+2).-.a(i+t) suchthata(i+l) < o(ic2) < ... < a(i+l). 
We associate to a the unique composition of n, denoted P ( a) = ( p i ,  p2, . . . , p k ) ,  such 
thatD(0) = (p1,pl  +p2,. . . , p l  +~2+.--+pk-1}.HencethenumberofpartsofF(a), 
minus one, is the cardinality of D ( a ) ,  and the greatest part of ?(a) is the length of the 
longest increasing factor of a. 
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Let us now recall the classical increusing binary tree encoding of permutations. For 
any word w = w1 w2 - . - w, with n 2 O distinct letters on an ordered alphabet, we 
recursively define the binary tree 7 ( w )  to be the empty tree if w is the empty word, 
and othenvise 

a 
v 4 =  /-\ 

7(4 
where a = min(w) is the minimum letter in w,  and u and z1 are the factors of w such 
that w = u a v .  Thus 7 ( u )  is the left subtree of the vertex a, and 7 ( w )  is its right 
subtree. The Zefhnost brunch of 7 ( w )  is 0 if w = 0, othenvise the subtree composed of 
a together with the leftmost branch of 7 ( u ) .  The lefmost vertex of 7 ( w )  is defined to 
be lowest vertex of its leftmost branch. Using the definition of 7, the tree corresponding 
to the permutation w = 524136 is 

Observe that, when reading up the leftmost branch of 7 ( w ) ,  starting with its leftmost 
vertex (in this case, 5 ) ,  we obtain the sequence of left-nght local minima of w (in Our 
example: 5,2,1). 

Clearly, the labels in such a tree will be in increasing order on any path going from 
the root to a leaf. 7 establishes a bijection between permutations of [n] and increasing 
binary trees with labels { 1,2, .  . . , n}. A jumping-chain in such a tree is a sequence 
( i l ,  i2,. . . il) of vertices such that ij is the leftmost vertex of the nght subtree of i j - 1 ,  

for j 2 2. One can check recursively that 7 satisfies the following properties: 
- the number of parts of ? ( O ) ,  minus one, is the total number of left sons in 7 ( a ) ,  
- the number of parts of size 1 in ?(O) is the number of left sons in 7(0) having no 

- the greatest part of P ( a )  is the length of the longest jumping-Chain of 7(a). 
We finally define recursively a bijection S between standard paths of length n and a 
subset of permutations of [n], such that the composition associated to S(y)  is the shape 
of y. Let y be a standard path (Pi, P2, P3, . . . , P,), where P, = (pi  , p 2 , .  . . , p h ) ,  and 
y’ = (Pi, P2, P3,. . . , Pn-l). Then S(y) is obtained from S(y’) by inserting n either 
- in first position, if P, is obtained by adding a new part of size 1 at the beginning of 

- in position pl +p2  + a - . c p , ,  if P, is obtained from P,-l either by adding 1 to the 
m* part of P,- 1 or by adding a part of size 1 to P,- 1 ,  just after the m* part of P,- 1 

(of size > 1 ). 
For example, the sequence of permutations associated, through this process, to the path 

brother, counting the leftmost vertex of 7 ( a )  whenever it is a leaf, 

p72-19 
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is 
1,21,231,4231,45231,452361,4523671~45236718,452369718 

hence S(y) = 452369718. 
Note that (p1 ,p l  + p 2 ,  . . . ) p l  +p2  + - . + p k - l }  is the set of descents of S(y). Hence, S 
is injective. However, we do not obtain al1 permutations of [n] in this manner, since n 
can not be inserted in the “middle” of a maximal increasing factor, that is, in a nse that 
is not the last one of this increasing factor. The set of permutations actually obtained is 
easier to characterize in terms of increasing binary trees: the permutation O encodes a 
standard path if and only if any vertex v of 7(0) not belonging to its leftmost branch 
satisfies 

ifv has two sons, the label of its lefi son is less than the label of its right son. (C) 

Thus, the smallest increasing tree that does not correspond to an encoding of a standard 
path is: 

This is the only excluded tree with four vertices, thus the coefficient of z4/4! in the 
expansion of (1) will be 23. 
Now, since P(S(y)) = P,, we can read off the height and the width of y on the tree 
7(S(y)), as well as the number of parts equal to 1 in P,. 

