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COUNTING DIVISORS OF LUCAS NUMBERS

Pieter Moree

The Lucas numbers Ln are defined by L0 = 2, L1 = 1
and the recurrence Ln = Ln−1 + Ln−2. An estimate for the
number of m ≤ x such that m divides some Lucas number
is established. This estimate has error of order x logε−1 x for
every ε > 0.

1. Introduction.

Let {Sn} be a second order linear recurrence consisting of integers only. M.
Ward [22] proved that, except for some degenerate cases, there are always
an infinite number of distinct primes dividing the terms of {Sn}. A deeper
question is whether in the non-degenerate case the set of prime divisors has
a prime density. (If S is any set of natural numbers, then S(x) denotes the
number of elements n in S with 1 < n ≤ x. In case S is a set of primes we
define the prime density of S to be limx→∞ S(x)/π(x), if it exists, where
π(x) denotes the number of primes not exceeding x.) It is conjectured
that the answer is yes and that the density is in fact positive. In case
of what are called torsion sequences, this was recently established by P.
Stevenhagen [21], generalizing on results in the earlier papers [9, 11, 13].
Stevenhagen showed, moreover, that the density of a torsion sequence is a
rational number. For a large class of non-torsion sequences, the existence
and positivity of of the prime density was established by P.J. Stephens [20],
under the assumption of the Generalized Riemann Hypothesis.

The sequence {Ln} is torsion. Lagarias established that it has prime
density 2/3. His method goes back to H. Hasse [6], who expressed the prime
density of sequences {ak+bk}∞k=1 in terms of degrees of Kummer extensions.
This method will be used in Section 3. The analytic aspects of prime divisors
of sequences {ak + bk}∞k=1 were explored by K. Wiertelak in several papers
[24, 25, 26, 27, 28]. For a survey of results on prime divisors of, not
necessarily second order, linear recurrences, see Ballot [1].

The problem of general divisors of second order linear recurrence se-
quences, in contrast, has not received much attention. Let a and b be fixed
coprime integers such that |a| 6= |b|. In [12] the set of divisors, Ga,b, of the
sequence {ak + bk} was considered. Some of the results obtained there have
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an application in coding theory [8, 17]. It was shown that for given t ≥ 1,

Ga,b(x) =
x

log x

c′0 logα x+
t−1∑
j=0

c′1+j logβ·2
−j
x+O(logβ·2

−t
x)

 ,(1)

as x tends to infinity, where c′0, · · · , c′t and α and β are positive constants
depending at most on a and b. The implied constant depends at most on
a, b and t. The constants α and β can be explicitly given. They are rational
numbers. In contrast the constants c′0, · · · , c′t seem to be very difficult to
compute.

The purpose of this paper is to establish the following analogue of (1):

Theorem 1. Let L(x) denote the number of divisors not exceeding x of the
sequence of Lucas numbers. Then, for t ≥ 1,

L(x) =
x

log x

 t−1∑
j=0

cj log
1
3
· 1

2j x+O(log
1
3
· 1
2t x)

 ,(2)

where c0, . . . , ct are positive constants and the implied constant depends at
most on t.

The sequence of exponents {2−j/3}∞j=0 appearing in (2) coincides with
that appearing in (1) in case a/b 6∈ {±Q2,±2Q2} [12].

Although the strategy of proof is similar, establishing (2) is more difficult
than establishing (1). Firstly because one now has to work over the base
field Q(

√
5) rather than Q and secondly since many ingredients required in

the proof of (1) can be found in the literature, whereas this is only rarely
the case for their counterparts in the proof of (2). In order to explain the
strategy of proof, a little bit of notation is needed. If {Sn} is a sequence
of integers, the smallest index k such that m|Sk for some non-zero element
Sk, is called the rank of apparition of m provided it exists. Let {Fn} be
the Fibonacci sequence. Thus F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.
For the Fibonacci sequence denote the rank of apparition of n by ρ(n). (It
exists for arbitrary n as will be seen later.) Let σ(n) denote the rank of
apparition of n in the Lucas sequence, if it exists. The proof of Theorem
1 proceeds as follows. In Section 2 a characterization for Lucas divisors is
derived. This result shows the need of estimating the growth of the sets
Ce := {p > 2 : 2e‖ρ(p)}, for e ≥ 0. Using a method of Wiertelak an estimate
of the form

Ce(x) = δeLi(x) +O

(
x(log log x)4

log3 x

)
,(3)

where δe > 0 is a constant and Li(x) denotes the logarithmic integral, is
derived. Using Hasse’s method the densities δe are computed in Section 3.
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Lagarias [9] only computed δ0; it equals 1/3. Using a result on multiplica-
tive functions that are constant on average in prime arguments, a formula
for Ge(x) is obtained, where Ge denotes the number of Lucas divisors not
exceeding x composed only of primes from Ce. From this and the charac-
terization of Lucas divisors it is straightforward to obtain an expression of
the form (2) for odd Lucas divisors. Going from there to all Lucas divisors
requires a bit of elementary trickery.

