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Abstract

The 6-cube has a total of 7174574164703330195841 matchings of which
16332454526976 are perfect. This was computed with a transfer matrix
method associated with polygraphs. For polygraphs of type G × Pm we
present a method for compression of the transfer matrix. This compres-
sion gives a substantial reduction of the order of the transfer matrix by
exploiting the automorphisms of the graph G. We compute and tabulate
matching polynomials of various polygraphs, such as the 4× 4×m-grid.
A Mathematica package, GrafPack, is demonstrated and used for compu-
tation of matching polynomials, permanents and for generating transfer
matrices.

1 Introduction

A simple graph is denoted G = (V,E) where V is the set of vertices and E is
the set of edges. A matching M is a set of independent edges in G, i.e. no
pair of edges in M have a vertex in common. A k-matching is a matching on
k edges and a perfect matching is a matching that covers all the vertices in G.
The matching polynomial of a graph G on n vertices is defined as

μ(G; x) =

�n/2�∑
k=0

(−1)kp(G, k)xn−2k

where p(G, k) denotes the number of k-matchings inG and we define p(G, 0) = 1.
We overload the notation and define

μ(G) =

�n/2�∑
k=0

p(G, k)

i.e. μ(G) is the number of matchings in G. A 1-factor is a spanning 1-regular
subgraph. The edges of a 1-factor then form a perfect matching and the number
of 1-factors in a graph G is denoted Φ(G). In general it is a #P -complete
problem to compute μ(G; x) and also Φ(G), though there are families of graphs
such as paths, cycles and complete graphs, for which these functions can be
simply expressed. Apart from these instances, general expressions are scarce.
It is well-known however, that Φ(G) can be computed in polynomial time for
planar graphs. Computing the matching polynomial is still harder, becoming

∗Revised and updated version of “Computation of the matching polynomial and the number
of 1-factors in polygraphs”, Research reports, No 12, 1996.
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#P -complete even for planar graphs. More information on these matters can
be found in Godsil [4] and Lovász and Plummer [14]. For more on complexity
classes, see Welsh [22].
In the next section we will state some of the applications of matching theory

to physics and chemistry. This is followed by a quick introduction to the subject
of actually computing the matching polynomial, the number of matchings and
the number of 1-factors in a graph. A family of graphs of interest in chemistry,
polygraphs, is presented together with a transfer matrix method to compute
their matching polynomials. We then present a new result, a compression of
the matrices, which allows us to make these matrices considerably smaller. The
algorithms described have been implemented in Mathematica. Some of the
Mathematica routines are demonstrated and we give tables of the resulting
numbers for some polygraphs along with some recurrence relations.

2 Applications of matching theory

There are several connections between matching theory and statistical physics
and also chemistry. For example, adsorption of oxygen and hydrogen on a
metallic surface can be modelled by a system of monomers-dimers. The question
is whether adsorption undergoes a phase transition at some critical temperature.
The surface is represented as a grid and it is exposed to a gas consisting of
monomers and dimers. Dimers could here correspond to oxygen molecules which
cover adjacent vertices on the grid. A set of dimers forms a matching on the grid
and the state of the system is then represented by this matching. As partition
function one takes the matching polynomial with non-negative coefficients. The
paper by Heilmann and Lieb [6] contains a detailed study of this problem.
The Ising model is concerned with the phenomenon of spontaneous mag-

netization. If a magnetic material is placed in a hot environment it becomes
unmagnetized, although below a certain critical temperature the material will
regain a degree of its magnetism. We then have a phase transition at this crit-
ical temperature. The partition function of the Ising model can be expressed in
terms of the 1-factors of a graph with weighted edges, the weight of a 1-factor
being the product of its edge-weights. Again we refer the reader to [6] and also
Kasteleyn [12]. A nice introduction to the Ising model is given by Cipra [3].
In mathematical chemistry, molecules are viewed as graphs and chemists

refer to 1-factors as Kekulé structures. It turns out that the stability of some
families of molecules is closely related to the number of 1-factors in their graphs.
Several types of polynomials, partition functions and invariants of interest in
chemistry have been suggested, many of which are expressed in terms of the
numbers p(G, k). For example, μ(G) is also known as the Hosoya index and
has been used to model physicochemical properties such as the boiling point of
hydrocarbons. See for example Hosoya [7], Rouvray [17] and Trinajstić [21]. A
more general account of combinatorics in statistical physics and chemistry can
be found in Chapter 37 and 38 of The Handbook of Combinatorics [5].
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3 Computation methods

3.1 The matching polynomial

To compute the matching polynomial of a graph G we need the facts below. We
will just state them and refer the reader who requires proofs to [4]. First of all

μ(G; x) = μ(G− e; x)− μ(G− u− v; x)

where e = {u, v} is an edge of G. If G and H are disjoint graphs then

μ(G ∪H; x) = μ(G; x)μ(H; x)

Let Pn, Cn and Kn denote the path, cycle and complete graph respectively on
n vertices. The complementary graph of G is denoted by G, thus Kn is the
empty graph on n vertices. We have

μ(Pn; x) =

�n/2�∑
k=0

(−1)k
(
n− k

k

)
xn−2k

μ(Cn; x) =

�n/2�∑
k=0

(−1)k
n

n− k

(
n− k

k

)
xn−2k

μ(Kn; x) =

�n/2�∑
k=0

(−1)k
n!

(2k)!!(n− 2k)!
xn−2k

μ(Kn; x) = x
n

We can now give a simple recursive algorithm for computation of μ(G; x): if
the maximum degree of the graph is at most 2, then the graph is a union
of vertex-disjoint paths and cycles and we can compute the product of their
respective matching polynomials. Otherwise, pick a pair of adjacent vertices
of high degree, delete these vertices and the edge and make the recursive calls.
Though recursive, the method works well for smaller graphs. The running time
of the algorithm depends on the number of edges of G, meaning that dense
graphs could be a problem. However, the following formula takes care of that

μ(G; x) =

�n/2�∑
k=0

p(G; k)μ(Kn−2k; x)

Thus, if G is dense (has more than n2/4 edges, say), then use the algorithm
above on G and apply the last formula. To extract Φ(G) and μ(G) from the
matching polynomial we observe that Φ(G) = |μ(G; 0)| and μ(G) = |μ(G; i)|,
where i is the imaginary unit. In the next section we describe a better way to
compute Φ(G) when G is bipartite.

