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IRREDUCIBLE NUMERICAL SEMIGROUPS

J.C. Rosales and M.B. Branco

We give a characterization for irreducible numerical semi-
groups. From this characterization we obtain that every irre-
ducible numerical semigroup is either a symmetric or pseudo-
symmetric numerical semigroup. We study the minimal pre-
sentations of an irreducible numerical semigroup. Separately,
we deal with the cases of maximal embedding dimension and
multiplicity 3 and 4.

1. Introduction and basic concepts.

A numerical semigroup is a subset S of N closed under addition, 0 ∈ S
and generates Z as a group (here N and Z denote the set of nonnegative
integers and the set of the integers, respectively). From this definition we
obtain (see [2] and [13]) the following results.
(1) The set N \ S is finite, we refer to the greatest integer not belonging

to S as the Frobenius number of S and denote it by g(S).
(2) The semigroup S has a unique minimal system of generators {n0 <

n1 < · · · < np} . We refer to the numbers n0 and p + 1 as the
multiplicity and embedding dimension of S and denote them by
m(S) and µ(S), respectively.

Let F = {a0X0 + · · ·+ apXp : a0, . . . , ap ∈ N} be the free monoid generated
by {X0, . . . , Xp} and let ϕ : F → S be the monoid epimorphism defined by

ϕ(a0X0 + · · ·+ apXp) = a0n0 + · · ·+ apnp.

It is well-known that if σ is the kernel congruence of ϕ (that is, xσy if
ϕ(x) = ϕ(y)), then S is isomorphic to the quotient monoid F/σ (see [13]).
Rédei shows in [9] that the congruence σ is finitely generated and therefore
there exists

ρ = {(x1, y1), . . . , (xt, yt)} ⊆ F × F

such that σ is the smallest congruence on F that contains ρ. The set ρ is
called a presentation for the numerical semigroup S. We say that ρ is
minimal presentation if no proper subset of ρ generates σ. In [10] it is
shown that the concepts of minimal presentation and presentation with the
lowest cardinality coincide for a numerical semigroup.
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Numerical semigroups have been widely studied in the literature not only
from the semigroupist point of view but also to give us a series of exam-
ples in ring theory through the concept of the semigroup ring associated to
a numerical semigroup (see for instance [7], [4], [5], [8], [15]). Along this
line, if K is a field, K[S] is the finite type K-algebra associated to S and
K[X0, . . . , Xp] is the polynomial ring in p+1 indeterminates, the K-algebras
epimorphism λ : K[X] → K[S] such that Xi 	→ ti is a S-graded ring ho-
momorphism with degree zero. Therefore, the prime ideal P = kernel(λ)
(called the ideal associated to the semigroup) is homogeneous and defines a
monomial curve in the (p+1)-dimensional affine space on K. Herzog proves
in [7] that finding a system of generators for P is equivalent to finding a
presentation for S. Let us also notice that Kunz in [8] proves that K[S] is
Gorestein if and only if S is symmetric and Barucci-Dobbs-Fontana prove
in [2] that K[S] is Kunz if and only if S is pseudo-symmetric.

We say that a numerical semigroup is irreducible if it can not be ex-
pressed as an intersection of two numerical semigroups containing it prop-
erly. In Theorem 1, we see that S is irreducible if and only if S is maximal
in the set of all numerical semigroups with Frobenius number g(S). From
[6] and [2] we deduce that the class of irreducible semigroups with odd (re-
spectively even) Frobenius number is the same as the class of symmetric
(respectively pseudo-symmetric) numerical semigroups. Moreover, [11] pro-
vides a study of the irreducible numerical semigroups with odd Frobenius
number. Our aim in this paper is to generalize these results for irreducible
numerical semigroups in general (that is, with Frobenius number even or
odd).

The contents in this paper are organized as follows. In Section 2 we
characterize the irreducible numerical semigroups giving special attention
to their Apéry sets. In Section 3 we study the irreducible numerical semi-
groups with multiplicity 3 and 4. We explicitly give the family of irreducible
numerical semigroups of this kind. The aim of Section 4 is to give an upper
bound for the cardinal of a minimal presentation for an irreducible numer-
ical semigroup in function of their multiplicity and embedding dimension.
Finally, in Section 5 we study those irreducible numerical semigroups having
multiplicity greater than or equal to five and embedding dimension equal to
its multiplicity minus one.