A natural question that arises is whether Theorem 1 can be extended to
other sequences of the form {αn + ᾱn}∞n=0 with α an algebraic integer from
a quadratic field Q(

√
D). In the case D > 0 and α is a unit this certainly

seems to be the case. Since the exponents in (2) depend in an idiosyncratic
way on α, it will be awkward to state and prove a generalization of Theorem
1 of this type. I have restricted myself therefore to the most well-known of
the sequences of the above form. Given the necessary patience the reader
should be able to work out some other cases as well. It is not clear what
to expect for general second-order linear recurrences. Then both Theorem
2 and the Hasse method fail.

I would like to thank K. Belabas, B. Moroz, G. Niklasch and P. Steven-
hagen for helpful (e-mail) discussions. The comments of Stevenhagen on an
earlier version allowed me to shorten some of the proofs.

2. Characterization of Lucas divisors.

The following properties of the Fibonacci and Lucas number are well-known
(see e.g. [18, pp. 41-55]):

(i) m|Fn if and only if ρ(m)|n;
(ii) If p|Fn, then pe|Fnpe−1 for e ≥ 1;
(iii) LnFn = F2n;
(iv) (Fn, Ln)|2;
(v) If b ≥ 1 and odd, then La|Lab.

These properties will be used to derive a characterization of divisors of Lucas
numbers. To this end we need a proposition and a lemma.

Proposition 1. Let pr be an odd prime power. Then ρ(pr) = ρ(p)pj for
some 0 ≤ j ≤ r − 1.

Proof. By (i) and (ii) it follows that ρ(pr)|ρ(p)pr−1. Clearly ρ(p)|ρ(pr). Thus
the proposition follows. �

Lemma 1. The odd prime power pr is a divisor of {Ln} if and only if ρ(pr)
is even. If pr is a divisor of {Ln} then σ(pr) = ρ(pr)/2 and

pr|Ln ⇐⇒ n ≡ ρ(pr)
2

(mod ρ(pr)).(4)
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Proof. We prove the first part of the assertion. The proof of the second part
is similar and left to the reader. Let pr be odd. If it divides Ln, then by (iii)
it divides F2n and thus by (i) 2n ≡ 0(mod ρ(pr)). If ρ(pr) would be odd then
pr would divide Fn, thus contradicting (iv). Suppose ρ(pr) is even. Then
L ρ(pr)

2

F ρ(pr)
2

= Fρ(pr). Using (i) and (iv) it then follows that pr|L ρ(pr)
2

. �

Using this result it is not difficult to prove the following result character-
izing odd divisors of Lucas numbers.

Theorem 2. An odd integer m divides {Ln} if and only if there exists e ≥ 1
such that 2e‖ρ(p), the rank of apparition of p in {Fn}, for every prime p
dividing m.

Proof. Let m =
∏s
i=1 p

ei
i be the canonical prime factorization of m.

‘⇒’. By Lemma 1 it follows there exist odd integers bi such that
ρ(pe11 )

2
b1 = · · · = ρ(pess )

2
bs.

Thus there exists e ≥ 1 such that 2e||ρ(pr) for all prime powers pr dividing
m. By Proposition 1 this implies there exists e ≥ 1 such that 2e||ρ(p) holds
for all primes p dividing m.

‘⇐’. Put ai = ρ(pi)/2e, 1 ≤ i ≤ s. Then ai is odd. Using (4) and
Proposition 1, we see that m|L2e−1ma1···as . �

The behaviour of {Fn} and {Ln} is intimately connected with certain
aspects of the arithmetic of Q(

√
5). In the remainder of this section we will

deal with some elementary aspects of this connection that will be needed in
the sequel.

Put ε = (1 +
√

5)/2, ε̄ = (1 − √5)/2, θ = ε/ε̄. Note that θ = −ε2 =
−(3+

√
5)/2. Recall that Z[ε] is the ring of algebraic integers of Q(

√
5). The

Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn =
εn − ε̄n√

5
, Ln = εn + ε̄n,

respectively. The symbols p,P will be exclusively used to denote rational
primes respectively prime ideals. In this section the prime ideals will be from
Z[ε]. From elementary number theory recall that an ideal (p) is a prime ideal
of degree 2 if (5/p) = −1, i.e. if p ≡ ±2(mod 5) and (p) = PP̄ with P of
degree 1 if (5/p) = 1, i.e. if p ≡ ±1(mod 5). Furthermore (5) = P2 with
P = (

√
5). Notice that m divides some non-zero Fibonacci number if and

only if for some x ≥ 1 the congruence θx ≡ 1(mod (m)) holds in Z[ε].
Since θ is a unit in Z[ε] this is the case for arbitrary m. Thus ρ(m) exists.
For Lucas numbers the situation is slightly more complicated. We have for
p 6= 5, r ≥ 1,

pr|Ln ⇐⇒ θn ≡ −1(mod (pr)) ⇐⇒ θn ≡ −1(mod Pr),(5)
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whereP is any prime ideal dividing (p). The second equivalence in (5) follows
on noting that θn + 1 is a unit times a rational integer and so Pr divides
θn + 1 if and only if (pr) does.

