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In [5], the authors generalized the concept of pattern avoidance (see [4])
from permutations and words to numbered polyominoes. In particular, they
considered avoidance of binary right angled polyomino patterns, which are
0-1 labellings of the essentially unique convex two-dimensional polyomino

On multi-avoidance of right angled numbered
polyomino patterns

Sergey Kitaev
Department of Mathematics
University of Kentucky
Lexington, KY 40506-0027, USA
e-mail: kitaev@ms.uky.edu

20th January 2004

Abstract

Recently, Kitaev, Mansour and Vella introduced numbered poly-
omino patterns that generalize the concept of pattern avoidance from
permutations and words to numbered polyominoes. We study simul-
taneous avoidance of two or more right angled numbered polyomino
patterns, which are 0-1 labellings of the essentially unique convex two-
dimensional polyomino shape with 3 tiles. It turns out that this study
gives relations to several combinatorial structures.

Keywords: numbered polyomino pattern, avoidance, matrix, per-
mutation, hypercube, spanning tree, nonattacking kings.

Introduction

shape with 3 tiles.

As in [7] (resp. [1], [2], [3]), where the authors deal with multi-avoidance
of classical (resp. generalized) 3-patterns (see [4] for definitions), it is natural
to study avoidance of two or more right angled polyomino patterns. It turns
out that this study gives relations to several combinatorial structures (see

Section 3).



The paper is organized as follows. In Section 2 we give all necessarily
definitions. In Section 3, we show the interest to study the multi-avoidance
of right angled polyomino patterns by giving relations to other combinatorial
objects, such as certain permutations, hypercubes, placing of nonattacking
kings on certain boards, spanning trees and others. In Section 4 (resp. 5,
6) we find the number of m X n matrices that avoid any combination of two
(resp. three, four) right angled polyomino patterns. The case of avoidance
of five or more of polyomino patterns (out of seven) is discussed in Section 7.

2 Preliminaries

We follow [5] to define our patterns. However, we refer to [5] and the refer-
ences therein for more details and examples.

A polyomino is a finite subset of Z2?. The elements of a polyomino are
called tiles. Given an element p € Z2, we denote by zp and y, the first and
second coordinates of p respectively. A column (resp. row) of a polyomino
P is a maximal set of tiles of P all having the same first (resp. second)
coordinate.

Now let G be the graph with Z? as vertex set, and with p, ¢ adjacent if
and only if |z, — x4 + |yp — y4| = 1. Then G is a self-dual planar graph and
a polyomino can be thought of equivalently as a set of vertices of G or a set
of faces of a square tessellation of the plane, which is an embedding of G.
The latter interpretation gives the intuition behind the choice of the term
“polyomino”, in analogy with the word “domino”.

Given two polyominoes Pi, P», a polyomino isomorphism is a bijection
from Py to P, such that, for every p,q € P1, zp < oq & Ty < Tg(q) and
Yp < Yg & Ypp) < Yop(q)- Lhe width (resp. height) of a polyomino P is
the maximum over all pairs {p,q} C P of |z, — z,| (resp. |y, — yq4| ). The
reduction of P is the polyomino which minimizes the width and the height
among all polyominoes isomorphic to P in which all tiles have only non-
negative coordinates. A polyomino shape (or simply a shape) is a polyomino
which is its own reduction. If the reduction of a polyomino P is a certain
shape C, we shall also say that P has the shape C. We shall denote shapes
by a geometric depiction of the relative positions of the tiles.

Given a non-negative integer n, [n] denotes the set of non-negative in-
tegers less than or equal to m; a set of this form is called an interval. A
numbering ¢ of a set T is a function from 7' into the set of integers. If the
range A of ¢ is finite, there exists a unique order-preserving bijection 1 from
A onto the interval of cardinality |A|. The reduction of ¢ is the numbering



¢ o1, and a numbering is reduced if it is its own reduction. Also, for any
integer k > |A|, ¢ is called a k-numbering. We shall extend our notation for
shapes to numbered shapes in the obvious way.

