PARTITIONS INTO THREE TRIANGULAR NUMBERS

Michael D. Hirschhorn and James A. Sellers

School of Mathematics
UNSW
Sydney 2052
Australia
m.hirschhorn@unsw.edu
and

Department of Mathematics
Penn State University
107 Whitmore Laboratory
University Park, PA 16802 USA
sellersj@math.psu.edu

Proposed Running Head: PARTITIONS INTO THREE TRIANGLES

Abstract

A celebrated result of Gauss states that every positive integer can be represented as the sum of three triangular numbers. In this article we study $p_{3 \Delta}(n)$, the number of partitions of the integer n into three triangular numbers, as well as $p_{3 \Delta}^{d}(n)$, the number of partitions of n into three distinct triangular numbers.

Unlike $t(n)$, which counts the number of representations of n into three triangular numbers, $p_{3 \Delta}(n)$ and $p_{3 \Delta}^{d}(n)$ appear to satisfy very few arithmetic relations (apart from certain parity results). However, we shall show that, for all $n \geq 0$, $$
p_{3 \Delta}(27 n+12)=3 p_{3 \Delta}(3 n+1) \text { and } p_{3 \Delta}^{d}(27 n+12)=3 p_{3 \Delta}^{d}(3 n+1)
$$

Two separate proofs of these results are given, one via generating function manipulations and the other by a combinatorial argument.

Keywords

partitions, triangular numbers, Gauss, generating functions

Corresponding Author

Michael D. Hirschhorn
School of Mathematics
UNSW
Sydney 2052
Australia
m.hirschhorn@unsw.edu

1. Introduction

In 1796, C. F. Gauss proved his now famous result that every integer can be written as the sum of three triangular numbers. That is, if $t(n)$ is the number of representations of n as a sum of three triangular numbers, then $t(n) \geq 1$ for all $n \geq 0$.

When we study $t(n)$, we find that it grows quite rapidly. Consider, for example, $t(30)$. Note that 30 can be written as

$$
28+1+1,1+28+1,1+1+28
$$

$$
\begin{gathered}
21+6+3,21+3+6,6+21+3,6+3+21,3+6+21,3+21+6, \\
15+15+0,15+0+15,0+15+15,
\end{gathered}
$$

and

$$
10+10+10
$$

So we see that $t(30)=13$.
Our goal in this paper is to study the partitions of n into three triangular numbers rather than the representations of n into three triangular numbers. For instance, the three representations $28+1+1,1+28+1$, and $1+1+28$ stem from one partition, $28+1+1$. Thus the integer 30 can be partitioned into three triangular numbers in only four ways. In this note, we will denote this partition function by $p_{3 \Delta}(n)$, so that $p_{3 \Delta}(30)=4$.

Unlike $t(n), p_{3 \Delta}(n)$ appears to satisfy very few arithmetic relations (apart from certain parity results). This claim is based on a great deal of numerical evidence. However, while searching for congruences satisfied by $p_{3 \Delta}$, we did discover the following:

Theorem 1.

Let $p_{3 \Delta}(n)$ be defined as above and let $p_{3 \Delta}^{d}(n)$ be the number of partitions of n into three distinct triangular numbers. Then, for all $n \geq 0$,

$$
\begin{align*}
p_{3 \Delta}(27 n+12) & =3 p_{3 \Delta}(3 n+1) \tag{1}\\
\text { and } \quad p_{3 \Delta}^{d}(27 n+12) & =3 p_{3 \Delta}^{d}(3 n+1) . \tag{2}
\end{align*}
$$

Theorem 1 (1) is reminiscent of a result proven by the authors [2] involving $t(n)$. Namely, for all $n \geq 0$,

$$
\begin{equation*}
t(27 n+12)=3 t(3 n+1) \tag{3}
\end{equation*}
$$

Many other results of this type hold for $t(n)$, such as

$$
\begin{align*}
t(27 n+21) & =5 t(3 n+2) \tag{4}\\
t(81 n+3) & =4 t(9 n) \tag{5}\\
\text { and } \quad t(81 n+57) & =4 t(9 n+6) \tag{6}
\end{align*}
$$

However, results corresponding to (4), (5), and (6) do not exist for $p_{3 \Delta}$.
In section 2, we develop the generating functions for $p_{3 \Delta}(n)$ and $p_{3 \Delta}^{d}(n)$ using techniques similar to those employed in [3]. Section 3 is then devoted to dissecting these generating functions and proving Theorem 1. Finally, we give a combinatorial proof of Theorem 1 in section 4.