Proposition 1. The exponential generatingfunction of standard paths in the composi- 
tion poset is 

where 
a =  Jn) 

the variables u and Y accounting respectively for the number of parts of size 1 and 
those of size > 1 in the endpoint. 

We will give two different proofs of this proposition. The first one is short and natural, 
but does not explain how we got formula (2). The second one is based on the permutation 
encoding of standard paths, and gives equations for F(u ,  v, z) that are easy to solve. 

First proo$ Let’s consider a standard path (Pl ) . . . , P,+i) such that P,+1 belongs 
to Fn+i,i,j. Then P, either belongs to Fn,i,j, F,,i+l,j-i, or F,,+l,j. Conversely, by 
counting the compositions of l?,+i,i,j that cover a given composition of F,,i,j, F,,i+l,j- 1 

or Fn,+l,j, one finds that the coefficients yn,i,j are totally determined by the initial 
conditions ~ O , O , O  = 1 ,  yo,;,j = O if i or j is not zero, and the recurrence 
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Of course, yn,;,j is zero if i or j is negative. This recurrence implies that F ( u ,  v, x )  
is the unique forma1 power senes satisfying F ( u ,  v ,  O) = 1 and the partial differential 
equation: 

a a a 
aX 6% au 
-F(u, v, x) = (1 + u )  21 -F(u, v, x) + uF(u,v,  x )  + v-F(u, v, x ) .  (3) 

One can check that expression (2) satisfies equation (3) with the prescribed initial 
condition. In order to derive formula (2) from equation (3), one could replace the above 
initial condition by F ( u ,  O, x) = exp(u x )  and (&F(O, v, z)) = exp(x) - 1 - z. 

Second proot Using the increasing binary tree encoding of standard paths defined 
above, the problem of computing F(u ,  v, z) becomes a classical problem of enumera- 
tion of labeled trees [SI, and we obtain: 

a 
- a X  F ( u ,  v, X) = F(u ,  v, x )  (u + G(u,  v,x)), F(u,v ,O) = 1, 

G(u,v,O) = O. a G(u, v7 x)2 
2 9  

-G(u ,v , x )  = v + ( l  + ~ ) G ( U , V , X )  + 
da: 

That is the actual system we solved. O 

Remark. The first few terms of the senes F ( u ,  v, x) are: 

X 2  2 3  x4 + 11 2, u2 + u4) - 
2! 3! 4! 

1 + u z  + (V + u2) - + (U  VU + u3) - + ( U  + 4 v 2  + 6~ 

x5 + (v + 14v2 +- 34uv2 + 8 v  u + 23 u2v + 26v u3 + u5)  - + . . . 
5! 

Setting u = v = 1, we obtain 

x2 x3 x4 x5 X 6  x7 1 + x + 2  - + 6 - t 2 3  - + 107 - + 586- + 3690 - 
2! 3! 4! 5!  6 !  7! 

X 8  x9 
8! 9! 

+ 26245 - + 207997 - + . . 

Using the Maple package gdev [9], with the help of Bruno Salvy, we obtained the fol- 
lowing expression for the asymptotic expansion of the coefficient of xn/n!  in F (  1 , 1 , x): 

where a = 1 + fi. For n from O to 9, formula (4) gives the following values 

0.83, 0.96, 2.02, 6.02, 22.99, 106.98, 586.01, 3690.06, 26245.03, 207996.78 

showing that this approximation is very good even for small values of n. 
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3. Standard paths of bounded height. The story is similar for the posets r(') of 
compositions of height bounded by k. Once again, let I'n,i,i (k) be the set of compositions 
of n of height 5 k, having i parts of size 1 and j parts of size 2 2. As before, let T ~ , ~ , ~  (k) 

