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Abstract

A celebrated result of Gauss states that every positive integer can be represented as the
sum of three triangular numbers. In this article we study p3∆(n), the number of partitions
of the integer n into three triangular numbers, as well as pd

3∆(n), the number of partitions
of n into three distinct triangular numbers.

Unlike t(n), which counts the number of representations of n into three triangular
numbers, p3∆(n) and pd

3∆(n) appear to satisfy very few arithmetic relations (apart from
certain parity results). However, we shall show that, for all n ≥ 0,

p3∆(27n+ 12) = 3p3∆(3n+ 1) and pd
3∆(27n+ 12) = 3pd

3∆(3n+ 1).

Two separate proofs of these results are given, one via generating function manipulations
and the other by a combinatorial argument.
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1. Introduction

In 1796, C. F. Gauss proved his now famous result that every integer can be written as
the sum of three triangular numbers. That is, if t(n) is the number of representations

of n as a sum of three triangular numbers, then t(n) ≥ 1 for all n ≥ 0.

When we study t(n), we find that it grows quite rapidly. Consider, for example, t(30).
Note that 30 can be written as

28 + 1 + 1, 1 + 28 + 1, 1 + 1 + 28,

21 + 6 + 3, 21 + 3 + 6, 6 + 21 + 3, 6 + 3 + 21, 3 + 6 + 21, 3 + 21 + 6,

15 + 15 + 0, 15 + 0 + 15, 0 + 15 + 15,

and

10 + 10 + 10.

So we see that t(30) = 13.

Our goal in this paper is to study the partitions of n into three triangular numbers
rather than the representations of n into three triangular numbers. For instance, the three
representations 28 + 1 + 1, 1 + 28 + 1, and 1 + 1 + 28 stem from one partition, 28 + 1 + 1.
Thus the integer 30 can be partitioned into three triangular numbers in only four ways.
In this note, we will denote this partition function by p3∆(n), so that p3∆(30) = 4.

Unlike t(n), p3∆(n) appears to satisfy very few arithmetic relations (apart from certain
parity results). This claim is based on a great deal of numerical evidence. However, while
searching for congruences satisfied by p3∆, we did discover the following:

Theorem 1.

Let p3∆(n) be defined as above and let pd
3∆(n) be the number of partitions of n into three

distinct triangular numbers. Then, for all n ≥ 0,

p3∆(27n+ 12) = 3p3∆(3n+ 1) (1)

and pd
3∆(27n+ 12) = 3pd

3∆(3n+ 1). (2)

Theorem 1 (1) is reminiscent of a result proven by the authors [2] involving t(n). Namely,
for all n ≥ 0,

t(27n+ 12) = 3t(3n+ 1). (3)
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Many other results of this type hold for t(n), such as

t(27n+ 21) = 5t(3n+ 2), (4)

t(81n+ 3) = 4t(9n), (5)

and t(81n+ 57) = 4t(9n+ 6). (6)

However, results corresponding to (4), (5), and (6) do not exist for p3∆.

In section 2, we develop the generating functions for p3∆(n) and pd
3∆(n) using techniques

similar to those employed in [3]. Section 3 is then devoted to dissecting these generating
functions and proving Theorem 1. Finally, we give a combinatorial proof of Theorem 1 in
section 4.

2. The generating functions

As defined by Ramanujan, let

ψ(q) =
∑
n≥0

q(n2+n)/2.

It is clear that
∑
n≥0

t(n)qn = ψ(q)3. However, the generating functions for p3∆(n) and

pd
3∆(n) are somewhat more complicated, as we see here.