2. Characterization of irreducible numerical semigroups.

Throughout this section S denotes a numerical semigroup, such that S 
= N.
It is well-known (see for instance [12]) that S ∪ {g(S)} is also a numerical
semigroup.

Theorem 1. The following conditions are equivalent:
1) S is irreducible,
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2) S is maximal in the set of all numerical semigroups with Frobenius
number g(S),

3) S is maximal in the set of all numerical semigroups that do not contain
g(S).

Proof. 1) ⇒ 2) Let S be a numerical semigroup such that S ⊆ S and g(S) =
g(S). Then S = (S ∪ {g(S)}) ∩ S. Since S is irreducible, we deduce that
S = S.

2) ⇒ 3) Let S be a numerical semigroup such that S ⊆ S and g(S) /∈ S.
Then S ∪ {g(S) + 1, g(S) + 2, . . . } is a numerical semigroup that contains S
with Frobenius number g(S). Therefore, S = S ∪ {g(S) + 1, g(S) + 2, . . . }
and so S = S.

3) ⇒ 1) Let S1 and S2 be two numerical semigroups that contain S
properly. Then, by hypothesis, g(S) ∈ S1 and g(S) ∈ S2. Therefore S 
=
S1 ∩ S2 and so S is irreducible. �

From [6] and [2] we deduce the next result.

Proposition 2.
1) If g(S) is odd, then S is irreducible if and only if for all h, h

′ ∈ Z, such
that h+ h

′
= g(S), we have that either h ∈ S or h

′ ∈ S (that is, S is
symmetric).

2) If g(S) is even, then S is irreducible if and only if for all h, h′ ∈
Z \ {g(S)

2 }, such that h + h′ = g(S), we have that either h ∈ S or
h′ ∈ S (that is, S is pseudo-symmetric).

Let n ∈ S \ {0}. Denote by 0 = w(1) < w(2) · · · < w(n) the smallest ele-
ments in S in respective congruence classes mod n. We denote by Ap(S, n),
the Apéry set of n in S (see [1]), the set {0 = w(1) < w(2) < · · · < w(n)}.
It is well-known (see [13]) that Ap(S, n) = {x ∈ S : x − n /∈ S} and that
w(n) = g(S) + n.

The following result is also well-known (see [1], [4] or [11]):

Proposition 3. Let n ∈ S \ {0}. Then S is irreducible with an odd Frobe-
nius number (that is, S is symmetric) if and only if w(i)+w(n−i+1) = w(n)
for all i ∈ {1, . . . , n}.

Now we see how is the Ap(S, n) when S is irreducible with an even Frobe-
nius number.

Lemma 4. If S is irreducible with an even Frobenius number and n ∈ S \
{0}, then g(S)

2 + n ∈ Ap(S, n).

Proof. It is enough to prove that g(S)
2 + n ∈ S, since g(S)

2 /∈ S, but this
follows from Proposition 2 ((g(S)

2 + n) + (g(S)
2 − n) = g(S)). �
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Proposition 5. Let S be a numerical semigroup with an even Frobenius
number and n ∈ S \ {0}. Then S is irreducible if and only if

Ap(S, n) = {0 = w(1) < w(2) < . . .

< w(n− 1) = g(S) + n} ∪ {g(S)/2 + n}
and w(i) + w(n− i) = w(n− 1) for all i ∈ {1, . . . , n− 1}.
Proof. First note that if g(S) is even, then g(S)

2 +n ∈ Ap(S, n) and g(S)
2 +n <

max Ap(S, n). If i ∈ {1, . . . , n − 1}, then w(i) − n /∈ S and w(i) − n 
=
g(S)

2 . By Proposition 2, we have that g(S) − (w(i) − n) ∈ S and thus
w(n−1)−w(i) = g(S)+n−w(i) ∈ S. Since w(n−1) ∈ Ap(S, n) we deduce
that w(n − 1) − w(i) ∈ Ap(S, n). Furthermore w(n − 1) − w(i) 
= g(S)

2 + n

because otherwise we would have w(i) = g(S)
2 . Hence the reader can check

that w(i) + w(n− i) = w(n− 1).
Conversely, let x be an integer such that x 
= g(S)

2 and x /∈ S. Let us
show that g(S)−x ∈ S. Take w ∈ Ap(S, n) such that w ≡ x(mod n). Then
x = w − kn for some k ∈ N \ {0}. We distinguish two cases:

(1) If w = g(S)
2 +n, then g(S)−x = g(S)−(g(S)

2 +n−kn) = g(S)
2 +(k−1)n.