be the number of standard paths with endpoint in rn (k) j ,  and 
, ,  

Let's begin with the simplest non-trivial case: k = 2. We could proceed as in the 
derivation of F ( u ,  v, x), writing the basic recurrence: 

with n + 1 = i + 2 j .  However, we can easily derive H2(u, v, 1) directly from F ( u ,  V ,  x)  
since 

lim F(U/X, v/x2, x)  = H ~ ( u ,  v, 1). 
x-to 

Hence we get: 
1 

where ,û = d m .  Observe that for u = x and v = x2, this identity becomes 

1 d 
dx 

- = -(sec(x) + tan(z)), (5) 
1 

H2(2,2*, 1) = 
(cos(x/2) - Sin(Z/2))* - 1 - s i n ( 4  

showing that the number of standard paths of length n - 1 and height at most 2 
coincides with the n* eulerian number. It is interesting to observe that ( 5 )  is not 
D-finite (see Stanley [il, section 4 a)] and the note below). This illustrates that the 
problem of enumerating paths in the composition poset I'(') is quite different from 
the corresponding problem in the context of partitions since it has been shown that the 
generating functions for the number of tableaux of bounded height are ail D-finite [6,1]. 

For a general k, the study of I'(lC) becomes more intricate, but the techniques are 
essentially the same as those of section 2. Using the increasing binary tree encoding of 
standard paths, we can derive a system of differential equations with Hk as one of its 
solutions. 

Proposition 2. The exponential generating function Hk (u ,  v, x )  of standard paths of 
height bounded by k is such that 
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for .t = 1,. . . , k - 1, with initial conditions &,o(u, v ,  z) = O, Hk(u, .,O) = O, 

Proof: We will only outline the proof, which uses a classical enumeration technique 
for labeled trees [8]. These are counted according to their size (variable z) and pa- 
rameters accounting for the number of parts equal to l and those greater than l in the 
corresponding composition. We consider the following different classes of increasing 
binary trees: 
- ' R k  is the set of increasing binary trees such that al1 vertices not belonging to the 

leftmost branch satisfy condition C, and al1 jumping-Chain-lengths are bounded by 
k; the generating function for this set is denoted Hk (u, v, 2); 

- Zk,$ is the set of increasing binary trees such that al1 vertices satisfy condition C, the 
length of the maximal jumping-Chain starting from the leftmost vertex is at most t, 
and al1 jumping-Chain-lengths are bounded by k; the generating function for this set 
is denoted Ik,t(u, v, z). 

System (6) is obtained by considering the effect of removing the root of such trees. This 
operation generates two subtrees, each belonging to one of the previous classes. O 

Note. The solutions of system (6) are constructible diflerentially algebraic series as 
defined in [2]. Recall that a series y = y(z), with coefficients in K, is said to be 
constructible differentially algebraic (CDF for short) if for some k 2 1, there exist Ic 
series y1, . . . , yk with y1 = y and polynomials Pl , . . . pk (with coefficients in K) such 

I k , j ( U ,  21, O )  = O and &,j(U, 21, O )  = v. 

that 

Yfc = pk(y1>*.*>Yk)* 
The class of CDF senes contains polynomials, algebraic series, and series expansions 
around O of usual functions such as ex, log( 1 + z), or trigonometric functions and their 
inverses. It is closed for sum, product, composition, derivation, integration, inversion 
(i /y(z)),  and inversion for composition. However it is not closed under Hadamard 
product (term-Wise product). Al1 CDF series are analytic around O, hence this class does 
not contain the class of D-finite series (see [l 1, 12]), which is the class of forma1 senes 
satisfying some non trivial linear differential equation with polynornial coefficients 

PO(~C)Y+P"~)Y'+P2(~)Y' '+. . .  + P k ( z ) Y ( k )  =o. 
Conversely, the series expansion around O of 1 / cos(z) is not D-finite, but it is CDF. 
Thus the two classes are non-comparable. 