Lemma 2. If P is of degree 1, then ordP(θ)|p− 1, if P is of degree 2, then
ordP(θ)|p+ 1.

Proof. Since Z[ε]/P ∼= Fp when P is of degree 1 and F∗p is cyclic of order
p − 1, the first part of the assertion follows. In the second case we have
Z[ε]/P ∼= Fp2 . Then θp ≡ θ̄(mod P) and so 1 = N(θ) = θ · θ̄ ≡ θp+1(mod P).
Therefore ordP(θ)|p+ 1. �

3. Computing the densities δe.

In order to prove the estimate (3) we need to compute, for e ≥ 0, the prime
density δe of the set Ce := {p > 2 : 2e‖ρ(p)}. This can be almost carried out
by algebraic number theory only. For s = 1, 2, e ≥ 0, j ≥ 1 put

Ns(e, j) = {p : p ≡ ±s(mod 5), p ≡ 3− 2s+ 2j(mod 2j+1), 2e‖ord(p)(θ)}.
Then it follows on noting that ρ(5) = 5 that C0 = ∪∞j=1{N1(e, j)∪N2(e, j)}∪
{5} and Ce = ∪∞j=1{N1(e, j) ∪N2(e, j)} for e ≥ 1. Note that all sets in this
union are disjoint. As a first step we compute ∆s(e, j), the prime density of
the set Ns(e, j). In the case s = 1 this problem can be reduced to computing
degrees of certain number fields. This reduction is due to Hasse [6] and was
used by several subsequent authors [1, 9, 11, 13, 15, 24]. The case s = 2 is
almost trivial; here one only needs the prime number theorem for arithmetic
progressions. The densities ∆1(e, j), ∆2(e, j) are recorded in Table 1 and
Table 2 respectively. The entry e in the last column gives

∑∞
j=1 ∆s(e, j).

The entry j in the last row gives
∑∞

e=0 ∆s(e, j).
The case s = 1. Here some some information on the number fields K0,n :=

Q(
√

5, ζ2n), n ≥ 1, is needed. K0,n is normal over Q and is easily seen to be
of degree 2n over Q. As compositum of the abelian fields Q(

√
5) and Q(ζ2n),

K0,n is abelian. As is well-known the absolute value of the discriminant of
Q(ζ2n) is (m/2)m/2, where m = 2n. The discriminant of Q(

√
5) is 5. Since

5 does not ramify in Q(ζ2n) we have dK0,n/Q(ζ2n ) = (5). Now if K ⊆ L ⊆M
is a tower of fields, then (see e.g. [14, Proposition 4.9])

dM/K = (NL/KdM/L)d[M :L]
L/K .(6)

Thus the absolute value of the discriminant of K0,n equals 5m/2(m/2)m and
consequently the primes outside {2, 5} do not ramify. The primes that split
completely in K0,n are precisely the primes satisfying p ≡ ±1(mod 5) and
p ≡ 1(mod 2n).

For b ≥ a put Ka,b = Q(
√

5, θ1/2a , ζ2b) and da,b = [Ka,b : Q].



272 PIETER MOREE

Lemma 3. For b > a ≥ 1, da,b = 2a+b−1. Furthermore d0,b = 2b, b ≥ 1,
d1,1 = 4 and db,b = 22b−1 for b ≥ 2.

Proof. When b > a ≥ 1, Ka,b = Q(
√

5, ε1/2
a−1

ζ2a+1 , ζ2b) = Q(ε1/2
a−1

, ζ2b). I
claim that X2a−1 − ε is irreducible over K0,b, for if it were not, then Q(

√
ε)

would be a subfield of the abelian field K0,b and hence normal. However,
by [5, Satz 1], Q(

√
ε) is not normal. Thus X2a−1 − ε is irreducible over K0,b

and hence da,b = 2a−1d0,b = 2a+b−1. The degrees db,b were computed in [9,
Lemma 3.1]. �

Lemma 4. A prime p satisfies

p ≡ ±1(mod 5), p ≡ 1 + 2j(mod 2j+1), θ
p−1

2t ≡ 1(mod P),(7)

where t ≤ j and P is a prime ideal in Z[ε] dividing (p) if and only if p
splits completely in Kt,j , but does not split completely in Kt,j+1. The prime
density of the set of all primes satisfying (7) equals 1/dt,j − 1/dt,j+1.