Besides, x 
= g(S)
2 leads to k 
= 1 and therefore k ≥ 2. Hence we can

assert that g(S)− x ∈ S.
(2) If w 
= g(S)

2 + n, then g(S) − x = g(S) − (w − kn) = g(S) + n − w +
(k − 1)n = w(n − 1) − w + (k − 1)n ∈ S, since w(n − 1) − w ∈ S by
hypothesis.

�
Note that if S has embedding dimension two, then S is irreducible with

odd Frobenius number (i.e., S is symmetric); in fact S is a complete in-
tersection (see [3, 7]).

Observe also that µ(S) ≤ m(S) for every numerical semigroup S. The
semigroups with µ(S) = m(S) have been widely studied in the literature
(see for instance [2, 12, 15]) and are called MED-semigroups (numerical
semigroups with maximal embedding dimension).

Proposition 6. Let S be an irreducible numerical semigroup.
1) If g(S) is odd and m(S) ≥ 3, then µ(S) ≤ m(S)− 1.
2) If g(S) is even and m(S) ≥ 4, then µ(S) ≤ m(S)− 1.

Proof. 1. See Section 2 of [11].
2. It is enough to prove that µ(S) 
= m(S). If µ(S) = m(S), then S is

minimally generated by {m(S), n1, . . . , nm(S)−1} and therefore Ap(S, n) is
of the form

Ap(S, n) = {0 < n2 < · · · < nm(S)−1} ∪
{
n1 =

g(S)
2

+m(S)
}
.
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Since m(S) − 1 ≥ 3 then n1 
= n2 
= nm(S)−1. By Proposition 5 we
deduce that nm(S)−1−n2 ∈ S, which contradicts the fact that {m(S), n1, . . . ,
nm(S)−1} is a minimal system of generators for S. �

Note that S = 〈3, 7, 11〉 is an irreducible numerical semigroup with Frobe-
nius number g(S) = 8 (it is easy to see that 8 belongs to every numerical
semigroup that properly contains S). That is why in 2) of the above propo-
sition we need that m(S) ≥ 4 instead of m(S) ≥ 3.

Using 1) and 2) of the above proposition we can assert that if S is an
irreducible numerical semigroup with m(S) ≥ 4, then µ(S) ≤ m(S)− 1.

3. Irreducible numerical semigroups with multiplicity 3 and 4.

In this section we study the irreducible numerical semigroups with multi-
plicity 3 and 4. By the remark made after Proposition 5, we know that if
µ(S) = 2, then S is irreducible. Recall also, that from Proposition 6, if
m(S) = 4 and S is irreducible then µ(S) ≤ 3.

Therefore, we focus our study in the cases:
1) S is irreducible with m(S) = µ(S) = 3,
2) S is irreducible with m(S) = 4 and µ(S) = 3.
The following result is an immediate consequence of [2, Theorems I.4.2,

I.4.4]. Here we offer an alternative proof by using Apéry sets.

Theorem 7. The following conditions are equivalent:
1) S is an irreducible numerical semigroup with m(S) = µ(S) = 3,
2) S is generated by {3, x+ 3, 2x+ 3} with x not a multiple of 3.

Proof. 1) ⇒ 2) If m(S) = µ(S) = 3, then {3, n1, n2} is a minimal system of
generators for S. From Proposition 6 we deduce that g(S) is even and by
Proposition 5 we have that

Ap(S, 3) =
{
0, n1 =

g(S)
2

+ 3, n2 = g(S) + 3
}
.

Taking x = g(S)
2 we have that n1 = x + 3 and n2 = 2x + 3. Furthermore,

x = g(S)
2 /∈ S and thus x is not a multiple of 3.

2) ⇒ 1) Clearly {3, x + 3, 2x + 3} is a minimal system of generators for
S and thus m(S) = µ(S) = 3. We have that Ap(S, 3) = {0, x + 3, 2x + 3}.
Hence 2x+3 = g(S)+3 and therefore g(S)

2 +3 = x+3. From Proposition 5
we deduce that S is irreducible. �

S = 〈3, 3+x, 2x+3〉 is a MED-semigroup. Applying the results obtained
in [12] we deduce that a minimal presentation for S is:

ρ = {(2X1, X0 +X2), (2X2, xX0 +X1), ((x+ 1)X0, X1 +X2)}.
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Now we study the irreducible numerical semigroups with multiplicity 4.
We distinguish two cases taking into account that the Frobenius number is
odd (a symmetric semigroup) or even (a pseudo-symmetric semigroup).

