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NUMERICAL SEMIGROUPS GENERATED BY INTERVALS

P.A. Garćıa-Sánchez and J.C. Rosales

We study numerical semigroups generated by intervals and
solve the following problems related to such semigroups: the
membership problem, give an explicit formula for the Frobe-
nius number, decide whether the semigroup is a complete in-
tersection and/or symmetric, and computation of the cardi-
nality of a (any) minimal presentation of this kind of numerical
semigroups.

A numerical semigroup is a finitely generated subsemigroup of the set of
nonnegative integers N, such that the group generated by it is the set of all
integers Z. In this paper we study the semigroups generated by intervals
of nonnegative integers, that is to say, semigroups of the form S = 〈a, a +
1, . . . , a + x〉 = {∑x

i=0 ni(a + i) : ni ∈ N} ⊆ N. Note that if x ≥ a, then
S = {a, a+1, . . . } = a+N = 〈a, a+1, . . . , 2a−1〉; thus we may assume that
x ≤ a− 1. For a semigroup of this kind we solve the following problems:

1) Membership problem. An element n ∈ N belongs to S = 〈a, a +
1, . . . , a+ x〉 if and only if n mod a ≤ bna cx, where bna c is quotient of
the integer division of n by a, and n mod a denotes the remainder of
this division, n− bna ca.

2) Computation of the Frobenius number of the semigroup. The Frobe-
nius number of a numerical semigroup (also known as the conductor of
the semigroup) is the greatest integer not belonging to the given semi-
group. The Frobenius number of S = 〈a, a+1, . . . , a+x〉 is da−1

x ea−1,
where dqe denotes the least integer greater than or equal to q ∈ Q+.

3) Symmetry of the semigroup. A numerical semigroup T with Frobenius
number C is symmetric if and only if for each z ∈ Z we have that
either z ∈ S or C − z ∈ S. These kinds of semigroups are specially
interesting in Ring Theory as Kunz shows in [7]. The semigroup S =
〈a, a + 1, . . . , a + x〉 is symmetric if and only if a ≡ 2 mod x (here
a ≡ b mod c denotes the fact a− b = kc for some integer k).

4) Cardinality of a minimal presentation of S. The semigroup S = 〈a, a+
1, . . . , a+x〉 is isomorphic to Nx+1/σ, where σ is the kernel congruence
of the semigroup morphism

ϕ : Nx+1 → S, ϕ(n0, . . . , nx) =
x∑
i=0

ni(a+ i),
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76 P.A. GARCÍA-SÁNCHEZ AND J.C. ROSALES

that is to say a σ b if and only if ϕ(a) = ϕ(b). A minimal presentation
of S is a minimal system of generators of the congruence σ. In this
paper we show that the cardinality of a minimal presentation of S is

x(x− 1)
2

+ x− ((a− 1) mod x).

5) Complete intersection semigroups. A numerical semigroup is a com-
plete intersection if the cardinality of a minimal presentation plus
one equals the cardinality of a minimal system of generators of the
given semigroup (see [6]). We show that the semigroup S = 〈a, a +
1, . . . , a+ x〉 is a complete intersection if and only if S is 〈a, a+ 1〉 or
〈2k, 2k + 1, 2k + 2〉.

The point of departure to solve these problems is the following lemma.

Lemma 1. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a. Then, n ∈ S if and only if n = qa + i with q ∈ N and
i ∈ {0, . . . , qx}.
Proof. If n ∈ S then there exist n0, . . . , nx ∈ N such that n =

∑x
j=0 nj(a+j).

Thus, n = (
∑x

j=0 nj)a+
∑x

j=1 njj. Take q =
∑x

j=0 nj and i =
∑x

j=1 njj ≤∑x
j=0 njx = qx.
Now, assume that n = qa + i, with 0 ≤ i ≤ qx. We distinguish two

possible cases:
1) If i = qx then n = q(a+ x) ∈ S.
2) If i = kx+r, with 0 ≤ k < q and 0 ≤ r ≤ x−1, then n = qa+kx+r =

(q − k − 1)a+ k(a+ x) + a+ r ∈ S.
�

From this membership characterization, we can derive the following char-
acterization which is easier to check and it is what we will use later in the
paper.

Corollary 2. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a. Then, n ∈ S if and only if (n mod a) ≤ bna cx.