Proof. The proof of the last part of the assertion follows from the first part
and the Chebotarev density theorem. Note that it is enough to show that for
j ≥ 1, t ≤ j, the primes p for which p ≡ ±1(mod 5), p ≡ 1(mod 2j), θ

p−1

2t ≡
1(mod P) are precisely those that split completely in Kt,j . The primes sat-
isfying p ≡ ±1(mod 5), p ≡ 1(mod 2j) are precisely those that split com-
pletely in K0,j . Now let p be a prime that splits completely in K0,j . Note

that p is odd. Then θ
p−1

2t ≡ 1(mod P) implies by Euler’s criterion that
X2t ≡ θ(mod P) has a solution in Z[ε]. Let Q be a prime ideal of OKo,j
lying over P. Since the inertial degree f(Q|P) = 1, X2t ≡ θ(mod P) has a
solution in Z[ε] iff

X2t ≡ θ(mod Q)(8)

has a solution in OK0,j . Thus the proof will be completed once we show that
Q splits completely in Kt,j/K0,j iff (8) has a solution in OK0,j . So assume
(8) has such a solution. Since ζ2t ∈ OK0,j and Q does not extend 2, the
latter congruence has 2t distinct solutions. Let f(X) be a monic irreducible
polynomial over K0,j such that f(X)|X2t − θ and K0,j(X)/(f(X)) ∼= Kt,j .
It now follows by [16, Example 29] that in OK0,j we have Q = P1 · · ·Ps,
where s = [Kt,j : K0,j ] and the prime ideals Pν are pairwise distinct. Thus
Q splits completely in Kt,j/K0,j . If (8) does not have a solution in OK0,j it
follows similarly that Q decomposes in Kt,j as a product of prime ideals of
residual degree at least 2. �

The next lemma gives the densities ∆1(e, j) for e ≥ 0 and j ≥ 1. For the
convenience of the reader these prime densities are recorded in Table 1.
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Lemma 5. ∆1(e, j) = 0 for e > j. ∆1(0, 1) = 0, ∆1(0, j) = 1/4j for j ≥ 2.
For j ≥ 1, ∆1(1, j) = 1/4j . For j ≥ 2, ∆1(j, j) = 0. ∆1(e, j) = 1/22j+1−e
for e ≥ 2 and j ≥ e+ 1.

Proof. Suppose that p ∈ N1(e, j). By (5) the assertion 2e‖ord(p)(θ) is equiv-
alent with

2e‖ordP(θ),(9)

where P|(p). That ∆1(e, j) = 0 for e > j is immediate by Lemma 2. So

assume e ≤ j. In case e = 0 the condition (9) is equivalent with θ
p−1

2j ≡
1(mod P). Then, by Lemma 4, ∆1(0, j) = 1/dj,j − 1/dj,j+1. Using Lemma
3 we find ∆1(0, 1) = 0 and ∆1(0, j) = 1/4j for j ≥ 2. In case e ≥ 1 the

condition (9) is equivalent with θ
p−1

2j−e ≡ 1(mod P) and θ
p−1

2j−e+1 6≡ 1(mod P).
Thus, using Lemma 4, we find that for e ≥ 1, e ≤ j,

∆1(e, j) =
1

dj−e,j
− 1
dj−e,j+1

− 1
dj+1−e,j

+
1

dj+1−e,j+1
.

The remainder of the assertion now follows on invoking Lemma 3. �
The case s = 2. Let p ≡ ±2(mod 5). Recall that ord(p)(θ)|p + 1. Since

εε̄ = −1 and εp ≡ ε̄(mod (p)), εp+1 ≡ −1(mod (p)). Hence if p ≡ −1 +
2j(mod 2j+1), j ≥ 2, then θ

p+1
2 = (−1)

p+1
2 εp+1 ≡ −1(mod (p)). Thus

we have 2j‖ord(p)(θ) and therefore N2(j, j) = {p : p ≡ ±2(mod 5), p ≡
−1 + 2j(mod 2j+1)}. In particular it follows that ∆2(j, j) = 1/2j+1 and
∆2(e, j) = 0 whenever e 6= j. In case j = 1 and p ≡ 1(mod 4) we have
θ
p+1

2 = (−1)
p+1

2 εp+1 ≡ 1(mod (p)). Thus, using that (p + 1)/2 is odd, we
find N2(0, 1) = {p : p ≡ ±2(mod 5), p ≡ 1(mod 4)}, ∆2(0, 1) = 1/4 and, for
e ≥ 1, ∆2(e, 1) = 0. This finishes the computation of the densities ∆2(e, j).
They are recorded in Table 2.

The analytic arguments in the next section will show that the density δe
satisfies δe =

∑∞
j=1{∆1(e, j) + ∆2(e, j)}. Using the formulae derived in this

section for the prime densities ∆1(e, j) and ∆2(e, j) it then follows that

δ0 =
1
3
, δe =

2
3
· 1

2e
(e ≥ 1).