Given a polyomino P, a subset Q@ C P is a subpolyomino of P. A
numbered polyomino is a polyomino equipped with a numbering. If ¢ is a
numbering of P, the subpolyomino @ inherits the numbering ¢|g. Given a
polyomino Q" with a numbering ¢¢qr, Q is an occurrence of Q' in P if there
exists a polyomino isomorphism g from @ to @' such that the numberings
$|lg and po ¢ have the same reduction; if the two numberings are actually
the same, then the occurrence is literal.

If there are no occurrences of Q' in P, P is said to avoid @'.

A numbered polyomino pattern (or simply a pattern) is a polyomino shape
equipped with a reduced numbering. We are concerned with occurrences
of patterns in numbered shapes. Given a positive integer k, a shape C
and a pattern P, Sgc ) denotes the set of k-numberings of C' such that the
corresponding numbered polyomino avoids the pattern P (the pattern P is
understood and not explicitly specified in the notation).

In this paper, we shall assume that £ = 2 and only examine avoidance
of polyomino patterns in (binary) matrices. Moreover, we shall assume that

the matrix C' has m rows and n columns, and denote |Sg )| by M, 1.

Remark 1. The operations of complementation (replacing ¢ with k —i) and
reflection about any one of the four axes of symmetry of the square lattice
(the vertical, horizontal and diagonal lines through the origin) are all in-
volutions on the set of numbered polyominoes which preserve occurrences,
in the sense that if x is one of the above operations, and P, are num-
bered polyominoes, then P occurs in @ if and only if x(P) occurs in x(Q).
Clearly, the same is true if x is any composition of these operations. Note
that reflecting a matrix about the line y = —z and reducing the shape cor-
responds to taking the transpose of the matrix. As in classical permutation
avoidance, these operations are often useful in reducing the enumeration of
pattern-avoiding polyominoes to a smaller number of cases (patterns).

A polyomino is right angled if it contains precisely three tiles, two rows
and two columns. There are four different right angled shapes: H] ,H] ,[H
and[H , each of which can be numbered in 7 different ways (the numeration
with all 1s is not in the reduced form, and therefore does not give us a
pattern). However, in this paper, we shall consider simultaneous avoidance
of patterns having the same shape. Thus, for instance, we are interested
in simultaneous avoidance of the patterns and , but not in that of,



say, the patterns, one of which has the shape H] , whereas the other one
has the shape H] . Furthermore, the operations of reflection mentioned in
Remark 1 allow us to consider only the patterns

p1:7P2:7P3:7P4:7P5:7P6:7P7:-

Also, if C denotes the operation of complementation mentioned in Remark 1,
T denotes the operation of transposition (see Remark 1 again), and CT
denotes the composition of C' and 7', which is obviously commutative, then
one can use Table 1 to reduce the number of cases to consider.

\apatternp‘pl ‘p2 ‘103‘;04 ‘p5 ‘;06‘777‘
C(p) PL | P5 | Pe | P7 | P2 | P3| P4
T(p) PL | P3| P2 | P4 |Ps | D5 |P1
CT(p) P1 | Pe | P5s | P7 | P3| P2 | P4

Table 1: Complementation, transposition, and their composition

Thus, if we determined the number M,, , of m x n binary matrices that
simultaneously avoid, for instance, the patterns ps, ps and ps, then the
number of m X m matrices that simultaneously avoid the patterns po, ps
and p7 is the same, that is My, ,, due to the operation of complementation.
Moreover, if in the the expression for that M,,, we switch m and n, we
get the number of permutations that simultaneously avoid the patterns ps,
ps and pg, as well as that avoiding the patterns ps3, pg and p7, due to the
operation of transposition and that of composition of complementation and
transposition.

So, using Table 1, one can divide all the possibilities into equivalence
classes, and we need to consider a representative from each class. We indicate
the equivalence classes and their representatives in the corresponding tables
of Sections 4, 5, 6 and 7. If we give any information for an equivalence
class, this information concerns to the representative from this class. Since
obviously My, = 2" and My ; = 2™, in many cases we give the results
only for m,n > 2. Moreover, in some cases as a solution to a problem, we
provide a recursion or/and the bivariate generating function M (z,y) defined
as M(x,y) = Z My, nz™y". Thus, the variable z is responsible for the

m,n>0
number of rows, whereas y for the number of columns. To get M,, , from
M (z,y) one can use the standard mathematical packages such as Maple.