3.2 The permanent

For bipartite graphs, there is a simple non-recursive method to compute Φ. Let
G = (V ∪W,E) be a bipartite graph on 2n vertices with bipartition (V,W ),
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where V = { v1, . . . , vn } and W = {w1, . . . , wn }. The biadjacency matrix
B = (bi,j)n×n is defined to have entries

bi,j =

{
1 if {vi, wj} ∈ E
0 otherwise

The permanent of an n× n-matrix B is defined as

per(B) =
∑
π

n∏
i=1

bi,π(i)

where the sum is taken over all permutations π of { 1, . . . , n }. If B is the matrix
defined above, then

Φ(G) = per(B).

Thus, counting the 1-factors in a bipartite graph is equivalent to evaluating
the permanent of its biadjacency matrix. The permanent, looking deceptively
similar to the determinant, shares few of its nice properties. Particularly the
property det(AB) = det(A) det(B) does not hold for permanents. Also, whereas
the determinant can be computed in O(n3) time, no polynomial-time algorithm
is known for the permanent. In fact, it has been shown to be a #P -hard problem,
making computation of Φ(G) a #P -complete problem for bipartite graphs as
well. A detailed survey on the permanent is found in Minc [15] and a proof of
the #P -hardness result is sketched in [22].
Evaluation of the permanent, as formulated above, would require n ·n! arith-

metic operations. It was shown by Ryser [18] that

per(B) = (−1)n
∑
S⊆[n]

(−1)|S|
n∏
i=1

∑
j∈S

bi,j

where [n] = { 1, . . . , n }. This reduces the number of operations required to
about n2 2n−1. Nijenhuis and Wilf [16] devised and implemented a method to
reduce the number of operations by a factor n. Their main trick is to order the
sets in the first sum in Gray-code order, i.e., so that consecutive sets differ in
exactly one element. As it stands then, the permanent can be computed with
about n2n−1 operations. Counting the 1-factors in the 6-cube (64 vertices) is
thus quite feasible, but the 7-cube (128 vertices) would require immense com-
puter resources with this approach.
There are inequalities for permanents of doubly stochastic matrices (having

row and column sums equal to 1) that can be applied to regular bipartite graphs,
see [14]. If the bipartite graph G above is k-regular then

n!

(
k

n

)n
≤ Φ(G) ≤ (k!)n/k

Applied to the 7-cube we get 3.9280 · 1027 ≤ Φ(Q7) ≤ 7.0924 · 1033.

3.3 Estimating the number of 1-factors

We finish this section by describing a simple probabilistic method for estimating
Φ(G), proved in [14]. The adjacency matrix A = (ai,j)n×n of an oriented graph
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−→
G on the vertices { v1, . . . , vn } has entries

ai,j =

⎧⎨
⎩
1 if (vi, vj) ∈ E
−1 if (vj , vi) ∈ E
0 otherwise

Give the graph G an orientation by randomly orienting every edge with probab-

ility 1/2 in either direction. It turns out that the expected value of det(A(
−→
G))

is Φ(G). This implies a probabilistic method to estimate Φ(G). Just compute

1

p

p∑
i=1

det(A(
−→
G))

where the sum is taken over p independently chosen orientations of G. When G
is bipartite we can gain a factor 8 in running time. Give G a random orientation
−→
G by letting each non-zero entry of the biadjacency matrix B be positive or
negative with equal probability. Observe that if G is bipartite then

A(
−→
G) =

(
0 B(

−→
G)

−B(
−→
G)T 0

)

and the reader may verify that

det(A(
−→
G)) = (det(B(

−→
G))2

This method is also called the Godsil-Gutman estimator. The major drawback
with the method is that the number p which gives a small relative error with a
large probability is not necessarily polynomially bounded in n. Only for a few
families of graphs is this known to be the case. However, the very simplicity
of the method makes it a first candidate for computing a rough estimate of
Φ(G), or at least the number of digits of Φ(G). Karmarkar et al. [13] contains
an analysis of the Godsil-Gutman estimator and describes a slightly improved
version of it. An implementation of the estimator in Fortran was applied to the
7-cube with p = 107 and resulted in the estimate Φ(Q7) ≈ 3.89 · 1029.

4 Polygraphs

So far we have not discussed how to take advantage of symmetries or recurring
structures in a graph when computing matching polynomials. As an example,
the reader may have in mind the 2×2×m-grid, m ≥ 1, when reading this section.
This is just the 2× 2-grid, recurring m times, linked together by edges. Graphs
of this kind belong to a family of graphs of interest in theoretical chemistry and
are called polygraphs, see Figure 1. They were introduced by Babic et al. [1]
who also gave a matrix method for computing their matching polynomials. A
polygraph consists of a set of disjoint graphs G1, . . . , Gm and a set of binary
relations X1, . . . , Xm. Let Xi ⊆ V (Gi) × V (Gi+1) for i = 1, . . . ,m − 1 and
Xm ⊆ V (Gm) × V (G1). For consistency we define X0 to be identical to Xm.
The polygraph Ωm has vertices V (G1) ∪ · · · ∪ V (Gm) and edges E(G1) ∪X1 ∪
· · · ∪ E(Gm) ∪Xm. Let Γm be the graph Ωm without the edges Xm. If G1 =
· · · = Gm = G and X1 = · · · = Xm = X we denote Ωm by ωm and call it a

5



G G G1 2 3

X X1 X2 X30

Figure 1: The structure of a polygraph

rotagraph on (G,X). Likewise, we denote Γm by γm and call it a fasciagraph on
(G,X). Let M(X) be the set of all matchings in X. We index these matchings
with numbers 1, 2, . . . , |M(X)| and adopt the convention of letting the first

matching be the empty set. Let W
(k)
i denote the ith element in M(Xk). If

W ∈M(X), let D(W ) and R(W ) be the domain and range respectively of W .
Define μ(G−A−B; x) = 0 if A∩B �= ∅, where A,B ⊆ V (G). Define matrices
Tk = Tk(Gk, Xk−1, Xk), k = 1, . . . ,m with entries

Tk(i, j) = (−1)
|W (k)
j | μ(Gk −R(W

(k−1)
i )−D(W (k)j ); x) (1)

where the notation Tk(i, j) refers to the entry in the ith row and jth column of
the matrix Tk. Below we repeat some of the results in [1].