2. The generating functions

As defined by Ramanujan, let

$$
\psi(q)=\sum_{n \geq 0} q^{\left(n^{2}+n\right) / 2}
$$

It is clear that $\sum_{n \geq 0} t(n) q^{n}=\psi(q)^{3}$. However, the generating functions for $p_{3 \Delta}(n)$ and $p_{3 \Delta}^{d}(n)$ are somewhat more complicated, as we see here.

Theorem 2.

$$
\begin{align*}
\sum_{n \geq 0} p_{3 \Delta}(n) q^{n} & =\frac{1}{6}\left(\psi(q)^{3}+3 \psi(q) \psi\left(q^{2}\right)+2 \psi\left(q^{3}\right)\right) \tag{7}\\
\text { and } \quad \sum_{n \geq 0} p_{3 \Delta}^{d}(n) q^{n} & =\frac{1}{6}\left(\psi(q)^{3}-3 \psi(q) \psi\left(q^{2}\right)+2 \psi\left(q^{3}\right)\right) . \tag{8}
\end{align*}
$$

Proof: Let $\Delta_{n}=\left(n^{2}+n\right) / 2$. Then $\sum_{n \geq 0} q^{\Delta_{n}}=\psi(q)$. In order to build the generating functions in (7) and (8), we mimic the approach utilized in [3]. We denote the generating function for the number of partitions of n of the form $n=\Delta_{a}+\Delta_{b}+\Delta_{c}$ by $F\left(\Delta_{a}+\Delta_{b}+\right.$ $\left.\Delta_{c}, q\right)$, and use similar notation to define related generating functions. (So, for example, $F\left(\Delta_{a}+\Delta_{a}+\Delta_{b}, q\right)$ is the generating function for the number of partitions of n into twice one triangular number plus another (different) triangular number.) With the above notation in place, we have

$$
F\left(\Delta_{a}, q\right)=\psi(q)
$$

$$
\begin{aligned}
& F\left(\Delta_{a}+\Delta_{a}, q\right)=\psi\left(q^{2}\right) \\
& F\left(\Delta_{a}+\Delta_{a}+\Delta_{a}, q\right)=\psi\left(q^{3}\right) \\
& F\left(\Delta_{a}+\Delta_{b}, q\right)=\frac{1}{2}\left(F\left(\Delta_{a}, q\right)^{2}-F\left(\Delta_{a}+\Delta_{a}, q\right)\right) \\
&=\frac{1}{2}\left(\psi(q)^{2}-\psi\left(q^{2}\right)\right), \\
& F\left(\Delta_{a}+\Delta_{a}+\Delta_{b}, q\right)=F\left(\Delta_{a}+\Delta_{a}, q\right) F\left(\Delta_{a}, q\right)-F\left(\Delta_{a}+\Delta_{a}+\Delta_{a}, q\right) \\
&=\psi(q) \psi\left(q^{2}\right)-\psi\left(q^{3}\right), \\
& \text { and } \begin{aligned}
F\left(\Delta_{a}+\Delta_{b}+\Delta_{c}, q\right) & =\frac{1}{3}\left(F\left(\Delta_{a}+\Delta_{b}, q\right) F\left(\Delta_{a}, q\right)-F\left(\Delta_{a}+\Delta_{a}+\Delta_{b}, q\right)\right) \\
& =\frac{1}{6}\left(\psi(q)^{3}-3 \psi(q) \psi\left(q^{2}\right)+2 \psi\left(q^{3}\right)\right)
\end{aligned},
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{n \geq 0} p_{3 \Delta}(n) q^{n} & =F\left(\Delta_{a}+\Delta_{b}+\Delta_{c}, q\right)+F\left(\Delta_{a}+\Delta_{a}+\Delta_{b}, q\right)+F\left(\Delta_{a}+\Delta_{a}+\Delta_{a}, q\right) \\
& =\frac{1}{6}\left(\psi(q)^{3}+3 \psi(q) \psi\left(q^{2}\right)+2 \psi\left(q^{3}\right)\right)
\end{aligned}
$$