Herzog proves in [7] that a numerical semigroup S with minimal system
of generators {n0, n1, n2} is irreducible with an odd Frobenius number (i.e.,
symmetric) if and only if it is a complete intersection. Applying the results
obtained in [5] this occurs if and only if ni ∈

〈
nj

(nj ,nk) ,
nk

(nj ,nk)

〉
for some

{i, j, k} = {0, 1, 2}, where (nj , nk) denotes the greatest common divisor (gcd
for short) of nj , nk.

Theorem 8. The following conditions are equivalent:

1) S is an irreducible numerical semigroup, g(S) is odd, m(S) = 4 and
µ(S) = 3,

2) S is a numerical semigroup generated by {4, 2x, x+2y} with y ∈ N\{0}
and x an odd integer greater than or equal to 3.

Proof. 1) ⇒ 2) If m(S) = 4 and µ(S) = 3, then {4, n1, n2} is a minimal
system of generators for S. From the previous remark we only have two
cases:

a) Assume that d = gcd{4, n1} and n2 ∈ 〈4
d ,

n1
d 〉. Notice that d = 2 and

n1 = 2x with x an odd number greater than or equal to 3. Furthermore
1 = gcd{4, n1, n2}, then n2 is an odd number and n2 ∈ 〈2, x〉 thus
n2 = x+ 2y (because all odd numbers in 〈2, x〉 are of this kind).

b) Assume that d = gcd{n1, n2} and 4 ∈ 〈n1
d ,

n2
d 〉. From here we deduce

that n1 = 2d, n2 = k2d with k2 odd and d an odd integer greater than
or equal to 3. Therefore, n2 = d+(k2−1)d with (k2−1)d even. Taking
x = d and y = (k2−1)d

2 we obtain the desired result.

2) ⇒ 1) Clearly, 2 = gcd{4, 2x} and x+2y ∈ 〈4
2 ,

2x
2 〉. By the remark made

before this theorem we have that S is an irreducible numerical semigroup
with an odd Frobenius number. Now, we need to show that {4, 2x, x+ 2y}
is a minimal system of generators for S, but this is clear because:

1) x+ 2y /∈ 〈4, 2x〉, since x+ 2y is odd,
2) 2x /∈ 〈4, x + 2y〉, since if 2x = a4 + b(x + 2y) with a, b ∈ N, then

applying that 2x is an even integer not a multiple of 4 and that x+2y
is odd, we deduce that b ≥ 2, contradicting that 2(x+ 2y) > 2x.

�

The semigroup S = 〈4, 2x, x + 2y〉 has Frobenius number g(S) = 3x +
2y − 4, furthermore using that it is a complete intersection we deduce that
a minimal presentation for S is:

ρ = {(2X1, xX0), (2X2, yX0 +X1)}.
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Finally, we study the irreducible numerical semigroups such that g(S) is
even, m(S) = 4 and µ(S) = 3.

Theorem 9. The following conditions are equivalent:
1) S is an irreducible numerical semigroup, g(S) is even, m(S) = 4 and

µ(S) = 3,
2) S is generated by {4, x + 2, x + 4} with x an odd integer greater than

or equal to 3.

Proof. 1) ⇒ 2) If m(S) = 4 and µ(S) = 3, then {4, n1, n2} is a minimal
system of generators for S. From Lemma 4 we know that g(S)

2 +4 ∈ Ap(S, 4).
We distinguish two cases:

a) If g(S)
2 + 4 is a minimal generator then, by Proposition 5, we deduce

that

Ap(S, 4) =
{
0, n1 =

g(S)
2

+ 4, n2, 2n2 = g(S) + 4
}
.

Taking x = g(S)
2 , then n1 = x + 4 and n2 = x + 2. Furthermore

g(S) /∈ S and therefore x is odd.
b) If g(S)

2 + 4 is not a minimal generator, then

Ap(S, 4) =
{
0, n1, n2,

g(S)
2

+ 4
}
.

Hence g(S) + 4 = n1 or g(S) + 4 = n2. Suppose that g(S) + 4 = n1

then, by Proposition 5, we deduce that n1−n2 ∈ S, contradicting that
{4, n1, n2} is a minimal system of generators.