Proof. If n ∈ S, then using the previous lemma, there exists q ∈ N and
0 ≤ i ≤ qx such that n = qa + i. Besides, n = bna ca + (n mod a). Thus,
n mod a = qa + i − bna ca = (q − bna c)a + i, and since q ≤ bna c, we get that
n mod a ≤ i ≤ qx ≤ bna cx.

Now, assume that (n mod a) ≤ bna cx. Since n = bna ca + (n mod a) and
0 ≤ n mod a ≤ bna cx, applying the previous result, we get that n ∈ S. �

For every n ∈ S, the Apéry set (see [1]) associated to n is defined as

S(n) = {s ∈ S : s− n 6∈ S}.
Using last result, we can characterize the elements belonging to S(a). This

characterization is going to play an important role in the rest of the paper.
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Corollary 3. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a and let n ≥ a. Then, n ∈ S(a) if and only if (n mod a) ∈
{(bna c − 1)x+ 1, . . . , bna cx}.
Proof. The element n ∈ S(a) if and only if n ∈ S and n − a 6∈ S. By
the previous result this occurs if and only if (n mod a) ≤ bna cx and ((n −
a) mod a) > bn−aa cx. But (n − a) mod a = n mod a and bn−aa c = bna c − 1
(note that n ≥ a). Hence, n ∈ S(a) if and only if n mod a ∈ {(bna c − 1)x+
1, . . . , bna cx}. �

We can explicitly construct S(a) as the next corollary shows.

Corollary 4. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a. Then, S(a) = {qa + (q − 1)x + r : 1 ≤ r ≤ x, q ∈ N and 0 ≤
(q − 1)x+ r < a}.
Proof. Take n = qa + (q − 1)x + r such that 1 ≤ r ≤ x, q ∈ N and 0 ≤
(q−1)x+r < a. Then, bna c = q and n mod a = (q−1)x+r = (bna c−1)x+r ∈
{(bna c−1)x+ 1, . . . , bna cx}. Using the previous result, we get that n ∈ S(a).

Now, take n = bna ca+ (n mod a) ∈ S(a). Then, by the previous corollary,
n mod a ∈ {(bna c−1)x+1, . . . , bna cx} and therefore n mod a = (bna c−1)x+r,
with r ∈ {1, . . . , x}. Taking q = bna c we are done. �

If S is a numerical semigroup then the set N \ S is finite, because the
group spanned by S is Z. As we have mentioned before, the maximum of
this set is called the Frobenius number of the semigroup, which we denote
by C(S). It is well known (see [2]) that C(S) = max(S(a))− a. Thus, if we
want to compute C(S), we have to determine the greatest element in S(a).
This is performed in the next result.

Corollary 5. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a. Then, C(S) = da−1

x ea− 1.

Proof. We must determine the maximum of S(a) = {qa+ (q − 1)x+ r : 1 ≤
r ≤ x, q ∈ N and 0 ≤ (q − 1)x + r < a}. The maximum is reached when
(q−1)x+r = a−1. The element a−1 is equal to ba−1

x cx+((a−1) mod x).
Two possibilities arise:
• If (a− 1) mod x 6= 0 then take (q− 1) = ba−1

x c and r = (a− 1) mod x.
The greatest element in S(a) is qa+(q−1)x+r = (ba−1

x c+1)a+a−1.
• If (a−1) mod x = 0 then, since r must be in {1, . . . , x}, write a−1 as
a−1 = (ba−1

x c−1)x+x. Take q−1 = ba−1
x c−1 and r = x. In this case,

the greatest element in S(a) is qa+ (q− 1)x+ r = qa+ (q− 1)x+ x =
ba−1

x ca+ a− 1.

Both cases are represented by da−1
x ea+a−1, which is the greatest element

in S(a). �
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Note that this implies that for the numerical semigroups generated by
intervals there exists an explicit formula to compute the Frobenius number of
the semigroup. It seems that there is no known formula for the general case.
Nevertheless, for some specific cases there exists an explicit formula. For
instance, in [4], a formula for the Frobenius number of numerical semigroups
generated by up to three elements and of symmetric numerical semigroups
generated by up to four elements is given (see also [5] for more references).

Another characterization of symmetric numerical semigroups is the fol-
lowing (see [3]). The numerical semigroup S is symmetric if the greatest
element, w, of S(a) satisfies the condition that for every s ∈ S(a), the el-
ement w − s is in S. We use this result to give a characterization of the
numerical semigroups generated by intervals that are symmetric.