which is (7). Also,

$$
\sum_{n \geq 0} p_{3 \Delta}^{d}(n) q^{n}=F\left(\Delta_{a}+\Delta_{b}+\Delta_{c}, q\right)=\frac{1}{6}\left(\psi(q)^{3}-3 \psi(q) \psi\left(q^{2}\right)+2 \psi\left(q^{3}\right)\right)
$$

which is (8).

3. A generating function proof of Theorem 1

In order to prove Theorem 1, we must dissect the generating functions found in Theorem 2. To do so, we develop a large number of ancillary dissection results. As in Cooper and Hirschhorn [1], let

$$
\begin{aligned}
& \phi(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}}, \quad X(q)=\sum_{n=-\infty}^{\infty} q^{3 n^{2}+2 n}, \quad P(q)=\sum_{n=-\infty}^{\infty} q^{\left(3 n^{2}-n\right) / 2} \\
& A(q)=\sum_{n=-\infty}^{\infty} q^{9 n^{2}+2 n}, \quad B(q)=\sum_{n=-\infty}^{\infty} q^{9 n^{2}+4 n}, \quad C(q)=\sum_{n=-\infty}^{\infty} q^{9 n^{2}+8 n} \\
& H(q)=\sum_{n=-\infty}^{\infty} q^{\left(9 n^{2}+n\right) / 2}, \quad I(q)=\sum_{n=-\infty}^{\infty} q^{\left(9 n^{2}+5 n\right) / 2}, \quad J(q)=\sum_{n=-\infty}^{\infty} q^{\left(9 n^{2}+7 n\right) / 2}
\end{aligned}
$$

We need the following collection of results.

Lemma 1.

$$
\begin{gather*}
\psi(q)=P\left(q^{3}\right)+q \psi\left(q^{9}\right), \tag{i}\\
X(q)=A\left(q^{3}\right)+q B\left(q^{3}\right)+q^{5} C\left(q^{3}\right), \tag{ii}\\
P(q)=H\left(q^{3}\right)+q I\left(q^{3}\right)+q^{2} J\left(q^{3}\right), \tag{iii}\\
H(q) H\left(q^{2}\right)+q I(q) I\left(q^{2}\right)+q^{2} J(q) J\left(q^{2}\right)=\phi\left(q^{3}\right) P(q), \tag{iv}\\
H\left(q^{2}\right) I(q)+q I\left(q^{2}\right) J(q)+q J\left(q^{2}\right) H(q)=X(q) P(q), \tag{v}\\
H(q) I\left(q^{2}\right)+q I(q) J\left(q^{2}\right)+J(q) H\left(q^{2}\right)=2 \psi\left(q^{3}\right) X(q), \tag{vi}\\
P(q) P\left(q^{2}\right)=\phi\left(q^{9}\right) P\left(q^{3}\right)+q X\left(q^{3}\right) P\left(q^{3}\right)+2 q^{2} \psi\left(q^{9}\right) X\left(q^{3}\right), \tag{vii}\\
A(q) H(q)+q B(q) J(q)+q^{2} C(q) J(q)=P(q) P\left(q^{2}\right), \tag{viii}\\
A(q) I(q)+B(q) H(q)+q^{2} C(q) J(q)=2 \psi\left(q^{3}\right) P\left(q^{2}\right), \tag{ix}\\
A(q) J(q)+B(q) I(q)+q C(q) H(q)=2 \psi\left(q^{6}\right) P(q), \tag{x}
\end{gather*}
$$

and

$$
\begin{equation*}
X(q) P(q)=P\left(q^{3}\right) P\left(q^{6}\right)+2 q \psi\left(q^{9}\right) P\left(q^{6}\right)+2 q^{2} \psi\left(q^{18}\right) P\left(q^{3}\right) \tag{xi}
\end{equation*}
$$