[T1 · · ·Tm](i, j) = (−1)
|W (m)
j | μ(Γm −R(W

(m)
i )−D(W (m)j ); x)

[T1 · · ·Tm](1, 1) = μ(Γm; x)

tr(T1 · · ·Tm) = μ(Ωm; x)

For rota- and fasciagraphs, we have that T1 = · · · = Tm = T where

T (i, j) = (−1)|Wj |μ(G−R(Wi)−D(Wj); x) (2)

We then have

Tm(i, j) = (−1)|Wj | μ(Γm −R(W
(m)
i )−D(W (m)j ); x)

Tm(1, 1) = μ(γm; x)

tr(Tm) = μ(ωm; x)

The formulae become really simple if we want the special cases G × Pm or
G× Cm. Then, for all Ai, Aj ⊆ V (G) we let

T (i, j) = (−1)|Aj | μ(G−Ai −Aj ; x) (3)

and so, if we let A1 = ∅,

Tm(1, 1) = μ(G× Pm; x)

tr(Tm) = μ(G× Cn; x)
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Of course, after the obvious adjustments, these formulae also holds if we want
the number of 1-factors (i.e. Φ) or the number of matchings (i.e. μ), simply
delete the sign in front of the entries. Having defined the transfer matrix we
can construct recurrence relations for the matching polynomial of ωm and γm.
Denote the characteristic polynomial of the matrix T by

Ξ(T, λ) = det(λI − T ) =
N∑
k=0

akλ
N−k

where N = |M(X)| (which is also the order of T ). Application of the Cayley-
Hamilton theorem gives that Ξ(T, T ) = 0, where the 0 represents a zero-matrix
of order N . From this we derive the recursive formulae of order N

N∑
k=0

ak tr(T
m−k) = 0

N∑
k=0

ak T
m−k(1, 1) = 0

where m ≥ N. Note that when we are determining μ(ωm; x) and μ(γm; x), the
coefficients ak will be polynomials in x.

5 Compression

Let T be the transfer matrix for a fasciagraph as defined by Equation (2).
Of course we wish the order of T to be as small as possible, to make matrix
computations easy and the recurrence relations short. Unfortunately, though the
method described in the previous section does take advantage of the recurring
structure of the rota- and fasciagraphs, any symmetry in the graph G is not
exploited. For example, if the edges in X are all independent, the matrix T has
order 2|X|, no matter what graph G we use, empty or complete. In this section
we will address this problem. In fact, in a special case we may reduce the order
of the matrices by almost a factor the size of the automorphism group of G.
First some notation though.
If G and H are graphs, then the Cartesian product G×H is defined as the

graph having vertices V (G) × V (H) and where (v, w) is adjacent to (v′, w′) if
and only if

v = v′ and {w,w′} ∈ E(H), or, w = w′ and {v, v′} ∈ E(G)

For example, Pm ×Pn is the m× n-grid, Cm ×Pn is a cylinder and Cm×Cn is
a torus.
Let Aut(G) be the group of automorphisms of G and let A be a subset of

V (G) such that α(A) = A for all α ∈ Aut(G). The case we are aiming for is
the fasciagraph γm on (G,X) where we let X = { (v, v) : v ∈ A }. Note that if
A = V (G) then γm = G× Pm.
We will now classify the subsets of A into equivalence classes under the

automorphism group according to the following; let A1,A2, . . . ,Ar be the equi-
valence classes of subsets of A. That is to say, every I ⊆ A belongs to some Ak,
and I, J ∈ Ak if and only if J = α(I) for some α ∈ Aut(G). As a convention
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we let A1 = { ∅ }. We can now define the compressed matrix C in terms of the
matrix T . Since the edges in X are independent, no confusion will arise when
we write T (I, J) instead of T (i, j) where I = D(Wi) and J = R(Wj).

Definition 5.1. The compressed transfer matrix C is the r × r-matrix with
entries

C(i, j) =
∑
J∈Aj

T (I, J) where I ∈ Ai and i, j = 1, . . . , r. (4)

When calculating C(i, j) we have to pick a set I ∈ Ai. The following lemma
says that it doesn’t matter which set we pick, i.e. the matrix C is well-defined.

Lemma 5.2. Let I1, I2 ∈ Ai. Then∑
J∈Aj

T (I1, J) =
∑
J∈Aj

T (I2, J) for i, j = 1, . . . , r

Proof. Since I1, I2 ∈ Ai we can assume that I2 = α(I1) for some permutation
α ∈ Aut(G). It suffices to show that the sets in {I1 ∪ J : J ∈ Aj} are equal
to the sets in {I2 ∪ J : J ∈ Aj} in some, possibly permuted, order. It follows
by the definition of the set Aj that for all α ∈ Aut(G) and J ∈ Aj there is a
J ′ ∈ Aj such that J ′ = α(J). Thus, for all J ∈ Aj there is a J ′ ∈ Aj such that

I2 ∪ J = α(I1) ∪ α(J
′) = α(I1 ∪ J

′)

and the lemma follows.

Theorem 5.3. If I ∈ Ai then

Cm(i, j) =
∑
J∈Aj

Tm(I, J) for m ≥ 1 and i, j = 1, . . . , r.

Proof. By induction on m. The case m = 1 follows from the definition of the
matrix C. Assume the theorem to be true for m− 1 and show it for m > 1. We
have ∑

J∈Aj

Tm(I, J) =
∑
J∈Aj

∑
K⊆A

Tm−1(I,K)T (K, J) =

=
∑
J∈Aj

r∑
k=1

∑
K∈Ak

Tm−1(I,K)T (K, J) =

=

r∑
k=1

∑
K∈Ak

Tm−1(I,K)
∑
J∈Aj

T (K, J)

By the lemma and the definition this is

r∑
k=1

∑
K∈Ak

Tm−1(I,K)C(k, j)

and the induction hypothesis allows us to write this as

r∑
k=1

Cm−1(i, k)C(k, j) = Cm(i, j)

and by the principle of induction the theorem follows.
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Corollary 5.4. If C is defined on the matrix T in Equation (2) then

Cm(1, 1) = μ(γm; x) for m ≥ 1.

Proof. Recall that A1 = {∅}.