2) ⇒ 1) Clearly, {4, x+ 2, x+ 4} is a minimal system of generators of S,
whence m(S) = 4 and µ(S) = 3. The reader can check that

Ap(S, 4) = {0, x+ 2, x+ 4, 2x+ 4}.
Therefore g(S) = 2x and then

Ap(S, 4) =
{
0,
g(S)
2

+ 4,
g(S) + 4

2
, g(S) + 4

}
.

Using Proposition 5 we obtain that S is irreducible. �

Note that S = 〈4, x + 2, x + 4〉 has Frobenius number 2x. Applying [7]
and that this semigroup is not symmetric (therefore it is not a complete
intersection), we can deduce that a minimal presentation for S is:

ρ = {(2X2, X0 + 2X1), (3X1, kX0 +X2), (tX0, X1 +X2)}
with k = 3(x+2)−(x+4)

4 and t = (x+4)+(x+2)
4 . Observe that 3(x+ 2)− (x+ 4)

is a multiple of 4 if and only if x is odd, and (x+ 4) + (x+ 2) is a multiple
of 4 if and only if x is odd.
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4. An upper bound of the cardinality of a minimal presentation
for an irreducible numerical semigroup.

Let S be a numerical semigroup with minimal system of generators {n0 <
n1 < · · · < np}. In [12] it is shown the following result (#MRS denotes the
cardinality of a minimal presentation for S).

Proposition 10. Let S be a numerical semigroup. Then

#MRS ≤ n0(n0 − 1)
2

− 2(n0 − 1− p).

In [11] this bound is improved in the case S is symmetric. In fact, the
following result is given there:

Proposition 11. If S is symmetric, n0 ≥ 3 and p ≥ 2, then

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).

Our aim in this section is to prove the analogue to this result for S an
irreducible semigroup with even Frobenius number.

Throughout this section S is an irreducible numerical semigroup with
g(S) even and p ≥ 3.

For n ∈ S define the graph Gn = (Vn, En), as

Vn = {ni ∈ {n0, . . . , np} : n− ni ∈ S},
En = {[ni, nj ] : n− (ni + nj) ∈ S, i, j ∈ {0, . . . , p}, i 
= j}.

From [12] we can deduce the following result.

Proposition 12. If {n0, n1, . . . , np, g(S)} is a minimal system of genera-
tors for S′ = S∪{g(S)}, g(S) > n0 and ni and n0 are in the same connected
component of Gg(S)+n0+ni

for all i ∈ {1, . . . , p}, then
#MRS + p+ 2 = #MRS′.

Applying Proposition 5 and using that p ≥ 3 we deduce that g(S)+no ≥
ni + nj for some i, j ∈ {1, . . . , p} and therefore g(S) > n0. Furthermore,
{n0, n1, . . . , np, g(S)} is a minimal system of generators for S′ = S ∪{g(S)},
since otherwise we would deduce from [12] that np = g(S) + n0, which
contradicts Proposition 5 for p ≥ 3.

Lemma 13. If i ∈ {1, . . . , p}, w ∈ Ap(S, n0) and n0 and ni are in two
different connected components of Gw+ni, then for all w′ ∈ Ap(S, n0) such
that w − w′ ∈ S \ {0} we have that w′ + ni ∈ Ap(S, n0)

Proof. Suppose that w′ + ni /∈ Ap(S, n0), then w′ + ni − n0 ∈ S. Let
s ∈ S \ {0} be such that w = w′+ s and j ∈ {0, . . . , p} such that s−nj ∈ S.
Then, w+ni − (ni +nj) ∈ S and w+ni − (nj +n0) ∈ S. Therefore [ni, nj ],
[nj , n0] ∈ En and so ni and n0 are in the same connected component of
Gw+ni . �
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Lemma 14. If i ∈ {1, . . . , p}, then n0 and ni are in the same connected
component of Gg(S)+n0+ni

.

Proof. Suppose that n0 and ni are in two different connected components
of Gg(S)+n0+ni

. Let j ∈ {1, . . . , p} be such that nj 
= g(S)
2 + n0 and ni 
= nj

(this is possible because p ≥ 3). By Lemma 13 and Proposition 5 we deduce
that g(S) + n0 − nj + ni ∈ Ap(S, n0).