Theorem 2. ∑
n≥0

p3∆(n)qn =
1
6
(
ψ(q)3 + 3ψ(q)ψ(q2) + 2ψ(q3)

)
(7)

and
∑
n≥0

pd
3∆(n)qn =

1
6
(
ψ(q)3 − 3ψ(q)ψ(q2) + 2ψ(q3)

)
. (8)

Proof: Let ∆n = (n2 + n)/2. Then
∑

n≥0 q
∆n = ψ(q). In order to build the generating

functions in (7) and (8), we mimic the approach utilized in [3]. We denote the generating
function for the number of partitions of n of the form n = ∆a + ∆b + ∆c by F (∆a + ∆b +
∆c, q), and use similar notation to define related generating functions. (So, for example,
F (∆a + ∆a + ∆b, q) is the generating function for the number of partitions of n into
twice one triangular number plus another (different) triangular number.) With the above
notation in place, we have

F (∆a, q) = ψ(q),
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F (∆a + ∆a, q) = ψ(q2),

F (∆a + ∆a + ∆a, q) = ψ(q3),

F (∆a + ∆b, q) =
1
2
(
F (∆a, q)2 − F (∆a + ∆a, q)

)
=

1
2
(
ψ(q)2 − ψ(q2)

)
,

F (∆a + ∆a + ∆b, q) = F (∆a + ∆a, q)F (∆a, q)− F (∆a + ∆a + ∆a, q)

= ψ(q)ψ(q2)− ψ(q3),

and F (∆a + ∆b + ∆c, q) =
1
3

(F (∆a + ∆b, q)F (∆a, q)− F (∆a + ∆a + ∆b, q))

=
1
6
(
ψ(q)3 − 3ψ(q)ψ(q2) + 2ψ(q3)

)
.

It follows that∑
n≥0

p3∆(n)qn = F (∆a + ∆b + ∆c, q) + F (∆a + ∆a + ∆b, q) + F (∆a + ∆a + ∆a, q)

=
1
6
(
ψ(q)3 + 3ψ(q)ψ(q2) + 2ψ(q3)

)
,

which is (7). Also,∑
n≥0

pd
3∆(n)qn = F (∆a + ∆b + ∆c, q) =

1
6
(
ψ(q)3 − 3ψ(q)ψ(q2) + 2ψ(q3)

)
,

which is (8). �

3. A generating function proof of Theorem 1

In order to prove Theorem 1, we must dissect the generating functions found in Theorem
2. To do so, we develop a large number of ancillary dissection results. As in Cooper and
Hirschhorn [1], let

φ(q) =
∞∑

n=−∞
qn2

, X(q) =
∞∑

n=−∞
q3n2+2n, P (q) =

∞∑
n=−∞

q(3n2−n)/2,

A(q) =
∞∑

n=−∞
q9n2+2n, B(q) =

∞∑
n=−∞

q9n2+4n, C(q) =
∞∑

n=−∞
q9n2+8n,

H(q) =
∞∑

n=−∞
q(9n2+n)/2, I(q) =

∞∑
n=−∞

q(9n2+5n)/2, J(q) =
∞∑

n=−∞
q(9n2+7n)/2.
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We need the following collection of results.

Lemma 1.

ψ(q) = P (q3) + qψ(q9), (i)

X(q) = A(q3) + qB(q3) + q5C(q3), (ii)

P (q) = H(q3) + qI(q3) + q2J(q3), (iii)

H(q)H(q2) + qI(q)I(q2) + q2J(q)J(q2) = φ(q3)P (q), (iv)

H(q2)I(q) + qI(q2)J(q) + qJ(q2)H(q) = X(q)P (q), (v)

H(q)I(q2) + qI(q)J(q2) + J(q)H(q2) = 2ψ(q3)X(q), (vi)

P (q)P (q2) = φ(q9)P (q3) + qX(q3)P (q3) + 2q2ψ(q9)X(q3), (vii)

A(q)H(q) + qB(q)J(q) + q2C(q)J(q) = P (q)P (q2), (viii)

A(q)I(q) +B(q)H(q) + q2C(q)J(q) = 2ψ(q3)P (q2), (ix)

A(q)J(q) +B(q)I(q) + qC(q)H(q) = 2ψ(q6)P (q), (x)

and
X(q)P (q) = P (q3)P (q6) + 2qψ(q9)P (q6) + 2q2ψ(q18)P (q3) (xi)

Proof: First, (i), (ii) and (iii) are straightforward 3–dissections. Next, let

F1(q) = H(q)H(q2) + qI(q)I(q2) + q2J(q)J(q2),

the left hand side of (iv). Then F1(q) equals

∞∑
m,n=−∞

q(9m2+m)/2+(9n2+n) +
∞∑

m,n=−∞
q(9m2+5m)/2+(9n2+5n) +

∞∑
m,n=−∞

q(9m2+7m)/2+(9n2+7n).