4. Standard paths of given width. For the study of the poset r(k) of compositions of 
width k, we consider a refined weight v on the paths in this poset, setting, for a path y 
ofshape (P17P2,. . .,Pk) 

v(y) =zy$-..3$k 

We want to compute the generating function 

y path ofwidth k 
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Observe that we are now using ordinary generating functions. These turn out to be more 
convenient in this case. We have the following simple d e  for a recursive computation 
Of the f k ’ S .  

Proposition 3. The generatingfunction f k ( q , 2 2 ,  . . . , zk) of standardpaths of width 
k is a rational function that can be computed recursively thanks to the following 
relation: 

where,for anyfunction g(zi,. . . , zk), 

With fo = 1, we obtain successively 

1 5122(1  - 2 1 2 2 )  

Denoting Lk(2) = f(z, 2,. . . , z), we deduce that: 

2 3 ( 1  + 42 - 3 2 )  24( 1 + .)( 1 + 12% - 3iZ2 + 1223) 
L3(2)  = (1 - .)y1 - 22)(1 - 3 2 ) ’  L4(z) = ( 1  - ~ ) ~ ( 1  - 2 ~ ) ~ ( 1  - 3z)(1 -42) ’  

Proof. Use the geometnc representation of paths by tableaux described in the first 
section. A tableau of width k can be obtained by adding a new ce11 either 
- at the top of a column of another tableau of width k, 
- at the beginning of a tableau of width k - 1, 
- or after the (i - 1)” column (of height greater than 1) of a tableau of width k - 1. 
In terms of generating functions, these three cases correspond respectively to 
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5. Standard paths of given shape. We finally derive an expression for the number of 
standard paths (or tableaux) of shape (pl  ,p2, .  . . , p k ) .  This number is the coefficient of <' . . in the series f k ( Z 1 , 5 2 ,  . . . , Z k )  defined in the previous section. Recail 
that the answer to this question,' for the partition lattice, is given by the hook formula 

To begin with, we associate to a tableau T of width k a binary tree with k vertices. 
This tree encodes the order in which the parts of T are created, and only depends 
on the labels (ai, a2,. . . , ah)  occurring (from left to right) in the lowest row of T. 
The tree d ( a 1  , a2, . . . , ak)  is recursively defined as follows: for k = O, the tree is 
empty; if k = 1, the tree is reduced to one vertex, and, for k > 1, the left (resp. right) 
subtree of d ( a 1 ,  a2,. . . , U k )  is A(a1, a2,. . . , ut) (resp. d(ae+l ,  aet2,. . . , U k - l ) ) ,  where 
.t = max { j  1 O 5 j < k and aj < ah}. By convention, a0 = O. This means that the 
rightmost part of the tableau was created by inserting a ce11 labeled al, just after the ce11 
labeled a!, and that the parts lying between the l* and the k" part were created later. 
For example, the tree associated to the tableau of Figure 1 is: 

~ 7 1 .  

Figure 2. 

Reading the tree in suffix order, we label its vertices with the integers (k, k - 1, . . . , 1 ) 
(see Figure 2).  From now on, a vertex will be denoted by its label. 

Proposition 4. The number of standardpaths of shape ( p i ,  p2,  . . . p k )  with underlying 
tree A is: 

where 
Mj Mj 

rj = -1 + x p i ,  s j  = C p i ,  
i=j i=mj 

mj is the minimum label of the tree composed of j together with its right subtree, and Mj 
is the maximal label among the vertices that have j in their lefmost branch. Hence, the 
total number of tableaux of shape ( p i ,  - . . , p k )  is the sum Of CI, tems  N ~ ( p 1 ,  . . . , p k ) ,  

with Ch = (T) /(k + 1) being the usual k* Catalan nurnbel: 

Example. If d is the tree of Figure 2, then (ml, m2, m3,m4, ms) = (1,1,3,3,3) 
and ( M I ,  M z ,  M3, M4, Ms)  = (1,5,3,4,5), and the number of tableaux of shape 
(Pi 7 p2 3 p3 7 p4 7 PS) associated to A is 
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Prao$ We proceed by induction on k. The statement is clearly true when k = O or 
k = 1. For k > 1, let 23 (resp. C) be the left (resp. right) subtree of A. Suppose B has f2 
vertices. Then: 