Cm(1, 1) =
∑
J∈A1

Tm(∅, J) = Tm(∅, ∅) = Tm(1, 1) = μ(γm; x)

Comparing the orders of C and T , how much did we gain? The order of T
is N = 2|A| since all edges in X are independent. If we denote by r the order of
C, then r is (usually) slightly larger than N/|Aut(G)| which is a lower bound on
the number of equivalence classes. The exact number can be determined with
Polya’s Enumeration Theorem:

r =
1

|Aut(G)|

∑
π∈Aut(G)

2c(π,A)

where c(π,A) is the number of cycles in the permutation π that contain elements
from A. In Broersma and Xueliang [2] a reduction of almost a factor 2 of
the order of T was accomplished. They laid slightly less strong restrictions
on the binary relation X (independent edges, though), but the graph G was
restricted to having vertex-set {1, 2, . . . , 2p} and an automorphism i ↔ p + i,
for i = 1, . . . , p. The compression described here puts no restrictions on G,
and works better the more automorphisms G has. Unfortunately we pay with
information, since the trace of C no longer has the meaning it had for T .

6 Further reductions

We assume that we just want to count the 1-factors in γm. The order of the
matrix C may then at least be halved to obtain a new, smaller, matrix Ĉ.
The simplest reduction stems from the fact that a graph on an odd number of
vertices does not have a 1-factor. As before we let r denote the order of C.
Renumber the families of sets that resulted from the classification procedure
such that A1, . . . ,As contain the subsets of A of even size, and the remaining
classes As+1, . . . ,Ar contain the subsets of odd size. If |V (G)| is even then
C(i, j) = 0 if i ≤ s and j > s, or, i > s and j ≤ s. If |V (G)| is odd, then
C(i, j) = 0 if i, j ≤ s or i, j > s. The matrix C will then look like(

P 0
0 Q

)
for even |V (G)|,

(
0 R
S 0

)
for odd |V (G)|. (5)

Here P is an s× s-matrix, Q an (r− s)× (r− s)-matrix, R an s× (r− s)-matrix
and S an (r − s)× s-matrix. Assume that |V (G)| is even and define

Ĉ(i, j) = C(i, j) for i, j = 1, 2, . . . , s (6)

Then Ĉ is the upper block P on the diagonal of C. The other blocks in C will
not affect this matrix during matrix multiplication, since C is block diagonal.
We have then proved the following

9



Proposition 6.1.
Ĉm(i, j) = Cm(i, j) for m ≥ 1

We continue with the case when |V (G)| is odd and define

Ĉ(i, j) = C2(i, j) for i, j = 1, 2, . . . , s (7)

This means that Ĉ is the block product RS. Note that the upper left block
in Cm will be a zero matrix when m is odd. A proposition similar to the one
above follows.

Proposition 6.2.
Ĉm(i, j) = C2m(i, j) for m ≥ 1

In both the odd and the even case we end up with an s× s-matrix, where s
is the number of even non-equivalent subsets of A. If |A| is odd then s = r/2
and if |A| is even then s ≈ r/2. Roughly then, the order of Ĉ is half that of C.
The last case, finally, is when G is bipartite. Note that a bipartite graph on

two sets of unequal size does not contain a 1-factor. Restrict G to be a bipartite
graph on 2n vertices with bipartition (V,W ) and let |V | = |W | = n. Again
we renumber the classes, but this time such that for all I ⊆ A we have that
I ∈ A1 ∪ · · · ∪As if and only if |I ∩V | = |I ∩W |, that is, I is a balanced subset
of V ∪W . Then C(i, j) = 0 if i ≤ s and j > s, or, i > s and j ≤ s. The matrix
C will then look like the matrix in Equation (5) (in the even case) and so we
define

Ĉ(i, j) = C(i, j) for i, j = 1, 2, . . . , s (8)

Correspondingly, Proposition 6.1 follows.
How much did this reduce the order of C? If we let av = |A ∩ V | and

aw = |A ∩W |, then the number of sets to classify is

a =

min(av,aw)∑
k=0

(
av
k

)(
aw
k

)

The order of Ĉ is then approximately ar
N
. For the special case when A = V ∪W ,

the above sum is

a =

n∑
k=0

(
n

k

)2
=

(
2n

n

)
∼
22n
√
πn

by Stirlings formula. We can then estimate the order of Ĉ to approximately
r/
√
πn.
Henceforth, when we refer to Ĉ we mean that the appropriate reduction

method has been applied. If G is bipartite as above, then we apply the reduction
described for the bipartite case, and not merely the reduction in the even case.

7 Examples

In this section we apply the methods described above. What the examples also
should demonstrate is that the method of polygraphs is very general and unless
we can use a compression technique it does not give us good, i.e. short, recur-
sion formulae. It does, however, deliver the specific polynomials and numbers
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we desire, making tabulations of them fairly easy to carry through, even for
rotagraphs, where the compression technique does not work.
At the same time we give a short demonstration of some of the functions in a

Mathematica package, GrafPack, that are relevant to this article. The package
is available on the web site www.math.umu.se. Download the entire GrafPack-
directory, put it where Mathematica can see it (e.g. under ExtraPackages),
start up Mathematica and type <<GrafPack‘Master‘. For an introduction to
Mathematica, see [23]. The book by Skiena [19] is also recommended.

Example 7.1. To compute the matching polynomial of a graph, we use the
recursive method described in Section 3.1. The matching polynomial of the
4-cube is produced with the command

MatchingPolynomial[Hypercube[4], x]

where x is a variable. This returns the polynomial

272− 3712x2 + 11648x4 − 14208x6 + 8256x8

−2496x10 + 400x12 − 32x14 + x16

The number of matchings in the 4-cube, 41025, is returned by the command

NumberOfMatchings[Hypercube[4]]

To obtain the number of 1-factors in the 4-cube, type

NumberOfOneFactors[Hypercube[4]]

and we receive the constant term, 272, of the polynomial above. Since the
4-cube is bipartite the function computes the permanent of the biadjacency
matrix. Had we entered a non-bipartite graph, the function would have used
the recursive method of Section 3.1.
The permanent of a square matrix is computed with the Nijenhuis-Wilf

method, see Section 3.2. This gives the permanent of the 10 × 10-matrix with
zeroes on the diagonal and ones off the diagonal

Permanent[1 - IdentityMatrix[10]]

If we want to estimate the number of 1-factors in a fairly large graph, the
probabilistic algorithm of Section 3.3 can be used. The command

EstimateNumberOfOneFactors[Hypercube[6], 1000]

takes the average of 1000 determinants of oriented (bi-)adjacency matrices. The
integer should be chosen with care, as large as possible to get a reliable result,
modulo how long the user is prepared to wait. In this example, the graph
is bipartite so the function will orient only the bi-adjacency matrix. A run
returned the estimate 1.8051 · 1013. Being a probabilistic algorithm though, we
will receive different results at different runs.