4. Counting primes dividing Lucas numbers.

In this section Theorem 3 will be proved following Wiertelak [26], who on
his turn used some ideas of P. D. T. A. Elliott [3]. Wiertelak used character
sums over prime ideals to evaluate Wm(x), where Wm := {p : m|ordp(a/b)},
with a and b non-zero integers. A slightly easier alternative approach to deal
with Wm(x), as explored by R.W.K. Odoni [15], would only yield an error
of exp{−c log log x/ log log log x}, for some constant c > 0, which, however,
is not sharp enough for our purposes.
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Theorem 3. Let ρ(p) denote the rank of apparition of p in the Fibonacci
sequence. For e ≥ 0 put Ce = {p > 2 : 2e‖ρ(p)}. Then

Ce(x) = δeLi(x) +O

(
x(log log x)4

log3 x

)
,

where δ0 = 1/3, δe = 21−e/3 for e ≥ 1 and the implied constant may depend
on e.

This result together with Theorem 2 and the prime number theorem with
error O(x log−3 x) implies the following improvement of [9, Theorem B]:

Theorem 4. The set of prime divisors of the sequence of Lucas numbers,
P, satisfies

P(x) =
2
3

Li(x) +O

(
x(log log x)4

log3 x

)
.

In particular the set P has prime density 2/3.

Before embarking on the proof of Theorem 3 we need a few prerequisites.
LetK be a number field of discriminant dK/Q and degree n over the rationals.
Let OK be its ring of integers, A an arbitrary integral ideal and P an
arbitrary integral prime ideal. Let χ be a character of the group of ideal
classes modulo A and ζ(s, χ) the Hecke zeta function (see [10]). By the
group of ideal classes modulo A we understand the following. We say that
B ∼ B′(mod A) iff (B,A) = (B′,A) = 1 and there exist totally positive ξ
and δ in OK such that ξ ≡ δ ≡ 1(mod A) and (ξ)B = (δ)B′. The principal
character of the group of ideal classes modulo A will be denoted by χ0,
the exceptional real character by χ1 and the hypothetical Siegel zero of
ζ(s, χ1), which is real and simple, by β1. We denote the product of |dK/Q|
and NK/QA, the absolute norm of A, by ∆. Set E0(χ) = 1 if χ = χ0 is
the principal character and zero otherwise. Set E1(χ) = 1 if χ = χ1 is the
exceptional real character and zero otherwise.

Lemma 6 ([26]). Let K be a number field. There exists an absolute positive
constant g1 such that∑

NP≤x
χ(P) = E0(χ)Li(x)− E1(χ)Li(xβ1) +O(R),

where

R =
x log(2∆)√

log x
exp

(
−g1

log x
max{√[K : Q] log x, log ∆}

)
.

Reasoning as in [19], see especially page 148, we find (cf. [26, Lemma
5.2]):



COUNTING DIVISORS OF LUCAS NUMBERS 275

Lemma 7. Let K be normal over Q. Then there exists an absolute constant
c1 > 0 such that

β1 < max
(

1− 1
4 log ∆

, 1− c1

∆1/[K:Q]

)
.

Let m > 1 be an integer. Put L = K(ζm). For ψ ∈ OK and a prime ideal
P of OL, (P,mψ) = 1, we denote by

(
ψ
P

)
m

the mth power residue symbol.

It is the unique mth root of unity such that
(
ψ
P

)
m
≡ ψNP−1

m (mod P). For

the ideal A of OL, (A,mψ) = 1, we put(
ψ

A

)
m

=
∏
pw‖A

(
ψ

P

)w
m

.

Lemma 8. Let m > 1 be an integer. Let K be a number field. Let α ∈
OK , α 6= 0. If B and B′ are ideals of OK(ζm) coprime to (4m2α) and
B′B−1 = (c), where c is totally positive and c ≡ 1((4m2α)), then( α

B′
)
m

=
( α
B

)
m
.

Proof. The proof easily follows on combining [2, Exercise 1.8] and [7, Satz
121]. An alternative proof arises on using the well-known fact that

(
α
P

)
m

depends only on the class to which P belongs mod f, where f is the conductor
of the extension K(ζm, α1/m) of K(ζm) (see e.g. [2, p. 273]). The proof then
follows on using an estimate due to Hasse for the conductor of Kummerian
fields ([7, Satz 166]; the meaning of the symbols ν and s0 appearing in Satz
166 is explained in Satz 164). �

Lemma 8 was proved in case K = Q by Elliott [4] with 4m2α replaced
by m2α. Elliott made heavy use of classical reciprocity results due to Hasse.
The point of Lemma 8 is that it shows that the conductor of K(ζm, α1/m),
viewed as a function of m, is polynomial in m, rather than superexponential,
which would follow on estimating the conductor by the discriminant. Using
the superexponential estimate would result in a larger error term in Theorem
3.