This identity reflects the fact that any tableau T of shape ( p l  , . . . , p k )  with underlying 
tree A can be obtained by the following procedure: 
- first, build an auxiliary tableau of shape ( p l ,  . . . , pe-1, pe + - - - + p k )  with underlying 

The next steps will consist in transfoming the last part of this tableau. Thus, 
- in the last part of the auxiliary tableau, select a set L of pe+1 + - - - + pk labels not 

containing the two minimal ones. The set L will be used to label the last k - f2 parts 
of the tableau T being constructed; 

- remove from the last part of the current tableau the cells corresponding to the labels 
in L. 

The final result for T is obtained by adding to the current tableau k - f2 columns in the 
following manner: 
- once again, select in L a set L‘ of pk+1 -t - - . +pe-1 labels not containing the minimal 

element of L; 
- build a tableau of shape (pe+ l , .  , p k - l )  with underlying tree C, and append this 

tableau to the right of the current tableau; 
- the final tableau T is obtained by adding a k” part of size pk labeled in increasing 

order by the remaining labels. 
A careful verification shows that the right hand-side of (7)  satisfies recurrence (8), with 
the same initial conditions, thus the proposition is proved. 

Résumé substantiel en français. Le treillis des partages d’entiers - ou treillis de 
Young - fait l’objet de nombreuses études, en liaison notamment avec la théorie des 
représentations du groupe symétrique. Nous étudions ici un ensemble partiellement 
ordonné voisin : celui des compositions d’entiers. Rappelons qu’une composition de 
l’entier n est une suite ( p i ,  p2 ,  . . . , p k )  d’entiers strictement positifs, telle que la somme 
des pi soit égale à n. Les pi sont appelés les parts de la composition. Le nombre de 
parts est la largeur de la composition, et la plus grande part est sa hauteur. 

Nous définissons sur l’ensemble des compositions un ordre partiel en disant qu’une 
composition P couvre une composition Q si P s’obtient, soit en rajoutant 1 à une part 
de Q, soit en ajoutant à Q une nouvelle part de taille 1. Par analogie avec les tableaux 
de Young standard, nous appelons chemin standard de longueur n toute suite croissante 
de compositions y = (Pl, P2, . . . , P,) telle que, pour tout i, Pi soit une composition de 
i. Lafomze de y est la composition finale P,, la largeur et la hauteur de y sont celles 
de P,. L‘objet de notre étude est l’énumération de chemins standard, dont la hauteur 
ou la largeur vérifient éventuellement certaines contraintes. 

Une bijection entre les chemins standard de longueur n et certaines permutations de 
n éléments nous permet tout d’abord d’obtenir la série génératrice exponentielle des 

tree B. 

O 
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chemins standard généraux, puis celle des chemins standard de hauteur bornée par une 
entier k fixé (Propositions 1 et 2). Ces séries sont constructiblement différentiellement 
algébriques au sens de [2]. Rappelons que pour le treillis de Young, la série génératrice 
des chemins standard est celle, très simple, des involutions, tandis que les séries corre- 
spondant aux tableaux de Young de hauteur bornée sont en général assez mal connues. 
On sait toutefois qu’elles sont D-finies [il]. 

Nous considérons ensuite les chemins standard de largeur bornée. Contrairement 
au cas du treillis de Young, ce problème est bien différent de l’étude des chemins de 
hauteur bornée. Nous donnons une formule permettant de calculer récursivement les 
séries génératrices ordinaires correspondantes, qui sont de simples séries rationnelles 
(Proposition 3). 

Pour finir, nous nous intéressons au nombre de chemins standard de forme donnée, 
c’est-à-dire que nous cherchons un analogue de la fonnule des équerres. Pour cela, 
nous associons tout d’abord à chaque chemin standard de largeur k un arbre binaire à k 
sommets. Puis, nous démontrons une formule donnant le nombre de chemins standard 
de longueur n, d’arbre sous-jacent et de forme finale fixés, qui prouve que ce nombre 
est encore un diviseur de n! (Proposition 4). 
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