Proof: First, (i), (ii) and (iii) are straightforward 3-dissections. Next, let

$$
F_{1}(q)=H(q) H\left(q^{2}\right)+q I(q) I\left(q^{2}\right)+q^{2} J(q) J\left(q^{2}\right),
$$

the left hand side of (iv). Then $F_{1}(q)$ equals

$$
\sum_{m, n=-\infty}^{\infty} q^{\left(9 m^{2}+m\right) / 2+\left(9 n^{2}+n\right)}+\sum_{m, n=-\infty}^{\infty} q^{\left(9 m^{2}+5 m\right) / 2+\left(9 n^{2}+5 n\right)}+\sum_{m, n=-\infty}^{\infty} q^{\left(9 m^{2}+7 m\right) / 2+\left(9 n^{2}+7 n\right)}
$$

Thus,

$$
\begin{aligned}
q^{3} F_{1}\left(q^{72}\right) & =\sum q^{(18 m+1)^{2}+2(18 n+1)^{2}}+\sum q^{(18 m-5)^{2}+2(18 n-5)^{2}}+\sum q^{(18 m+7)^{2}+2(18 n+7)^{2}} \\
& =\sum_{a \equiv b(\bmod 3)} q^{(6 a+1)^{2}+2(6 b+1)^{2}} \\
& =\sum_{r, s=-\infty}^{\infty} q^{(12 r+6 s+1)^{2}+2(6 s-6 r+1)^{2}} \\
& =q^{3} \sum_{r, s=-\infty}^{\infty} q^{216 r^{2}+108 s^{2}+36 s} \\
& =q^{3} \phi\left(q^{216}\right) P\left(q^{72}\right),
\end{aligned}
$$

so that $F_{1}(q)=\phi\left(q^{3}\right) P(q)$. This yields (iv). The proofs of (v) and (vi) are similar. Indeed, let

$$
F_{2}(q)=H\left(q^{2}\right) I(q)+q I\left(q^{2}\right) J(q)+q J\left(q^{2}\right) H(q)
$$

Then

$$
\begin{aligned}
q^{27} F_{2}\left(q^{72}\right) & =\sum_{a-b \equiv-1(\bmod 3)} q^{(6 a-1)^{2}+(6 b+1)^{2}} \\
& =\sum_{r, s=-\infty}^{\infty} q^{(12 r+6 s-5)^{2}+2(6 s-6 r+1)^{2}} \\
& =q^{27} \sum_{r, s=-\infty}^{\infty} q^{216 r^{2}-144 r+108 s^{2}-36 s} \\
& =q^{27} X\left(q^{72}\right) P\left(q^{72}\right)
\end{aligned}
$$

which implies $F_{2}(q)=X(q) P(q)$.
Next, let

$$
F_{3}(q)=H(q) I\left(q^{2}\right)+q I(q) J\left(q^{2}\right)+J(q) H\left(q^{2}\right)
$$

Then

$$
\begin{aligned}
q^{51} F_{3}\left(q^{72}\right) & =\sum_{a-b \equiv 1(\bmod 3)} q^{(6 a+1)^{2}+2(6 b+1)^{2}} \\
& =\sum_{r, s=-\infty}^{\infty} q^{(12 r+6 s+7)^{2}+2(6 s-6 r+1)^{2}} \\
& =q^{51} \sum_{r, s=-\infty}^{\infty} q^{216 r^{2}+144 r+108 s^{2}+108 s} \\
& =2 q^{51} \psi\left(q^{216}\right) X\left(q^{72}\right),
\end{aligned}
$$

which means $F_{3}(q)=2 \psi\left(q^{3}\right) X(q)$.
Thanks to (iii), (iv), (v) and (vi), we know

$$
\begin{aligned}
P(q) P\left(q^{2}\right)=(& \left.H\left(q^{3}\right)+q I\left(q^{3}\right)+q^{2} J\left(q^{3}\right)\right)\left(H\left(q^{6}\right)+q^{2} I\left(q^{6}\right)+q^{4} J\left(q^{6}\right)\right) \\
=(& \left.H\left(q^{3}\right) H\left(q^{6}\right)+q^{3} I\left(q^{3}\right) I\left(q^{6}\right)+q^{6} J\left(q^{3}\right) J\left(q^{6}\right)\right) \\
& +q\left(H\left(q^{6}\right) I\left(q^{3}\right)+q^{3} I\left(q^{6}\right) J\left(q^{3}\right)+q^{3} J\left(q^{6}\right) H\left(q^{3}\right)\right) \\
& +q^{2}\left(H\left(q^{3}\right) I\left(q^{6}\right)+q^{3} I\left(q^{3}\right) J\left(q^{6}\right)+J\left(q^{3}\right) H\left(q^{6}\right)\right)
\end{aligned}
$$