Implicit error terms appearing in the remainder of this section that are
not subindexed may depend at most on ψ and K.

Theorem 5. Let K be a normal extension of Q, ψ ∈ OK and M = K(ζ2n ,

ψ1/2r). Let π̂M (x) denote the number of rational primes not exceeding x that
split completely in M. Then for any C > 0 there exists a constant g2 > 0
depending at most on ψ, K and C, such that

π̂M (x) =
Li(x)

[M : Q]
+O

(
x

logC x

)
,
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uniformly for

2n ≤ g2
log x

(log log x)2
, r ≤ n.(10)

The implied constant also depends at most on ψ, K and C.

Proof of Theorem 5. Put L = K(ζ2n) and M = L(ψ1/2r). For the duration of
this proof P will be used to denote a prime ideal from OL. Note that L as a
compositum of two normal extension of Q is itself normal over Q. Let r ≤ n.
Let SM denote the set of rational primes p such that (p, 2NK/Q(ψ)) = 1, p
splits completely in L and X2r ≡ ψ(mod P), where P is any prime ideal
dividing (p), has a solution in OL. Reasoning as in the proof of Lemma 4
we find

π̂M (x) = SM (x) +O(1).(11)

Since for p in SM , NP = p ≡ 1(mod 2r), we can by the Euler criterion also
write{
p : (p, 2NK/Q(ψ))=1, p splits completely in L, ψ

p−1
2r ≡1(mod P), P|(p)

}
for SM . On using the power residue symbol we can finally write

SM =
{
p : (p, 2NK/Q(ψ))=1, p splits completely in L,

(
ψ

P

)
2r
=1,P|(p)

}
.

Now let us define TM,1 =
{
P : (P, 2nψ) = 1,

(
ψ
P

)
2r

= 1, f(P|p) = 1
}

and

TM =
{
P : (P, 2nψ) = 1,

(
ψ
P

)
2r

= 1
}
. Using that L is normal over Q it

follows that SM (x) = TM,1(x)/[L : Q] + O(1). Since TM (x) = TM,1(x) +
O([L : Q]

√
x log x), we find

SM (x) =
TM (x)
[L : Q]

+O(
√
x log x).(12)

Next we estimate TM (x). Let εk be a kth root of unity. Note that

1
k

k∑
j=1

((
α

P

)
k

/
εk

)j
=

{
1 if

(
α
P

)
k

= εk;

0 otherwise.

Thus we can write

TM (x) =
∑

NP≤x,
(
ψ
P

)
2r

=1

1 =
1
2r

2r∑
j=1

∑
NP≤x

(
ψj

P

)
2r
,(13)

where the summation is over all prime ideals P in OL satisfying (P, 2nψ) =

1. For a given integer 1 ≤ j ≤ 2r we define χj(A) to be
(
ψj

A

)2n−r

2n
in case

(A, 4n+1ψ) = 1 and zero otherwise. By the multiplicativity of χj and Lemma
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8, χj is a character of the group of ideal classes modulo (4n+1ψ), the principal
ideal in OL generated by 4n+1ψ. Thus we can rewrite (13) as

TM (x) =
1
2r

2r∑
j=1

∑
NP≤x

χj(P).

From this, Lemma 6, (12) and (11) we obtain

π̂M (x) =
aM

[L : Q]
Li(x)− bM

[L : Q]
Li(xβ1) +O(R) +O(

√
x log x),(14)

with 0 ≤ aM , bM ≤ 1, R as in Lemma 6 and ∆ = |dL/Q| · NL/Q(8nψ). We
have log ∆ ≤ g32nn, where g3 depends at most on ψ and K. If r and n
satisfy (10) then

log ∆ ≤ g2g3
log x

log log x
,(15)

where g2 is still to be chosen. Let C > 0 be given. Using the estimate (15)
and Lemma 7 to deal with the exceptional zero β1 in (14), we see that we can
choose g2 so small as to ensure that π̂M (x) = aMLi(x)/[L : Q]+O(x log−C x)
uniformly in the region (10). By the Chebotarev density theorem it follows
that aM/[L : Q] = 1/[M : Q] (hence aM = 1/[M : L]). So the result
follows. �

It should be remarked that the best known uniform version of the Cheb-
otarev theorem yields only a far weaker result (cf. [15]). Our approach,
however, does not work for arbitrary number fields and hence does not lead
to a better uniform version of the Chebotarev density theorem.