Theorem 6. Let S = 〈a, a + 1, . . . , a + x〉 6= N be a numerical semigroup
with 1 ≤ x < a. Then, S is symmetric if and only if a ≡ 2 mod x.

Proof. We can assume that x ≥ 2, since if x = 1 then S is generated by
two relatively prime elements and in this case it is well known that S is
symmetric (see for instance [5]).

Let w be the greatest element in S(a). We already know that w = qa +
(q − 1)x+ r with (q − 1)x+ r = a− 1.

If S is symmetric, since 1 6∈ S, then qa+(q−1)x+r−1 cannot be in S(a).
Hence, qa+(q−1)x+r−1 ∈ S \S(a), which means that n = (q−1)a+(q−
1)x+ r−1 = qa+(q−1)x+ r−1−a ∈ S. Since n mod a = (q−1)x+ r−1,
bna c = q−1 and n mod a must be less than or equal to bna cx, we get that r−1
must be zero. Hence, a− 1 = (q − 1)x+ 1, which means that a ≡ 2 mod x.

If a ≡ 2 mod x, then (a− 1) ≡ 1 mod x, and therefore (a− 1) mod x = 1,
which from the first case in the proof of the last corollary implies that r = 1.
Consequently, w = qa+(q−1)x+1. Take 0 6= m = ka+(k−1)x+ i ∈ S(a),
that is to say 0 6= k ∈ N, 0 ≤ (k − 1)x + i < a and i ∈ {1, . . . , x}. Then,
w−m = (q−k)a+(q−k−1)x+(x− i+1). Note that x− i+1 ∈ {1, . . . , x},
q − k ∈ N and 0 ≤ (q − k − 1)x+ (x− i+ 1) = (q − k)x+ 1− i < a. Hence,
w−m ∈ S(a) ⊂ S for all m ∈ S(a) and this means that S is symmetric. �

The rest of the paper is devoted to computing the cardinality of a minimal
presentation of the numerical semigroup S = 〈a, a + 1, . . . , a + x〉 with
1 ≤ x < a.

It can be shown (see [6] for example) that for a numerical semigroup the
cardinality of a set of generators of σ, the kernel congruence of ϕ, is greater
than or equal to the number of generators of the semigroup minus one (in our
case, this amount is x). When this lower bound is reached, the semigroup
is a complete intersection. These semigroups are always symmetric.

In [8], the first author gives an algorithm to compute a system of gen-
erators, ρ, for σ with minimal cardinality. From the results given in that
paper, it is determined that the concepts of system of generators for σ with
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minimal cardinality and minimal system (with respect to the inclusion) of
generators of σ coincide. Next, we give a sketch of this construction, which
is needed to count the elements in a minimal presentation of S.

For every n ∈ S, we define the graph Gn = (Vn,En), as

Vn = {a+ i ∈ {a, . . . , a+ x} : n− (a+ i) ∈ S},
En = {[a+ i, a+ j] : n− ((a+ i) + (a+ j)) ∈ S, i 6= j ∈ {0, . . . , x}}.

We define ρn as:
1) If Gn is not connected and G1

n = (V1
n,E

1
n), . . . ,Grn = (Vr

n,E
r
n) are its

connected components, then for every 1 ≤ i ≤ r we select an element
αi = (n0i , . . . , nxi) ∈ Nx+1 \ {0} such that ϕ(αi) = n and nki = 0 for
all a+ ki 6∈ Vi

n. Define ρn = {(α1, α2), (α1, α3), . . . , (α1, αr)}.
2) If Gn is connected, we define ρn = ∅.
The set ρ =

⋃
n∈S ρn is a system of generators for σ with minimal cardi-

nality (see [8]). Thus, we must look for the elements n ∈ S such that Gn is
not connected.

Example 7. Let S = 〈6, 7, 8〉. The vertices of G14 are {6, 7, 8} and the only
edge of G14 is [6, 8]. Thus G14 has two connected components: One is the
vertex 7 and the other is the edge [6, 8]. The elements (0, 2, 0) and (1, 0, 1)
are in N3 and verify that ϕ(0, 2, 0) = ϕ(1, 0, 1) = 14 (observe that the first
and last coordinates of (0, 2, 0) are zero and that the second coordinate of
(1, 0, 1) is zero). Thus ρ14 = {((0, 2, 0), (1, 0, 1))}, meaning that 2×7 = 6+8
is a relation on S.

Theorem 8. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a and ρ as before. Then,

#ρ =
x(x− 1)

2
+ x− ((a− 1) mod x).