$$
=\phi\left(q^{9}\right) P\left(q^{3}\right)+q X\left(q^{3}\right) P\left(q^{3}\right)+2 q^{2} \psi\left(q^{9}\right) X\left(q^{3}\right)
$$

This is (vii). The proofs of (viii)-(xi) follow using similar techniques and are omitted here.

With this machinery in hand, we now prove two additional theorems in preparation for our proof of Theorem 1 .

Theorem 3.

Let $u(n)$ be defined by

$$
\sum_{n \geq 0} u(n) q^{n}=\psi(q) \psi\left(q^{2}\right)
$$

Then, for all $n \geq 0, u(27 n+12)=3 u(3 n+1)$.
Proof: From (i) we have

$$
\begin{aligned}
\sum_{n \geq 0} u(n) q^{n} & =\psi(q) \psi\left(q^{2}\right) \\
& =\left(P\left(q^{3}\right)+q \psi\left(q^{9}\right)\right)\left(P\left(q^{6}\right)+q^{2} \psi\left(q^{18}\right)\right) \\
& =\left(P\left(q^{3}\right) P\left(q^{6}\right)+q^{3} \psi\left(q^{9}\right) \psi\left(q^{18}\right)\right)+q \psi\left(q^{9}\right) P\left(q^{6}\right)+q^{2} \psi\left(q^{18}\right) P\left(q^{3}\right)
\end{aligned}
$$

Thanks to this dissection, we immediately see that

$$
\sum_{n \geq 0} u(3 n+1) q^{n}=\psi\left(q^{3}\right) P\left(q^{2}\right)
$$

Also, from the work above and (vii), we know

$$
\begin{aligned}
\sum_{n \geq 0} u(3 n) q^{n} & =P(q) P\left(q^{2}\right)+q \psi\left(q^{3}\right) \psi\left(q^{6}\right) \\
& =\phi\left(q^{9}\right) P\left(q^{3}\right)+q X\left(q^{3}\right) P\left(q^{3}\right)+2 q^{2} \psi\left(q^{9}\right) X\left(q^{3}\right)+q \psi\left(q^{3}\right) \psi\left(q^{6}\right)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\sum_{n \geq 0} u(9 n+3) q^{n} & =X(q) P(q)+\psi(q) \psi\left(q^{2}\right) \\
& =X(q) P(q)+\sum_{n \geq 0} u(n) q^{n}
\end{aligned}
$$

This fact, combined with (xi), implies that

$$
\begin{aligned}
\sum_{n \geq 0} u(9 n+3) q^{n} & -\sum_{n \geq 0} u(n) q^{n}=X(q) P(q) \\
& =P\left(q^{3}\right) P\left(q^{6}\right)+2 q \psi\left(q^{9}\right) P\left(q^{6}\right)+2 q^{2} \psi\left(q^{18}\right) P\left(q^{3}\right)
\end{aligned}
$$

Hence,

$$
\sum_{n \geq 0} u(27 n+12) q^{n}-\sum_{n \geq 0} u(3 n+1) q^{n}=2 \psi\left(q^{3}\right) P\left(q^{2}\right)=2 \sum_{n \geq 0} u(3 n+1) q^{n}
$$

or

$$
u(27 n+12)=3 u(3 n+1)
$$

Theorem 4.