Proof of Theorem 3. Applying Theorem 5 with K = Q(
√

5) and ψ = θ =
−(3 +

√
5)/2, we find using Lemma 4 that there exists an absolute positive

constant g4 such that uniformly for 2j ≤ g4 log x(log log x)−2, e ≤ j,

N1(e, j)(x) = ∆1(e, j)Li(x) +O

(
x

log3 x

)
(16)

(cf. the proof of Lemma 5). Next we estimate I(x) :=
∑∞

j=1N1(e, j)(x).
Since N1(e, j) is empty for j < e, we can write I(x) = I1(x) + I2(x),
where I1(x) =

∑m
j=eN1(e, j)(x), I2(x) =

∑∞
j=m+1N1(e, j)(x) and m is the

largest integer such that 2m ≤ g4 log x(log log x)−2. Using equation (16) and



278 PIETER MOREE

∆1(e, j)� 1/4j (see Lemma 5) we find

I1(x) = Li(x)
m∑
j=e

∆1(e, j) +O

(
m

x

log3 x

)

= Li(x)
∞∑
j=1

∆1(e, j) +O

(
Li(x)
4m

)
+O

(
m

x

log3 x

)

= Li(x)
∞∑
j=1

∆1(e, j) +O

(
x(log log x)4

log3 x

)
.

The primes counted by I2(x) all satisfy the congruences p ≡ ±1(mod 5), p ≡
1(mod 2m) and θ(p−1)/2m ≡ 1(mod P), where P|(p). Thus I2(x) ≤ π̂Km,m(x)
(cf. the proof of Lemma 4). By Lemma 3 [Km,m : Q] � 4m. It follows
from this estimate, Theorem 5 and 2m ≤ g4 log x(log log x)−2 that I2(x) =
O(x(log log x)4 log−3 x). Thus

I(x) = Li(x)
∞∑
j=1

∆1(e, j) +O

(
x(log log x)4

log3 x

)
.

Put J(x) =
∑∞

j=1N2(e, j)(x). In every row in Table 2 there is at most one
non-zero prime density. As was seen in the computation of the prime den-
sities ∆2(e, j), the set corresponding to the non-zero prime density consists
of all primes in a finite union of arithmetic progressions and furthermore
the sets corresponding to the zero prime densities are all empty. Hence it
follows using the prime number theorem for arithmetic progressions that

J(x) = Li(x)
∞∑
j=1

∆2(e, j) +O

(
x

log3 x

)
.

Thus

Ce(x) = Li(x)
∞∑
j=1

(∆1(e, j) + ∆2(e, j)) +O

(
x(log log x)4

log3 x

)
and on recalling the conclusion of Section 3, the proof of Theorem 3 becomes
complete.

5. Counting Lucas divisors.

Once Theorem 3 is established it is rather straightforward to prove Theorem
1, which will be done in this section. Recall that δj = 21−j/3, j ≥ 1. Let
Lodd denote the set of odd Lucas divisors and L the set of Lucas divisors.
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We first show that

Lodd(x) =
x

log x

 t−1∑
j=0

dj logδj+1 x+O(logδt+1 x)

 ,(17)

with d0, · · · , dt−1 positive constants. From this it is then deduced that
a similar estimate holds for L(x), with different constants dj . This then
finishes the proof of Theorem 1.

By Theorem 2,

Lodd =
∞⋃
r=1

Gr,

where Gr is the set of natural numbers including 1 which are composed of
primes in Cr only. The sets Gr are completely multiplicative; ab ∈ Gr if
and only if a, b ∈ Gr, where a and b are natural numbers. Furthermore
Gr ∩ Gs = {1} for r 6= s. Thus the problem of estimating Lodd(x), and, as
we will see, that of estimating L(x), reduces to that of estimating Gr(x) for
r ≥ 1. In order to estimate Gr(x), we use the following estimate:

Theorem 6 ([12]). Let S be a completely multiplicative set of natural num-
bers such that ∑

p∈S, p≤x
1 = τLi(x) +O

(
x(log log x)g

log3 x

)
,(18)

where τ > 0 and g ≥ 0 are fixed. Then

S(x) = cx logτ−1 x+O(x(log log x)g+1 logτ−2 x),

where c > 0 is a constant.

For S = Gr (18) is satisfied with τ = δr and g = 4 by Theorem 3.
Applying Theorem 6 and using δr ≤ 1

3 , we obtain

Gr(x) = drx logδr−1 x+O
(
x logδt+1−1 x

)
,(19)

for some positive constant dr. The estimate (17) for Lodd(x) now follows
once we show that

∞∑
r=t+1

Gr(x) = O
(
x logδt+1−1 x

)
.(20)

To this end, notice that the primes in Cr, r ≥ s ≥ 1, satisfy p ≡ ±1(mod 2s).
Thus ∑

r≥s
Gr(x) ≤

∑
n≤x

p|n⇒p≡±1(mod 2s)

1.
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This latter sum can be estimated with the help of Theorem 6 and the esti-
mate

π(x; 2s, 1) :=
∑
p≤x

p≡±1(mod 2s)

1 =
2

2s−1
Li(x) +O

(
x

log3 x

)
,

which follows from the prime number theorem for arithmetic progressions.
Thus by choosing s large enough (taking 2s−2 ≥ 1/δt+1 will do), we can en-
sure that

∑
r≥sGr(x) = O

(
x logδt+1−1 x

)
. By (19) and the fact that {δr}∞r=1

is monotonic decreasing, we have∑
t+1≤r≤s

Gr(x) = O
(
x logδt+1−1 x

)
.