Proof. From the proof of Lemma 1, it is derived that if n ∈ S then n can be
expressed in one of the following ways:
• n = ka+ l(a+ x) for some nonnegative integers k, l.
• n = ka + l(a + x) + (a + i) for some nonnegative integers k, l and
i ∈ {1, . . . , x− 1}.

Hence, if Gn is not connected, then the set {a, a+ x} ∩Vn is not empty. In
the construction of ρ we take G1

n to be the connected component containing
a, if a ∈ Vn. If a is not a vertex of Gn then we take G1

n to be the connected
component containing a+ x (which must be in Vn). We are going to count
the elements in ρ which come from the fact that a+ i, 1 ≤ i < x is neither
in the connected component containing a nor in the connected component
containing a+x (if a or a+x is not in Vn this is translated to the fact that
a+ i is not in V1

n). Next, we will count the elements in ρ which arise when
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a and a+ x are in different connected components (that is to say, a+ x not
in V1

n). With this, we count all the elements belonging to ρ.

• First, let us assume that Gn is not connected and there is a + i ∈
Vn such that a + i is not in the connected component(s) containing
{a, a+x}∩Vn. Hence, n− (a+ i+ a) 6∈ S and n− (a+ i+ a+x) 6∈ S,
which implies that n = w + (a + i) with 0 6= w ∈ S(a) ∩ S(a + x).
It is easy to check, from the description of S(a) given in Corollary 4,
that S(a) ∩ S(a + x) = {0, a + 1, . . . , a + x − 1}. Thus, there exists
j ∈ {1, . . . , x − 1} such that n = (a + j) + (a + i). Note that the
reverse is also true: If n = (a+ i) + (a+ j) with i, j ∈ {1, . . . , x− 1},
then the elements a and a + i are not connected in Gn and the same
holds for a + x and a + i. This means that every expression of the
form n = (a+ i) + (a+ j) with 1 ≤ i, j ≤ x− 1 yields a new element
in ρn (the element (α1, αt), where Gtn is the connected component of
Gn containing a + i). This implies that from these graphs we get as
many elements in ρ as pairs (i, j) with 1 ≤ i, j ≤ x− 1. This amount
is x(x− 1)/2.
• Now, let us count the elements in ρ coming from non-connected graphs

Gn such that a and a+x are in different connected components. Since
a and a+ x are in different connected components of Gn, the element
n can be expressed as n = w + (a + x), where w ∈ S(a). Note also
that n 6∈ S(a). Thus, we must find the elements w in S(a) such that
w+(a+x)−a = w+x ∈ S. By the proof of Corollary 5, depending on
r = (a− 1) mod x, the maximum element in S(a) is qa+ (q− 1)x+ r,
if r 6= 0, or qa+ (q − 1)x+ x, if r = 0, where q = da−1

x e.
1) If r 6= 0, then q = ba−1

x c + 1 ≥ 2. Let us show that the element
w = ka + (k − 1)x + i ∈ S(a) (1 ≤ i ≤ x and 0 ≤ (k − 1)x + i <
a) satisfies that w + x is not in S when k ≤ q − 2. Note that
(k − 1)x + i + x ≤ (k + 1)x ≤ (q − 1)x = ba−1

x cx ≤ a − 1 < a.
Thus, (w + x) mod a = kx + i and bw+x

a cx = kx. Since i ≥ 1, by
Corollary 2, w + x 6∈ S.
Let us show that w = (q − 1)a + (q − 2)x + i ∈ S(a) verifies that
w + x 6∈ S when i ≤ r. Note that (q − 2)x+ i+ x = (q − 1)x+ i ≤
(q − 1)x + r = a − 1. Thus, (w + x) mod a = (q − 1)x + i and
bw+x

a cx = (q − 1)x, which by Corollary 2 implies that w + x 6∈ S.
In addition, let us prove that if w ∈ {qa+(q−1)x+1, . . . , qa+(q−
1)x+ r}, then a and a+x are in the same connected component of
Gw+(a+x). Take w = qa+(q−1)x+i in this set. Then, w+(a+x) =
q(a+x) + (a+ i), which means that [a+x, a+ i] ∈ E(Gn). Besides,
w+(a+x) = (q+1)a+qx+i = (q+1)a+((q−1)x+r)+x−r+i =
(q+1)a+(a−1)+x−r+ i = qa+(a+ i)+(a+(x−r−1)) (observe
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that 0 ≤ x − r − 1 ≤ x). This implies that [a, a + i] ∈ E(Gn) and
consequently a and a+ x are connected in Gn.
Hence, the elements w we are interested in must be in the set R =
{(q − 1)a + (q − 2)x + r + 1, . . . , (q − 1)a + (q − 2)x + x}. Let us
show that, as a matter of fact, for the elements n ∈ S of the form
n = w + (a + x), with w in the previous set, the graph Gw+(a+x)