Thus,

q3F1(q72) =
∑

q(18m+1)2+2(18n+1)2 +
∑

q(18m−5)2+2(18n−5)2 +
∑

q(18m+7)2+2(18n+7)2

=
∑

a≡b (mod 3)

q(6a+1)2+2(6b+1)2

=
∞∑

r,s=−∞
q(12r+6s+1)2+2(6s−6r+1)2

= q3
∞∑

r,s=−∞
q216r2+108s2+36s

= q3φ(q216)P (q72),
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so that F1(q) = φ(q3)P (q). This yields (iv). The proofs of (v) and (vi) are similar. Indeed,
let

F2(q) = H(q2)I(q) + qI(q2)J(q) + qJ(q2)H(q).

Then

q27F2(q72) =
∑

a−b≡−1 (mod 3)

q(6a−1)2+(6b+1)2

=
∞∑

r,s=−∞
q(12r+6s−5)2+2(6s−6r+1)2

= q27
∞∑

r,s=−∞
q216r2−144r+108s2−36s

= q27X(q72)P (q72),

which implies F2(q) = X(q)P (q).
Next, let

F3(q) = H(q)I(q2) + qI(q)J(q2) + J(q)H(q2).

Then

q51F3(q72) =
∑

a−b≡1 (mod 3)

q(6a+1)2+2(6b+1)2

=
∞∑

r,s=−∞
q(12r+6s+7)2+2(6s−6r+1)2

= q51
∞∑

r,s=−∞
q216r2+144r+108s2+108s

= 2q51ψ(q216)X(q72),

which means F3(q) = 2ψ(q3)X(q).

Thanks to (iii), (iv), (v) and (vi), we know

P (q)P (q2) =
(
H(q3) + qI(q3) + q2J(q3)

) (
H(q6) + q2I(q6) + q4J(q6)

)
=
(
H(q3)H(q6) + q3I(q3)I(q6) + q6J(q3)J(q6)

)
+ q

(
H(q6)I(q3) + q3I(q6)J(q3) + q3J(q6)H(q3)

)
+ q2

(
H(q3)I(q6) + q3I(q3)J(q6) + J(q3)H(q6)

)
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= φ(q9)P (q3) + qX(q3)P (q3) + 2q2ψ(q9)X(q3).

This is (vii). The proofs of (viii)–(xi) follow using similar techniques and are omitted
here. �

With this machinery in hand, we now prove two additional theorems in preparation for
our proof of Theorem 1.

Theorem 3.

Let u(n) be defined by ∑
n≥0

u(n)qn = ψ(q)ψ(q2).

Then, for all n ≥ 0, u(27n+ 12) = 3u(3n+ 1).

Proof: From (i) we have∑
n≥0

u(n)qn = ψ(q)ψ(q2)

=
(
P (q3) + qψ(q9)

) (
P (q6) + q2ψ(q18)

)
=
(
P (q3)P (q6) + q3ψ(q9)ψ(q18)

)
+ qψ(q9)P (q6) + q2ψ(q18)P (q3).

Thanks to this dissection, we immediately see that

∑
n≥0

u(3n+ 1)qn = ψ(q3)P (q2).

Also, from the work above and (vii), we know∑
n≥0

u(3n)qn = P (q)P (q2) + qψ(q3)ψ(q6)

= φ(q9)P (q3) + qX(q3)P (q3) + 2q2ψ(q9)X(q3) + qψ(q3)ψ(q6).

It follows that ∑
n≥0

u(9n+ 3)qn = X(q)P (q) + ψ(q)ψ(q2)

= X(q)P (q) +
∑
n≥0

u(n)qn.



PARTITIONS INTO THREE TRIANGULAR NUMBERS 9

This fact, combined with (xi), implies that∑
n≥0

u(9n+ 3)qn −
∑
n≥0

u(n)qn = X(q)P (q)

= P (q3)P (q6) + 2qψ(q9)P (q6) + 2q2ψ(q18)P (q3).