Thus (20) holds and (17) follows.
It remains to deal with even Lucas divisors. Note that 2‖Ln iff n ≡

0(mod 6), that 4‖Ln iff n ≡ 3(mod 6) and that 8 is not a Lucas divisor.
Suppose m is an odd Lucas divisor, say m|Ln. Then 2m|L6n and so 2m is
a Lucas divisor, 4m is only a Lucas divisor if the rank of apparition ρ(p) of
all the prime divisors p of m is exactly divisible by 2, finally 8m is never
a divisor. Thus L(x) = Lodd(x) + Lodd(x2 ) + G1(x4 ). Theorem 1 follows on
invoking the estimate (17) and (19) with r = 1.

Remark. Let h ≥ 1 be an integer. Let Lh denote the set of divisors of
{Lhn}∞n=0. It is possible to formulate and prove an analogue of Theorem 1
for Lh(x).

6. Explicit divisibility criteria.

Table 1 and 2 can be used to derive some explicit criteria for primes to divide
Lucas numbers. We leave it to the reader to prove that if an entry in one of
the tables is zero, then the corresponding set is empty. Using Table 1 and
2 it then follows that p is a divisor of {Ln} if p ≡ 3(mod 4); that is if p ≡
3, 7, 11, 19(mod 20), p is a non-divisor of {Ln} if p ≡ 13, 17(mod 20). This is
Lemma 2.1 of [23]. More in particular we have p ∈ C0 if p ≡ 13, 17(mod 20),
p ∈ C1 if p ≡ 11, 19(mod 20) and p ∈ Cord2(p+1) if p ≡ 3, 7(mod 20).
The primes p ≡ 1, 9(mod 20) are not covered. By Table 1 the primes
p ≡ 21, 29(mod 40) are either in C0 or in C1. Each such prime is repre-
sented by the form X2 + 4Y 2. Let (X,Y ) = (u, v) be such a representation.
Then p ∈ C1 if and only if u ≡ ±1(mod 5) or v ≡ ±1(mod 5). This follows
using a result of Ward [23, Theorem 3.3]. Thus 7/8th of all primes are cov-
ered. Similar results can be proved for the recurrences {ak + bk} (see [12,
Section 6]).

Using the fact that the second row in Table 2 has only zero entries it is
deduced that the Lucas number Ln with n ≡ 1(mod 2) is composed only of
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primes p satisfying p = 2 or p ≡ ±1(mod 5). In fact the number of divisors
m of {L1+2n} not exceeding x equals

c
x

log2/3 x
+O

(
x

(log log x)5

log5/3 x

)
,

where c > 0. This estimate is quite different from that for the sequence
{L2n} (cf. the final remark of Section 5).
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The rank of apparition of the prime p in
the Fibonacci sequence is denoted by ρ(p).

Table 1

Prime density of the set
{p : p ≡ ±1(mod 5), p ≡ 1 + 2j(mod 2j+1), 2e‖ρ(p)}

e\j 1 2 3 4 5 6 7 ...

0 0 1
16

1
64

1
256

1
1024

1
4096

1
16384 .. 1

12

1 1
4

1
16

1
64

1
256

1
1024

1
4096

1
16384 .. 1

3

2 0 0 1
32

1
128

1
512

1
2048

1
8192 ... 1

24

3 0 0 0 1
64

1
256

1
1024

1
4096 ... 1

48

4 0 0 0 0 1
128

1
512

1
2048 ... 1

96

5 0 0 0 0 0 1
256

1
1024 ... 1

192

6 0 0 0 0 0 0 1
512 ... 1

384

... ... ... ... ... ... ... ... ... ...
1
4

1
8

1
16

1
32

1
64

1
128

1
256 ... 1

2

Table 2

Prime density of the set
{p : p ≡ ±2(mod 5), p ≡ −1 + 2j(mod 2j+1), 2e‖ρ(p)}

e\j 1 2 3 4 5 6 7 ...

0 1
4 0 0 0 0 0 0 ... 1

4

1 0 0 0 0 0 0 0 ... 0

2 0 1
8 0 0 0 0 0 ... 1

8

3 0 0 1
16 0 0 0 0 ... 1

16

4 0 0 0 1
32 0 0 0 ... 1

32

5 0 0 0 0 1
64 0 0 ... 1

64

6 0 0 0 0 0 1
128 0 ... 1

128

... ... ... ... ... ... ... ... ... ...
1
4

1
8

1
16

1
32

1
64

1
128

1
256 ... 1

2
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