Example 7.2. We compute the matching polynomial and the number of 1-
factors in the fasciagraph γm = C4 ×Pm using the compression technique. The
subsets of A = V (C4) = { 1, 2, 3, 4 } sorts into 6 classes under the automorphism
group of C4 and the compressed matrix C then has order 6. Type

11



g = Cycle[4];

aut = Automorphisms[g];

orb = Orbits[aut, 2];

mat = CompressedTransferMatrixMP[g, orb, x]

The variable orb contains lists of isomorphic 2-colourings (their ranks to be
precise) of the graph. The compressed matrix C, defined by Equation (4), is
returned ⎛

⎜⎜⎜⎜⎜⎜⎝

2− 4x2 + x4 8x− 4x3 −4 + 4x2 2x2 −4x 1
−2x+ x3 2− 3x2 2x x −1 0
−1 + x2 −2x 1 0 0 0
x2 −2x 0 1 0 0
x −1 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

We continue the previous sequence of commands:

rec = RecursionCoefficients[mat];

r = Length[rec];

Clear[f];

Evaluate[Array[f, r]] = MatrixPower[mat, r, 1, 1, All];

f[m_] := f[m] = Sum[Expand[rec[[i]]*f[m-i]], {i, 1, r}];

If we try e.g. f[7] then μ(C4 × P7; x) is returned.
The matrix for enumeration of matchings is given by

mat = CompressedTransferMatrixM[g, orb]

If we want Φ(γm), observe that the graph C4 = (V ∪W,E) is bipartite with
|V | = |W | = 2. So we only need to classify those subsets I ⊆ V ∪W such that
|I ∩V | = |I ∩W |. There are only 6 such sets and they sort into 3 classes. Thus,
the matrix Ĉ has order 3. This is all taken care of by the next function

mat = CompressedTransferMatrix1F[g, orb]

The matrix Ĉ, defined by Equation (8), is returned⎛
⎝ 2 4 1
1 1 0
1 0 0

⎞
⎠

To get a recursive formula for Φ(γm) we proceed as above and receive the fol-
lowing recursive formula

Φ(γm) = 3Φ(γm−1) + 3Φ(γm−2)− Φ(γm−3)

We could of course solve this recursive relation to get an explicit formula for
Φ(γm), but we leave this to the enthusiastic reader.
The recursive formulae above corresponds exactly to those obtained by

Hosoya and Motoyama [9]. They also gave a recursive formula for Φ(P2 × P3 ×
Pm). Typing the last command sequence with g=GridGraph[2,3] will return
exactly the same formula, namely

Φ(γm) = 6Φ(γm−1) + 21Φ(γm−2)− 42Φ(γm−3)

−89Φ(γm−4) + 68Φ(γm−5) + 89Φ(γm−6)− 42Φ(γm−7)

−21Φ(γm−8) + 6Φ(γm−9) + Φ(γm−10)

12



The authors of [9] estimated the order of the recursive formula for the matching
polynomial to be approximately 20. This method would return one of order 24
which suits fairly well to their estimate.
We finish this example with a word of warning. Suppose that we replace the

graph used above, C4, with an odd graph, such as P3, and generate the matrix Ĉ.
Then Ĉm(1, 1) = Φ(P3×P2m) (!). Note also that the RecursionCoefficients-
function returns the coefficients {5,−5, 1}, which should be interpreted as

Φ(P3 × P2m) = 5Φ(P3 × P2m−2)− 5Φ(P3 × P2m−4) + Φ(P3 × P2m−6)

Example 7.3. Let G = C4 and X = {(1, 1), (2, 2), (3, 3), (4, 4)}. Then ωm =
C4 × Cm. To compute μ(ω4; x) = μ(Q4; x) type

g = Cycle[4];

rel = Table[{i,i},{i, 1, Order[g]}];

mat = TransferMatrixMP[g, rel, rel, x];

Sum[MatrixPower[mat, 4, i, i], {i, 1, Length[mat]}]

Here rel is the binary relation of edges between the graphs. Note that the
built-in function MatrixPower has been extended to return particular entries.
We could of course obtain recursive formulae for Φ(ωm) and μ(ωm; x) as above,
but they would be unnecessarily long since they would both have order 16. In
[9] a recursive formula for Φ(ωm) of order 8 was given, and the recursive formula
for μ(ωm; x), was estimated to have order 10.

Example 7.4. In this example we scrutinize the 3-dimensional grids P4 ×
P4 × Pm. Let us first view it as the fasciagraph γm on P4 × P4 with rela-
tion X = { (1, 1), . . . , (16, 16) }. The matrix T has order 65536, which would
require an enormous amount of computer memory to store. However, T will
be very sparse. Since 16 vertices overlap in X only 316 of the entries are
non-zero and, if we only want 1-factors, fewer still are non-zero. The use of
typical sparse matrix methods for computations of powers of T is of course a
justified approach. Compression works well here, the automorphism group of
P4 × P4 has 8 elements and the order of C is 8548. This is still a trifle too
big when we are storing polynomials in a computer. The matrix Ĉ on the
other hand has order 1723, as computations have shown, and this is not too
big to treat easily. Note that only the elements Ĉm(1, 1) are desired, and so
only vector-matrix multiplication needs to be performed. This approach does
not bring us the matching polynomials of γm, but for smaller m we can use
a rotagraph approach. For the case m = 4 we let G = P2 × P2 × P4 and
X = {(3, 3), (4, 2), (7, 7), (8, 6), (11, 11), (12, 10), (15, 15), (16, 14)}, see Figure 2.
The rotagraph on (G,X) is the cubic grid P4 × P4 × P4. The matrix T has
order 256, which is fairly easily treated. The polynomial is listed in the Tables
section. To compute it type

g = GridGraph[2, 2, 4];

rel = {{3,3},{4,2},{7,7},{8,6},{11,11},{12,10},{15,15},{16,14}};

mat = TransferMatrixMP[g, rel, rel, x, Verbose->True];

Sum[MatrixPower[mat, 4, i, i], {i, 1, Length[mat]}]

Note that adding the option Verbose->True as a last argument of the function
TransferMatrixMP shows the progress of the computations. This makes the
waiting for the computations to finish more bearable.
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Figure 2: The 2× 2× 4-grid