has no path connecting a and a + x. In order to show this, it
is enough to prove that if w = (q − 1)a + (q − 2)x + r + i ∈ R,
n − ((a + k) + (a + j)) ∈ S and j ≥ i then k must be greater
or equal than i. The element m = n − (a + k + a + j) is equal
to (q − 2)a + (q − 1)x + r + i − k − j. We distinguish two cases
depending on the value of q − 1:

– If q − 1 ≥ 2, then (q − 1)x + r + i ≥ 2x ≥ k + j and therefore
(q − 1)x + r + i − k − j ≥ 0. Besides, (q − 1)x + r + i −
k − j = (a − 1) + i − k − j ≤ a − 1 since i − j ≤ 0. Hence,
m mod a = (q−1)x+ r+ i−k− j and bma cx = (q−2)x. Using
Corollary 2, we get that since m = n − (a + j + a + k) ∈ S,
(q−1)x+r+i−j−k ≤ (q−2)x, that is to say, x+r+i−k−j ≤ 0,
and this occurs if and only if (x− j) + r + i ≤ k which implies
that k ≥ i, since x− j + r ≥ 0.

– If q − 1 = 1 then m = x + r + i − k − j ≥ 0, since m ∈ S and
as before x + r + i − k − j ≤ a − 1. In this case, m mod a =
x + r + i − k − j and bma c = 0. Thus, m ∈ S implies that
x+ r + i− k − j ≤ 0, and this leads to k ≥ i.

Taking all this into account we have as many new elements in ρ
as elements has the set R, and this amount is x − r = x − ((a −
1) mod x).

2) If r = 0, then q = ba−1
x c ≥ 1. Let us show that the element

w = ka+ (k − 1)x+ i ∈ S(a) (1 ≤ i ≤ x and 0 ≤ (k − 1)x+ i < a)
satisfies that w + x is not in S when k ≤ q − 1. This is due to the
fact that (k−1)x+ i+x = kx+ i ≤ (q−1)x+ i = a−1−x+ i < a
(recall that i ≤ x), and therefore (w + x) mod a = kx + i and
bw+x

a cx = kx, which, once more, implies that w + x 6∈ S.
In this case, we get that w must be in the set R = {qa+ (q− 1)x+
1, . . . , qa + (q − 1)x + x}. In the same way we did for the case
r 6= 0, it can be shown that all these elements produce graphs such
that a and a+ x are in different connected components (the proof
is the same but for the cases to distinguish, which are q − 1 ≥ 1
and q− 1 = 0). Again, we get x = x− 0 = x− ((a− 1) mod x) new
elements in ρ.
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Counting all the elements in ρ, we have that

#ρ =
x(x− 1)

2
+ x− ((a− 1) mod x).

�

With this theorem it is easy to prove the next result.

Corollary 9. Let S = 〈a, a + 1, . . . , a + x〉 be a numerical semigroup with
1 ≤ x < a and ρ as before. Then, S is a complete intersection if and only if
one of the following cases occur:

1) S = 〈a, a+ 1〉 (x = 1).
2) S = 〈2k, 2k + 1, 2k + 2〉 (x = 2 and a mod 2 = 0).

Proof. The semigroup S is a complete intersection if and only if #ρ = x.
Using previous theorem this occurs if and only if x(x − 1)/2 + x − ((a −
1) mod x) = x, and this happens if and only if x(x− 1)/2 = (a− 1) mod x.
Thus, if S is a complete intersection then x(x − 1)/2 < x and this implies
that x < 3, since x > 0. Hence, two cases may occur:

1) x = 1. In this case, S = 〈a, a+ 1〉. Note that if S is of this form then
S is a complete intersection.

2) x = 2. Under this setting then S = 〈a, a+1, a+2〉. Besides, if we want
S to be a complete intersection then 2(2−1)/2+2−((a−1) mod 2) = 2
and this leads to a mod 2 = 0.

�

Finally, we would like to thank the referee for his/her wise comments and
suggestions.
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