Hence, ∑
n≥0

u(27n+ 12)qn −
∑
n≥0

u(3n+ 1)qn = 2ψ(q3)P (q2) = 2
∑
n≥0

u(3n+ 1)qn

or
u(27n+ 12) = 3u(3n+ 1).

�

Theorem 4.

Let v(n) be defined by ∑
n≥0

v(n)qn = ψ(q3).

Then, for all n ≥ 0, v(27n+ 12) = 3v(3n+ 1).

Proof: Since ∑
n≥0

v(n)qn = ψ(q3),

and ψ(q3) is a power series in q3, we know∑
n≥0

v(3n+ 1)qn = 0.

Also, by (i), we have ∑
n≥0

v(3n)qn = ψ(q) = P (q3) + qψ(q9),

so that ∑
n≥0

v(9n+ 3)qn = ψ(q3).

By the same argument then, ∑
n≥0

v(27n+ 12)qn = 0.
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�

We are now prepared to prove Theorem 1.

Proof of Theorem 1: Using the notation in the previous theorems, we see that∑
n≥0

p3∆(n)qn =
1
6

∑
n≥0

(t(n) + 3u(n) + 2v(n)) qn,

which means

p3∆(n) =
1
6

(t(n) + 3u(n) + 2v(n)) .

Similarly,

pd
3∆(n) =

1
6

(t(n)− 3u(n) + 2v(n)) .

Theorem 1 then follows from (3) and Theorems 3 and 4. �

4. A combinatorial proof of Theorem 1

We start by noting that there is a one–to–one correspondence between partitions of
3n+ 1 into three triangular numbers and partitions of 24n+ 11 into three odd squares. A
similar correspondence can be made between the partitions of 27n+12 into three triangular
numbers and 216n+99 into three odd squares. Hence, proving (1) is equivalent to proving
that the number of partitions of 216n + 99 into three odd squares equals three times the
number of partitions of 24n+ 11 into three odd squares.

In order to prove the result, we shall establish a one–to–three correspondence between
the two sets of partitions.

Suppose that
24n+ 11 = k2 + l2 +m2

with k, l and m odd and positive. Considering this equation modulo 6 gives

k2 + l2 +m2 ≡ −1 (mod 6).

The only solutions of this are (permutations of)

k ≡ ±1, l ≡ ±1, m ≡ 3 (mod 6).

Allowing k and l to go negative, we can assume without loss of generality that

k ≡ 1, l ≡ 1, m ≡ 3 (mod 6)
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and that
k ≥ l and m > 0.

Now set

x1 = 2k + 2l −m, y1 = 2k − l + 2m, z1 = −k + 2l + 2m,

x2 = 2k + 2l +m, y2 = 2k − l − 2m, z2 = −k + 2l − 2m,

x3 = 3k, y3 = 3l, z3 = 3m.

That is,x1

y1

z1

 =

 2 2 −1
2 −1 2
−1 2 2

 k
l
m

 ,

x2

y2

z2

 =

 2 2 1
2 −1 −2
−1 2 −2

 k
l
m

 ,

x3

y3

z3

 =

 3 0 0
0 3 0
0 0 3

 k
l
m

 .

Then
x2

1 + y2
1 + z2

1 = x2
2 + y2

2 + z2
2 = x2

3 + y2
3 + z2

3 = 216n+ 99

and, modulo 6,

(x1, y1, z1) ≡ (1, 1, 1), (x2, y2, z2) ≡ (1, 1, 1), (x3, y3, z3) ≡ (3, 3, 3).

It is clear that the partition given by (x3, y3, z3) is different from the other two. We now
show that the partitions given by (x1, y1, z1) and (x2, y2, z2) are different from one another.
If indeed they are the same then one of the following six situations pertains.

x1 = x2, y1 = y2, z1 = z2,

x1 = x2, y1 = z2, z1 = y2,

x1 = y2, y1 = x2, z1 = z2,

x1 = y2, y1 = z2, z1 = x2,

x1 = z2, y1 = x2, z1 = y2,

or x1 = z2, y1 = y2, z1 = x2.

In every one of these cases it follows that m = 0, but this is false as m is odd.