Example 7.5. We continue here the rotagraph approach from the previous
example and describe a method for computing the entries in the transfer matrix.
Let G = P2 × P2 × P4 and X be the relation given earlier. We will view G as
a fasciagraph on H = P2 × P2 with the relation Y = {(1, 1), (2, 2), (3, 3), (4, 4)}
between each copy of H, refer to these copies as H1, . . . , H4. Let A ⊆ R(X)
and B ⊆ D(X) and say that this pair of sets corresponds to the (i, j)th entry
in the transfer matrix T that we are aiming for. If A ∩B �= ∅ then T (i, j) = 0,
otherwise we wish to compute T (i, j) = Φ(G − A − B). We will do this with
transfer matrices though we will forbid the vertices A∪B. To do this we define
a family of transfer matrices, one for each possible set of vertices that intersect
V (Hk). Let Uk = (A ∪ B) ∩ V (Hk) for k = 1, . . . , 4. Since A ∪ B intersects
each Hk in at most 3 vertices there are only 2

3 different sets Uk. To compute
Φ(G), we would normally use the matrix in Equation (3). Instead we define a
modified matrix as follows; for all Ai, Aj ⊆ V (H) let

SU (i, j) =

{
Φ(H − U −Ai −Aj), if U ∩ (Ai ∪Aj) = ∅
0 otherwise

Now it is easy to see that T (i, j) = [SU1 · · ·SU4 ](1, 1). If we scale our problem
to G = P3 × P3 × P6 then we let H = P3 × P3 and produce the necessary
25 matrices S in advance, each a 512 × 512 matrix. These matrices will be
extremely sparse so sparse matrix methods are very beneficial and there will be
no problem in storing them on a computer. This approach was implemented in
Fortran to compute Φ(P6 × P6 × Pn) for n = 1, . . . , 5, (so the case with n = 6
is still difficult) and μ(P5 × P5 × Pn) for n = 1, . . . , 5, see the Tables section.

Example 7.6. The n-cube, denoted Qn, is the graph having the set of binary
strings of length n as vertices. Two vertices are adjacent if their binary strings
differ in exactly one position. Note that Qn = Qn−1×P2 and Qn = Qn−2×C4.
We will view Q6 as the rotagraph Q4 ×C4 and proceed to compute Φ(Q6) and
μ(Q6). Note that a transfer matrix for this rotagraph has order 216 = 65 536.
However, the transfer matrix for counting 1-factors has only 5 494 273 non-zero
entries and the matrix for counting matchings has 316 = 43 046 721 non-zero
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entries. Thus storage in a computer memory is possible on a larger workstation
by using standard sparse matrix methods. Recall that tr(T 4) is the desired
number. Again we may use the automorphisms of Q4 to reduce the amount of
work. Let A1, . . . ,A402 be the equivalence classes of V = V (Q4) and note that
every row (and column) of T corresponds to a subset of V . Let Ai be a member
of Ai for i = 1, . . . , 402. We have

tr(T 4) =
∑
I⊆V

T 4(I, I) =
402∑
i=1

|Ai|T
4(Ai, Ai)

Fortran implementations of this approach gave Φ(Q6) = 16332454526976 and
μ(Q6) = 7174574164703330195841. A smaller example of the sum above is given
by the following computation of Φ(Q4):

g = Hypercube[2];

rel = Table[{i, i}, {i, 1, Order[g]}];

aut = Automorphisms[g];

orb = Orbits[aut, 2];

mat = TransferMatrix1F[g, rel, rel];

Sum[

i = 1 + orb[[k]];

Length[orb[[k]]]*MatrixPower[mat, 4, i, i],

{k, 1, Length[orb]}

]

Note that the ranks of the 2-colourings are counted from zero but the indices
of the matrix are counted from one, which explains the definition of i. The
number of matchings and the matching polynomials can also be computed this
way.
We should remark that the matching polynomial of the 6-cube, for com-

pleteness listed in the Tables-section, was computed with a rather different ap-
proach; first compute the Ising partition function in two variables and extract
the matching polynomial from it. This method will be described in some future
paper.

8 Tables

“This process of reduction to cipher is the highest effort man or woman is
capable of making. It is the only effort worth making, and it is possible only
through ever-increasing self-restraint...”

Gandhi, 1927.
The matching polynomials and the number of 1-factors has been extens-

ively tabulated for various grids, cylinders and tori. General expressions ex-
ist for the number of 1-factors in graphs such as Pm × Pn, Pm × Cn, Cm ×
Cn, P2 × P3 × Pm. The papers by Hosoya et al. [7, 8, 9, 10, 11] contain
plenty of tables and general expressions, to which we refer the reader. Fans
of integer sequences might want to consult the book by Sloane and Plouffe
[20], which also can be reached on the Internet as a searchable database at
http://www.research.att.com/~njas/sequences/. Below is listed tables of
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p(G, k), Φ(G), μ(G) and recurrence relations for some fasciagraphs on smaller
cycles, grids and hypercubes. They were generated by running a precursor of
GrafPack on a Power Macintosh 8100/80. In the tables of p(G, k), integers being
the number of 1-factors are printed in bold. To simplify the recurrence relations
we let μm denote μ(γm; x) and Φm denote Φ(γm). Let also r denote the order
of the compressed matrix C for matching polynomials and r̂ the order of the
compressed (and reduced) matrix Ĉ for 1-factors.

Table 1: Order of compressed matrices for some G× Pm

G r r̂ G r r̂ G r r̂

P2 × P3 24 10 P2 3 2 C3 4 2
P2 × P4 76 27 P3 6 3 C4 6 3
P2 × P5 288 82 P4 10 5 C5 8 4
P2 × P6 1072 268 P5 20 10 C6 13 6
P3 × P3 102 51 P6 36 14 C7 18 9
P3 × P4 1120 274 P7 72 36 C8 30 11
P4 × P4 8548 1723 P8 136 43 C9 46 23
C3 × C3 26 13 P9 272 136 C10 78 26
Q3 22 9 P10 528 142 C11 126 63
Q4 402 93 P11 1056 528 C12 224 62

Table 2: P5 × P5 × Pm

m μ

1 2810694
2 423657524608288
3 42127221925485860896792
4 4435122353330774501960785797973
5 463310369790129032480118384076035223552

Table 3: P6 × P6 × Pm

m Φ

1 6728
2 53786626921
3 57248060375968384
4 123115692449982216049513
5 216388579168758145017797108072
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Table 4: C3 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