Observe that g(S) + n0 − nj + ni = g(S)
2 + n0, since otherwise using

Proposition 5 we would obtain that g(S) + n0 − (g(S) + n0 − nj + ni) ∈ S
and therefore nj − ni ∈ S, contradicting that {n0, . . . , np} is a minimal
system of generators for S.

Let us observe that ni 
= g(S)
2 +n0 because otherwise we would deduce from

g(S)+n0−nj+ni =
g(S)

2 +n0, that nj = g(S)+n0 and applying Proposition 5
we can assert that S = 〈n0,

g(S)
2 + n0, g(S) + n0〉, which contradicts that

p ≥ 3.
Now assume that Ap(S, n0) = {0 = w(1) < · · · < w(n0−1)}∪

{
g(S)

2 + n0

}
.

We distinguish two cases:

1) If g(S)
2 +n0 ∈ {n1, . . . , np}, then from Proposition 5 and Lemma 13 we

have that

w(1) + ni = w(2), w(2) + ni = w(3), . . . , w(n0 − 2) + ni = w(n0 − 1).

Hence,

Ap(S, n0) = {0, ni, 2ni, . . . , (n0 − 2)ni} ∪
{
g(S)
2

+ n0

}

and thus S = 〈n0, ni,
g(S)

2 + n0〉, a contradiction because p ≥ 3.
2) If g(S)

2 +n0 /∈ {n1, . . . , np}, then again from Proposition 5 and Lemma 13
we obtain that

Ap(S, n0) =
{
0, ni, . . . , kni =

g(S)
2

+ n0, nj , nj + ni, . . . ,

nj + tni = g(S) + n0

}

for some k, t ∈ N. Therefore, S = 〈n0, ni, nj〉, in contradiction again
with p ≥ 3.

�

Proposition 15.

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).
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Proof. Applying Lemma 14 and Proposition 12 we deduce that #MRS =
#MR(S ∪ {g(S)})− (p+ 2). From Proposition 10 we have that

#MR(S ∪ {g(S)}) ≤ n0(n0 − 1)
2

− 2(n0 − 1− p− 1).

Hence,

#MRS ≤ (n0 − 2)(n0 − 1)
2

− 1 + (p+ 2− n0).

�

From Propositions 15 and 11 we can obtain the following result.

Theorem 16. If S is an irreducible numerical semigroup with µ(S) ≥ 4,
then

#MRS ≤ (m(S)− 2)(m(S)− 1)
2

− 1 + (µ(S) + 1−m(S)).

Note that if µ(S) = 2, then #MRS = 1 and if µ(S) = 3, then #MRS = 2
or 3 depending on the parity of g(S) (see[7]).

5. Irreducible numerical semigroups with maximal embedding
dimension.

A MEDI-semigroup is an irreducible semigroup with multiplicity m ≥ 5
and embedding dimension m − 1. Remember from Proposition 6 that if S
is irreducible and m(S) ≥ 5, then µ(S) ≤ m(S)− 1 and this is why we use
the name MEDI-semigroup to indicate that it is an irreducible numerical
semigroup with the maximal possible embedding dimension.

If S = 〈m(S), n1, . . . , nm(S)−2〉 is a MEDI-semigroup, then

Ap(S,m(S)) = {0, n1, . . . , nm(S)−2, g(S) +m(S)}.
Moreover, from Propositions 3 and 5 we can deduce that g(S) + m(S) =
ni +nj with i, j ∈ {1, . . . ,m(S)−2} and i 
= j. Applying now [14, Theorem
1] we get that

#MRS =
(m(S)− 2)(m(S)− 1)

2
− 1.

Note that for m(S) ∈ {3, 4}, the previous formula is not true (for this
reason in the definition of MEDI-semigroup we need that m(S) ≥ 5). In
fact, for m(S) = 3 applying the previous formula, we have #MRS = 0
but we know that a minimal presentation for 〈3, n1〉 has cardinal 1. For
m(S) = 4 applying the previous formula, we have #MRS = 2 and we know
that in this class there are semigroups with minimal presentation of cardinal
3 (see the remark after Theorem 9).

If S is a MEDI-semigroup with g(S) odd, then S is a MEDSY-semi-
group according to the terminology used in [11].
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Theorem 17. If S is an irreducible numerical semigroup with µ(S) ≥ 5,
then the following conditions are equivalent:

1) S is a MEDI-semigroup, and
2) #MRS = (m(S)−2)(m(S)−1)

2 − 1.