Let $v(n)$ be defined by

$$
\sum_{n \geq 0} v(n) q^{n}=\psi\left(q^{3}\right) .
$$

Then, for all $n \geq 0, v(27 n+12)=3 v(3 n+1)$.
Proof: Since

$$
\sum_{n \geq 0} v(n) q^{n}=\psi\left(q^{3}\right)
$$

and $\psi\left(q^{3}\right)$ is a power series in q^{3}, we know

$$
\sum_{n \geq 0} v(3 n+1) q^{n}=0
$$

Also, by (i), we have

$$
\sum_{n \geq 0} v(3 n) q^{n}=\psi(q)=P\left(q^{3}\right)+q \psi\left(q^{9}\right)
$$

so that

$$
\sum_{n \geq 0} v(9 n+3) q^{n}=\psi\left(q^{3}\right)
$$

By the same argument then,

$$
\sum_{n \geq 0} v(27 n+12) q^{n}=0
$$

We are now prepared to prove Theorem 1.
Proof of Theorem 1: Using the notation in the previous theorems, we see that

$$
\sum_{n \geq 0} p_{3 \Delta}(n) q^{n}=\frac{1}{6} \sum_{n \geq 0}(t(n)+3 u(n)+2 v(n)) q^{n}
$$

which means

$$
p_{3 \Delta}(n)=\frac{1}{6}(t(n)+3 u(n)+2 v(n))
$$

Similarly,

$$
p_{3 \Delta}^{d}(n)=\frac{1}{6}(t(n)-3 u(n)+2 v(n))
$$

Theorem 1 then follows from (3) and Theorems 3 and 4.

4. A combinatorial proof of Theorem 1

We start by noting that there is a one-to-one correspondence between partitions of $3 n+1$ into three triangular numbers and partitions of $24 n+11$ into three odd squares. A similar correspondence can be made between the partitions of $27 n+12$ into three triangular numbers and $216 n+99$ into three odd squares. Hence, proving (1) is equivalent to proving that the number of partitions of $216 n+99$ into three odd squares equals three times the number of partitions of $24 n+11$ into three odd squares.

In order to prove the result, we shall establish a one-to-three correspondence between the two sets of partitions.

Suppose that

$$
24 n+11=k^{2}+l^{2}+m^{2}
$$

with k, l and m odd and positive. Considering this equation modulo 6 gives

$$
k^{2}+l^{2}+m^{2} \equiv-1 \quad(\bmod 6)
$$

The only solutions of this are (permutations of)

$$
k \equiv \pm 1, \quad l \equiv \pm 1, \quad m \equiv 3 \quad(\bmod 6)
$$

Allowing k and l to go negative, we can assume without loss of generality that

$$
k \equiv 1, \quad l \equiv 1, \quad m \equiv 3 \quad(\bmod 6)
$$

and that

$$
k \geq l \text { and } m>0
$$

Now set

$$
\begin{array}{ll}
x_{1}=2 k+2 l-m, & y_{1}=2 k-l+2 m, \\
x_{2}=2 k+2 l+m, & y_{2}=2 k-l-2 m, \\
x_{2}=-2 l+2 m, \\
x_{3}=3 k, \quad z_{3}=3 l, & z_{3}=3 m .
\end{array}
$$

That is,

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 2 & -1 \\
2 & -1 & 2 \\
-1 & 2 & 2
\end{array}\right)\left(\begin{array}{c}
k \\
l \\
m
\end{array}\right), \quad\left(\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right)=\left(\begin{array}{ccc}
2 & 2 & 1 \\
2 & -1 & -2 \\
-1 & 2 & -2
\end{array}\right)\left(\begin{array}{c}
k \\
l \\
m
\end{array}\right) \\
& \left(\begin{array}{l}
x_{3} \\
y_{3} \\
z_{3}
\end{array}\right)=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{c}
k \\
l \\
m
\end{array}\right) .
\end{aligned}
$$

Then

$$
x_{1}^{2}+y_{1}^{2}+z_{1}^{2}=x_{2}^{2}+y_{2}^{2}+z_{2}^{2}=x_{3}^{2}+y_{3}^{2}+z_{3}^{2}=216 n+99
$$

and, modulo 6 ,

$$
\left(x_{1}, y_{1}, z_{1}\right) \equiv(1,1,1), \quad\left(x_{2}, y_{2}, z_{2}\right) \equiv(1,1,1), \quad\left(x_{3}, y_{3}, z_{3}\right) \equiv(3,3,3)
$$