0 1 1 1 1 1 1 1 1 1
1 3 9 15 21 27 33 39 45 51
2 18 69 156 279 438 633 864 1131
3 4 107 501 1399 3017 5571 9277 14351
4 36 672 3558 11613 29049 61374 115392
5 285 4338 25029 92109 259956 615348
6 19 2100 28557 175363 709740 2214051
7 276 15072 190575 1226919 5363931
8 2880 106824 1284651 8582760
9 91 25978 752716 8726408
10 1818 216951 5289783
11 23754 1730235
12 436 255239
13 11085

μ 4 32 228 1655 11978 86731 627960 4546684 32919766

Table 5: C4 × Pm = Q2 × Pm = P2 × P2 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

0 1 1 1 1 1 1 1 1
1 4 12 20 28 36 44 52 60
2 2 42 142 306 534 826 1182 1602
3 44 440 1672 4248 8680 15480 25160
4 9 588 4863 19774 56333 129644 258907
5 288 7416 55200 235132 728840 1840836
6 32 5470 91200 637914 2810312 9294734
7 1620 84984 1112668 7465728 33741064
8 121 40553 1208714 13541312 88199495
9 8204 771436 16397296 164774936
10 450 261500 12752616 216370582
11 39080 5986432 194313364
12 1681 1532336 114468886
13 178272 41514628
14 6272 8380100
15 788536
16 23409

μ 7 108 1511 21497 305184 4334009 61545775 873996300

Table 6: C5 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

0 1 1 1 1 1 1 1
1 5 15 25 35 45 55 65
2 5 75 240 505 870 1335 1900
3 145 1125 3910 9495 18880 33065
4 95 2710 17725 64660 173020 382305
5 11 3227 48193 286799 1081285 3103896
6 1645 77405 839930 4723695 18237825
7 240 69510 1612685 14550495 78786505
8 31060 1975730 31488555 251718625
9 5360 1465295 47151280 593631680
10 176 598928 47476226 1023782605
11 113015 30669915 1268978075
12 6625 11778955 1100004130
13 2360195 639919835
14 191480 234612615
15 2911 49020224
16 4885170
17 153830

μ 11 342 9213 253880 6974078 191668283 5267252351
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Table 7: C6 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7

0 1 1 1 1 1 1 1
1 6 18 30 42 54 66 78
2 9 117 363 753 1287 1965 2787
3 2 336 2290 7562 17874 34954 60530
4 420 8139 46938 160887 414792 894189
5 192 16446 187530 987834 3472752 9527094
6 20 18141 487241 4241321 21158661 75753275
7 9870 813486 12846774 95402040 458907006
8 2148 843342 27359544 320645463 2143757547
9 108 509542 40372976 803176510 7768505882
10 160653 40170300 1489152993 21861085377
11 21438 25795320 2015817270 47616569682
12 725 9980480 1949485107 79675739431
13 2078160 1304474898 101182136226
14 188832 576346062 95821362789
15 4480 156728330 66035085642
16 23429940 32011697004
17 1566180 10405152504
18 28561 2112964124
19 239567604
20 12371220
21 179928

μ 18 1104 57536 3079253 164206124 8761336545 467431319920

Table 8: P3 × P3 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

0 1 1 1 1 1 1
1 12 33 54 75 96 117
2 44 436 1260 2525 4231 6378
3 56 2984 16736 50552 113684 215393
4 18 11434 140322 672126 2085694 5054442
5 24766 778452 6277198 27731168 87622530
6 29180 2913096 42480118 276805102 1164755616
7 16984 7361472 211846420 2120333560 12163620462
8 3993 12381180 784200907 12634826746 101433879357
9 229 13428840 2154366513 59027097072 682916407521
10 8893248 4362041263 216913695094 3738673165242
11 3278784 6419477292 626708528128 16712392258753
12 568344 6716664818 1417900872204 61103060700766
13 31344 4835018662 2493032893120 182629834939538
14 2281569082 3367348279396 445089189580448
15 655842108 3437515277416 880370659944042
16 101934041 2593501127101 1403576812451606
17 6870327 1402515949328 1786799130667754
18 117805 520871037067 1793930275383832
19 124842772364 1397774304403158
20 17531745326 827727493314932
21 1217704320 362423901173076
22 28613174 113077255268116
23 23878571601956
24 3164202873629
25 233176559173
26 7654682266
27 64647289

μ 131 90040 49793133 28579431833 16294017491392 9303034425177393
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Table 9: C3 × C3 × Pm

k m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

0 1 1 1 1 1 1
1 18 45 72 99 126 153
2 99 810 2241 4401 7290 10908
3 180 7518 39678 116316 257106 481731
4 72 38709 442575 2039814 6188463 14778099
5 110817 3254724 25088310 107856216 334725885
6 167448 16056147 223066398 1409411676 5808709002
7 117900 53046918 1456699500 14108774220 79104051891
8 29520 115246440 7029374175 109615427955 858999657429
9 1120 158653112 25022727081 665714322238 7517635432505
10 129944880 65127684555 3168417127554 53381488744872
11 56958480 121909424148 11801137694058 308693456717967
12 10992408 159953324046 34221545160489 1455432762661803
13 585792 141626935710 76569860426940 5588494400657529
14 80001899586 130436645000040 17417917114151796
15 26440161960 166051546684152 43821565164155937
16 4418860545 154011257081100 88290020235183381
17 278666595 100510188513840 140932058555779443
18 2861029 43956690488688 175746115986201690
19 11993327746128 168125848472949201
20 1823418619560 120495553386274359
21 126181749120 62707121963709243
22 2535163200 22712557651235100
23 5392873133377065
24 767195930393457
25 56362288663467
26 1606470279210
27 7537209013

mu 370 473888 545223468 633518934269 735463713700160 853881267896192137

Table 10: P4 × P4 × Pm

k m = 1 m = 2 m = 3 m = 4

0 1 1 1 1
1 24 64 104 144
2 224 1816 4992 9768
3 1044 30208 146940 415368
4 2593 328214 2972395 12430848
5 3388 2456736 43888740 278659560
6 2150 13022504 490410658 4862322484
7 552 49492032 4243096376 67752463152
8 36 135062729 28849000711 767471193606
9 262610832 155554203920 7157834054584
10 357580896 668490123332 55469187090396
11 331384336 2293235516668 359485412847192
12 200032432 6270624556725 1956911884067608
13 73483328 13607937421412 8971759857716256
14 14707328 23264863112266 34682805390128328
15 1308928 31002090496224 113035590354067768
16 32000 31731778597928 310146213937970487
17 24460558393664 714514530994393464
18 13831123293040 1376672261486529068
19 5534768640848 2206488832067036760
20 1490639531680 2921624380278645192
21 250915666208 3168204916452408416
22 23455372800 2783182424023411992
23 980808000 1953962180835361272
24 10885344 1077824850339404286
25 457155298292389608
26 144991813332269700
27 33134934405040272
28 5183929033351776
29 515240510630328
30 28894756833940
31 736291240776
32 5051532105