Proof. 2) ⇒ 1) Since µ(S) ≥ 4, by Theorem 16 we know that

#MRS ≤ (m(S)− 2)(m(S)− 1)
2

− 1 + (µ(S) + 1−m(S)).

Since

#MRS =
(m(S)− 2)(m(S)− 1)

2
− 1,

we get that µ(S) = m(S)− 1 and therefore S is a MEDI-semigroup.
1) ⇒ 2) Proved already (see the beginning of this section). �
The next result appears in [11].

Lemma 18. Let A = {0 = w(1), w(2), . . . , w(m)} be a subset of N such
that w(i) 
≡ w(j)(mod m) for all 1 ≤ i < j ≤ m, and let S be a numerical
semigroup generated by A ∪ {m}. Then Ap(S,m) = A if and only if for all
1 ≤ i, j ≤ m there exist 1 ≤ k ≤ m and t ∈ N such that w(i) + w(j) =
w(k) + tm.

Proposition 19. If S is an irreducible numerical semigroup with m(S) ≥ 5
and

Ap(S,m(S)) = {0 = w(1) < w(2) < · · · < w(m(S))},
then the semigroup S′ generated by

{m(S), w(2) +m(S), . . . , w(m(S)− 1) +m(S)}
is a MEDI-semigroup.

Proof. In [11, Proposition 2.4] it is proved that {m(S), w(2) + m(S), . . . ,
w(m(S) − 1) + m(S)} is a minimal system of generators for S′. Further-
more, in that proposition, it is also shown that if S is symmetric, then S′ is
MEDSY-semigroup. Therefore it is enough to prove that if S is irreducible
with g(S) even, then S′ is irreducible. From Lemma 18 we obtain that

Ap(S′,m(S)) = {0 < w(2) +m(S) < · · · < w(m(S)− 1) +m(S)

< w(m(S)) + 2m(S)}
and, by Proposition 5, we get that S′ is irreducible. �

As a consequence of the previous proof we have that g(S′) = g(S)+2m(S).

Proposition 20. If S is a MEDI-semigroup with a minimal system of gen-
erators {m(S) < n1 < · · · < nm(S)−2}, then the semigroup S′ generated by
{m(S), n1 −m(S), . . . , nm(S)−2 −m(S)} is irreducible.
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Proof. In [11, Propositon 2.5] it is proved that if S is a MEDSY-semigroup
then S′ is symmetric. Therefore, it is enough to prove that if S is a MEDI-
semigroup with g(S) even, then S′ is irreducible.

Assume that nj =
g(S)

2 +m(S) and

Ap(S,m(S)) = {0, n1, . . . , nm(S)−2, g(S) +m(S) = n1 + nm(S)−2}.
Using Lemma 18 it is easy to prove that

Ap(S′,m(S)) = {0, n1 −m(S), . . . , nm(S)−2 −m(S), g(S)−m(S)}.
From Proposition 5 we conclude that S′ is irreducible (note that g(S′) =
g(S)− 2m(S) and nj −m(S) = g(S′)

2 +m(S)). �

Applying Propositions 19 and 20 and a similar reasoning to the one used
in the proof of [11, Theorem 2.6] we obtain the following result:

Theorem 21. There is one to one correspondence between the irreducible
semigroups with Frobenius number g and multiplicity m ≥ 5 and the MEDI-
semigroups with Frobenius number g + 2m, multiplicity m and the rest of
minimal generators greater than 2m.

Acknowledgements. Special thanks to P. A. Garćıa-Sánchez and the ref-
eree for their comments and suggestions.
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Paris, 222 (1946), 1198-2000, MR 8,221a, Zbl 0061.35404.

[2] V. Barucci, D.E. Dobbs and M. Fontana, Maximality properties in numerical semi-
groups and applications to one-dimensional analytically irreducible local domains,
Memoirs Amer. Math. Soc., 125(598) (1997), MR 97g:13039, Zbl 0868.13003.

[3] A. Brauer, On a problem of partitions, Amer. J. Math., 64 (1942), 299-312,
MR 3,270d, Zbl 0061.06801.

[4] H. Bresinsky, On prime ideals with generic zero xi = tni, Proc. Amer. Soc., 47 (1975),
329-332, MR 52 #10741, Zbl 0296.13007.

[5] C. Delorme, Sous-monoides d’intersion complete de N, Ann. Scient. Ec. Norm. Sup.,
4-série, 9 (1976), 145-154, MR 53 #10821, Zbl 0325.20065.
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