So we see that for each partition of 24n + 11 into three odd squares, there are three
partitions of 216n+ 99 into three odd squares. Corresponding to the partition of 24n+ 11
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given by v =

 k
l
m

, we have the three partitions of 216n + 99 given by Av, Bv and

Cv, where A, B and C are the three matrices defined above. We now show that the three

partitions of 216n+ 99 are uniquely determined, that is, if v 6= v′ where v′ =

 k′

l′

m′

 and

(k′, l′,m′) ≡ (1, 1, 3) (mod 6) then {Av, Bv, Cv} ∩ {Av′, Bv′, Cv′} ={}. Suppose

Cv = Cv′.

Then  3k
3l

3m

 =

 3k′

3l′

3m′


and it follows that v = v′. Suppose

Av = Av′.

Then
A2v = A2v′,

that is,
9v = 9v′

so v = v′. A similar result holds if Bv = Bv′. We simply multiply by the transpose of
B, and note that BTB = 9I. Next, suppose

Av = Bv′.

Then A2v = ABv′, or,  9k
9l

9m

 =

 7k + 4l − 4m
4k + l + 8m
4k − 8l −m

 .

Modulo 6, this become  3
3
3

 ≡
−1
−1
−1

 ,

clearly false. A similar result holds (by symmetry) if Bv = Av′.
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We need now show that each partition of 216n+ 99 into three odd squares gives rise to
a partition of 24n+ 11 into three odd squares.

Suppose
216n+ 99 = x2 + y2 + z2

with x, y and z odd. Modulo 54, this becomes

x2 + y2 + z2 ≡ 45 (mod 54).

Consideration of all possibilities yields the 240 solutions (not counting permutations),

(x, y, z) ≡ (±1,±1,±23), (±1,±5,±17), (±1,±7,±7), (±1,±11,±25), (±1,±13,±19),

(±5,±5,±7), (±5,±11,±13), (±5,±19,±19), (±5,±23,±25), ±7,±11,±19),

(±7,±13,±23), (±7,±17,±25), (±11,±11,±17), (±11,±23,±23),

(±13,±13,±25), (±13,±17,±17), (±17,±19,±23), (±19,±25,±25).

(±3,±3,±9), (±3,±3,±27), (±3,±9,±15), (±3,±15,±27),

(±3,±9,±21), (±3,±21,±27), (±9,±15,±15), (±15,±15,±27),

(±9,±15,±21), (±15,±21,±27), ±9,±21,±21), (±21,±21,±27).

If we allow x, y and z to go negative, we can assume without loss of generality that,
modulo 54, one of the following 30 possibilities holds.

(x, y, z) ≡ (−23, 1, 1), (−5, 1,−17), (1, 7, 7), (1, 25,−11), (13, 1, 19), (7,−5,−5),

(−11,−5, 13), (−5, 19, 19), (25,−23,−5), (19,−11, 7), (7, 13,−23), (−17, 7, 25),

(−17,−11,−11), (−11,−23,−23), (25, 13, 13), (13,−17,−17), (−23, 19,−17),

(19, 25, 25), (3, 3, 9), (3, 3, 27), (3,−15, 9), (3,−15, 27), (3, 21, 9),

(3, 21, 27), (−15,−15, 9), (−15,−15, 27), (−15, 21, 9), (−15, 21, 27),

(21, 21, 9), or (21, 21, 27).

In the first eighteen cases, if we apply the matrix A−1 = 1
9A to the vector w =

x
y
z

, we

obtain a vector

 k
l
m

 that satisfies

k2 + l2 +m2 = 24n+ 11, (k, l,m) ≡ (1, 1, 3) (mod 6).
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If k < l, simply switch the second and third coordinates of w, and then k > l. If m < 0,
apply B−1 instead of A−1, and then m > 0. In the latter twelve cases, if we apply the

matrix C−1 = 1
9C to w, we obtain a vector

 k
l
m

 that satisfies

k2 + l2 +m2 = 24n+ 11, (k, l,m) ≡ (1, 1, 3) (mod 6).

If k < l, switch the first two coordinates of w, and then k > l. If m < 0, change the sign
of the third coordinate of w and then m > 0.

This establishes the desired one–to–three correspondence, and completes the proof of
(1). To prove (2), we need only replace non–strict inequalities where they occur with strict
inequalities, and the proof goes through as before.
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