It is clear that the partition given by $\left(x_{3}, y_{3}, z_{3}\right)$ is different from the other two. We now show that the partitions given by $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ are different from one another. If indeed they are the same then one of the following six situations pertains.

$$
\begin{aligned}
& x_{1}=x_{2}, y_{1}=y_{2}, \quad z_{1}=z_{2}, \\
& x_{1}=x_{2}, y_{1}=z_{2}, \\
& x_{1}=z_{1}=y_{2}, y_{1}=x_{2}, \quad z_{1}=z_{2}, \\
& x_{1}=y_{2}, y_{1}=z_{2}, \quad z_{1}=x_{2}, \\
& x_{1}=z_{2}, y_{1}=x_{2}, \quad z_{1}=y_{2}, \\
& \text { or } x_{1}=z_{2}, \quad y_{1}=y_{2}, \quad z_{1}=x_{2} .
\end{aligned}
$$

In every one of these cases it follows that $m=0$, but this is false as m is odd.
So we see that for each partition of $24 n+11$ into three odd squares, there are three partitions of $216 n+99$ into three odd squares. Corresponding to the partition of $24 n+11$
given by $\mathbf{v}=\left(\begin{array}{c}k \\ l \\ m\end{array}\right)$, we have the three partitions of $216 n+99$ given by $A \mathbf{v}, B \mathbf{v}$ and $C \mathbf{v}$, where A, B and C are the three matrices defined above. We now show that the three partitions of $216 n+99$ are uniquely determined, that is, if $\mathbf{v} \neq \mathbf{v}^{\prime}$ where $\mathbf{v}^{\prime}=\left(\begin{array}{c}k^{\prime} \\ l^{\prime} \\ m^{\prime}\end{array}\right)$ and $\left(k^{\prime}, l^{\prime}, m^{\prime}\right) \equiv(1,1,3)(\bmod 6)$ then $\{A \mathbf{v}, B \mathbf{v}, C \mathbf{v}\} \cap\left\{A \mathbf{v}^{\prime}, B \mathbf{v}^{\prime}, C \mathbf{v}^{\prime}\right\}=\{ \}$. Suppose

$$
C \mathbf{v}=C \mathbf{v}^{\prime}
$$

Then

$$
\left(\begin{array}{c}
3 k \\
3 l \\
3 m
\end{array}\right)=\left(\begin{array}{c}
3 k^{\prime} \\
3 l^{\prime} \\
3 m^{\prime}
\end{array}\right)
$$

and it follows that $\mathbf{v}=\mathbf{v}^{\prime}$. Suppose

$$
A \mathbf{v}=A \mathbf{v}^{\prime}
$$

Then

$$
A^{2} \mathbf{v}=A^{2} \mathbf{v}^{\prime}
$$

that is,

$$
9 \mathbf{v}=9 \mathbf{v}^{\prime}
$$

so $\mathbf{v}=\mathbf{v}^{\prime}$. A similar result holds if $B \mathbf{v}=B \mathbf{v}^{\prime}$. We simply multiply by the transpose of B, and note that $B^{T} B=9 I$. Next, suppose

$$
A \mathbf{v}=B \mathbf{v}^{\prime}
$$

Then $A^{2} \mathbf{v}=A B \mathbf{v}^{\prime}$, or,

$$
\left(\begin{array}{c}
9 k \\
9 l \\
9 m
\end{array}\right)=\left(\begin{array}{c}
7 k+4 l-4 m \\
4 k+l+8 m \\
4 k-8 l-m
\end{array}\right)
$$

Modulo 6, this become

$$
\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right) \equiv\left(\begin{array}{l}
-1 \\
-1 \\
-1
\end{array}\right)
$$

clearly false. A similar result holds (by symmetry) if $B \mathbf{v}=A \mathbf{v}^{\prime}$.

We need now show that each partition of $216 n+99$ into three odd squares gives rise to a partition of $24 n+11$ into three odd squares.