μ 10012 1441534384 154620656140976 17312701462385916505
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Table 11: Q4 × Pm = C4 × C4 × Pm

k m = 1 m = 2 m = 3 m = 4

0 1 1 1 1
1 32 80 128 176
2 400 2840 7568 14600
3 2496 59120 274560 759584
4 8256 803580 6848000 27822084
5 14208 7517264 124694656 763504368
6 11648 49715240 1718209088 16311133584
7 3712 235146480 18327675008 278274362192
8 272 795862790 153549653616 3858979023370
9 1910146160 1019460142080 44051088838656
10 3190117800 5389069021056 417676281992856
11 3594554960 22710637612800 3310348880868432
12 2605908220 76162736983680 22024174794317232
13 1129177840 202303330851072 123313091919432144
14 259084440 422310466869504 581630577946974072
15 25108944 685115567624704 2310324639457748096
16 589185 850667743539584 7715963153250311251
17 792016077516800 21604808702631926656
18 538003442426880 50504855552895180056
19 256874061012992 98016417871417039760
20 81810395008768 156788269717168962800
21 16087147553792 204849983435540593552
22 1725682248704 216149310892878810872
23 80406638592 181614258291882122496
24 930336768 119387717864796680906
25 60042777844937606416
26 22443085396359803280
27 5999543286903760304
28 1087639382471943076
29 123724794351752480
30 7805441127361896
31 217782023223920
32 1545853411969

μ 41025 13803794944 3952450882750401 1149377449671217283137

Table 12: Q6 = C4 × C4 × C4

k p(Q6, k)

0 1
1 192
2 17376
3 986240
4 39408480
5 1179696384
6 27488385408
7 511416198144
8 7732531647360
9 96216012236800
10 994137263758848
11 8583228570909696
12 62184244929659648
13 378969619199569920
14 1944655398731796480
15 8398980067449999360
16 30480925212093104640
17 92675048634081607680
18 235053748112782356480
19 494482501391128289280
20 856482708316893954048
21 1210188907641505775616
22 1378948882982541631488
23 1249011213103104491520
24 883258965992225095680
25 476635207372408553472
26 190551239146197909504
27 54258655709480353792
28 10420946627414016000
29 1246585402333593600
30 81808261704974336
31 2333280165691392
32 16332454526976

μ 7174574164703330195841
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8.1 Recursion formulae

Φ(C3 × P2m) = 5Φ2m−2 − Φ2m−4

μ(C3 × Pm) = 6μm−1 + 9μm−2 − 1μm−4

μ(C3 × Pm; x) = (−5x+ x
3)μm−1 + (−5 + 3x

2 − x4)μm−2 + (x+ x
3)μm−3 − μm−4

Φ(C4 × Pm) = 3Φm−1 + 3Φm−2 − Φm−3

μ(C4 × Pm) = 14μm−1 + 6μm−2 − 46μm−3 + 18μm−4 + 2μm−5 − 1μm−6

μ(C4 × Pm; x) = (6− 7x
2 + x4)μm−1 + (−7− 6x

2 + 6x4 − x6)μm−2

+(−8 + 26x2 − 10x4 + 2x6)μm−3 + (9− 6x
2 + 2x4 − x6)μm−4

+(2 + x2 + x4)μm−5 − μm−6

Φ(C5 × P2m) = 19Φ2m−2 − 41Φ2m−4 + 19Φ2m−6 − Φ2m−8

μ(C5 × Pm) = 25μm−1 + 76μm−2 − 209μm−3 − 159μm−4 + 119μm−5

+40μm−6 − 3μm−7 − 1μm−8

μ(C5 × Pm; x) = (15x− 9x
3 + x5)μm−1 + (−19 + 19x

2 − 27x4 + 10x6 − x8)μm−2

+(34x− 85x3 + 69x5 − 19x7 + 2x9)μm−3 + (−41 + 95x
2 − 39x4 − 9x6

+6x8 − x10)μm−4 + (2x− 65x
3 + 39x5 − 11x7 + 2 x9)μm−5

+(−19 + 11x2 − 7 x4 + 2x6 − x8)μm−6 + (3x+ x
3 + x5)μm−7 − μm−8

Φ(C6 × Pm) = 4Φm−1 + 16Φm−2 − 6Φm−3 − 16Φm−4 + 4Φm−5 + Φm−6

μ(C6 × Pm) = 53μm−1 + 66μm−2 − 2616μm−3 + 5076μm−4 + 5806μm−5

−14388μm−6 + 1276μm−7 + 6022μm−8 − 1420μm−9 − 424μm−10

+90μm−11 + 5μm−12 − 1μm−13

μ(C6 × Pm; x) = (−12 + 29x
2 − 11x4 + x6)μm−1 + (−32 + 12x

2 + 47x4 − 49x6

+13x8 − x10)μm−2 + (71− 568x
2 + 948x4 − 714x6 + 266x8 − 46x10 + 3x12)μm−3

+(313− 983x2 + 1261x4 − 1339x6 + 848x8 − 283x10 + 46x12 − 3x14)μm−4

+(40 + 924x2 − 2103x4 + 1956x6 − 812x8 + 97x10 + 34x12 − 11x14 + x16)μm−5

+(−601 + 2884x2 − 4334x4 + 3559x6 − 1903x8 + 823x10 − 241x12 + 40x14

−3x16)μm−6 + (−311 + 1132x
2 − 470x4 + 161x6 + 259x8 − 351x10 + 153x12

−32x14 + 3x16)μm−7 + (368− 892x
2 + 1743x4 − 1764x6 + 968x8 − 265x10

+26x12 + 3x14 − x16)μm−8 + (251− 529x
2 + 575x4 − 205x6 − 60x8 + 59x10

−18x12 + 3x14)μm−9 + (−47− 172x
4 + 130x6 − 58x8 + 14x10 − 3x12)μm−10

+(−40 + 28x2 − 11x4 + 9x6 − x8 + x10)μm−11 + (−5x
2 − x4 − x6)μm−12 + μm−13
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