Suppose

$$
216 n+99=x^{2}+y^{2}+z^{2}
$$

with x, y and z odd. Modulo 54 , this becomes

$$
x^{2}+y^{2}+z^{2} \equiv 45 \quad(\bmod 54) .
$$

Consideration of all possibilities yields the 240 solutions (not counting permutations),

$$
\begin{aligned}
(x, y, z) & \equiv(\pm 1, \pm 1, \pm 23),(\pm 1, \pm 5, \pm 17),(\pm 1, \pm 7, \pm 7),(\pm 1, \pm 11, \pm 25),(\pm 1, \pm 13, \pm 19) \\
& (\pm 5, \pm 5, \pm 7),(\pm 5, \pm 11, \pm 13),(\pm 5, \pm 19, \pm 19),(\pm 5, \pm 23, \pm 25), \pm 7, \pm 11, \pm 19) \\
& (\pm 7, \pm 13, \pm 23),(\pm 7, \pm 17, \pm 25),(\pm 11, \pm 11, \pm 17),(\pm 11, \pm 23, \pm 23) \\
& (\pm 13, \pm 13, \pm 25),(\pm 13, \pm 17, \pm 17),(\pm 17, \pm 19, \pm 23),(\pm 19, \pm 25, \pm 25) \\
& (\pm 3, \pm 3, \pm 9),(\pm 3, \pm 3, \pm 27),(\pm 3, \pm 9, \pm 15),(\pm 3, \pm 15, \pm 27) \\
& (\pm 3, \pm 9, \pm 21),(\pm 3, \pm 21, \pm 27),(\pm 9, \pm 15, \pm 15),(\pm 15, \pm 15, \pm 27) \\
& (\pm 9, \pm 15, \pm 21),(\pm 15, \pm 21, \pm 27), \pm 9, \pm 21, \pm 21),(\pm 21, \pm 21, \pm 27)
\end{aligned}
$$

If we allow x, y and z to go negative, we can assume without loss of generality that, modulo 54, one of the following 30 possibilities holds.

$$
\begin{aligned}
(x, y, z) & \equiv(-23,1,1),(-5,1,-17),(1,7,7),(1,25,-11),(13,1,19),(7,-5,-5), \\
& (-11,-5,13),(-5,19,19),(25,-23,-5),(19,-11,7),(7,13,-23),(-17,7,25), \\
& (-17,-11,-11),(-11,-23,-23),(25,13,13),(13,-17,-17),(-23,19,-17), \\
& (19,25,25),(3,3,9),(3,3,27),(3,-15,9),(3,-15,27),(3,21,9), \\
& (3,21,27),(-15,-15,9),(-15,-15,27),(-15,21,9),(-15,21,27), \\
& (21,21,9), \text { or }(21,21,27) .
\end{aligned}
$$

In the first eighteen cases, if we apply the matrix $A^{-1}=\frac{1}{9} A$ to the vector $\mathbf{w}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$, we obtain a vector $\left(\begin{array}{c}k \\ l \\ m\end{array}\right)$ that satisfies

$$
k^{2}+l^{2}+m^{2}=24 n+11, \quad(k, l, m) \equiv(1,1,3) \quad(\bmod 6) .
$$

If $k<l$, simply switch the second and third coordinates of \mathbf{w}, and then $k>l$. If $m<0$, apply B^{-1} instead of A^{-1}, and then $m>0$. In the latter twelve cases, if we apply the matrix $C^{-1}=\frac{1}{9} C$ to \mathbf{w}, we obtain a vector $\left(\begin{array}{c}k \\ l \\ m\end{array}\right)$ that satisfies

$$
k^{2}+l^{2}+m^{2}=24 n+11, \quad(k, l, m) \equiv(1,1,3) \quad(\bmod 6) .
$$

If $k<l$, switch the first two coordinates of \mathbf{w}, and then $k>l$. If $m<0$, change the sign of the third coordinate of \mathbf{w} and then $m>0$.

This establishes the desired one-to-three correspondence, and completes the proof of (1). To prove (2), we need only replace non-strict inequalities where they occur with strict inequalities, and the proof goes through as before.

References

[1] S, Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math., to appear.
[2] M. D. Hirschhorn and J. A. Sellers, On representations of a number as a sum of three triangles, Acta Arithmetica 77 (1996), 289-301.
[3] M. D. Hirschhorn and J. A. Sellers, On a problem of Lehmer on partitions into squares, The Ramanujan Journal, to appear.