3 Relations to other combinatorial objects

We show the interest to study multi-avoidance of right angled numbered
polyomino patterns by giving connections to other combinatorial objects.

3.1 Permutations with two sequences

Let o be a permutation on [n]. A sequence of length £ (> 2) of o is a
maximal interval of integers [¢,¢ +¢ — 1] = {43,i+ 1,...,i+ ¢ — 1} on which
o is monotonic.

We are concerned about the permutations with exactly two sequences.
If n = 2, there are no such permutations, if n = 3, these permutations are
132, 231, 213, and 312. Indeed, for instance, in the first permutation, the
sequences are 13 and 32, whereas in the last one, 31 and 12. There are 12
such permutations in the case n = 4, which are

1243, 1342, 1432, 2134, 2341, 2431, 3124, 3214, 3421, 4123, 4213, 4312.

One can show, in general, that there are 2" — 4 n-permutations with two
sequences.

Proposition 2. Forn > 1, there is a bijection between the (n+2)-permutations
with two sequences and the 2 X n matrices that simultaneously avoid the pat-

] 1
terns po = and ps = .

Proof. Clearly, the permutations with two sequences can be divided into
two groups. The first group contains permutations having increasing in-
terval followed by decreasing one, and the second group contains all other
permutations. A bijection between these groups is given by taking the com-
plementation, that is by replacing the letter ¢ by the letter n + ¢ + 1 for
(n + 2)-permutations. Thus, the groups are equally large. Moreover, the in-
tervals in each permutation from the first group share the letter (n+2), and
thus such permutations can be specified by dividing the set {1,2,...,n+1}
into two nonempty subsets.

It is easy to see that a matrix A avoids po and ps if and only if the
complementation of A, that is C(A), does it. Using this property, we will
divide the set of all matrices avoiding ps and ps into two equally large groups.
Then we will construct a bijection F between the first (n + 2)-permutations
group and the first 2 x n matrices group. A bijection between the second
groups will be given by the composition C' o F o C. Thus we will get the
desirable bijection.



Suppose A is a 2 X n matrix that avoids ps and ps. Then either A
entirely consists of the columns z = (11)7 and y = (00)T or A has at
most one column v = (10)?" and at most one column v = (01)%. If A has
both v and v then one of them must be the right-most column of A (any
column placed to the right of both u and v would lead to an occurrence of a
prohibition). Also, if there are columns in A to the right of u (resp. v) then
these columns, except maybe for the last one, must be y (resp. x), and the
last column can be v (resp. u).

The first 2 x n matrix group consists of the following four subgroups,
where the symbol ”?” is used to indicate that corresponding column is either
z or y, and, say, y* denotes concatenation of ¢ columns .

1

on—1

n—1

[\)
~

Y;
u;

w

Puy" 2y, 0 < i < n—2;

)
)
)
4) Puy 2y, 0<i<n—2.

This is easy to check using the considerations above, that matrices from the
subgroups 1)-4) are exactly half of all matrices avoiding ps and ps. All the
other matrices can be obtained by the operation of complementation.

We now describe the bijection F that makes a correspondence between
subgroup 3) (resp. 4)) and permutations from the first permutation group
having 1 and 2 to the left (resp. right) of (n+2). Also, to subgroup 1) (resp.
2)) there corresponds the permutations having 1 to the left (resp. right) and
2 to the right (resp. left) of (n + 2).

To deal with subgroups 1) or 2), we list all the (n—1) elements 3,4, ...,n+
1 to be placed to the right or to the left of (n + 2), which defines a permu-
tation uniquely in our case. If we place an element to the right (resp. left),
we assign the column z (resp. y) to it. By concatenating these assigned
columns in the increasing order of the corresponding elements, and adjoin-
ing either y or u to the end, we obtain a matrix from subgroup 1) or 2).
This operation is obviously a bijection.

Let us consider subgroup 3) (subgroup 4) can be considered in the same
way).

As above, we list the elements 3,4,...,n + 1 and assign to them the
columns z and y according to whether the elements are placed to the right
of (n+2) or to the left of it respectively. The fact that we have a nonempty
word to the right of (n + 2) ensures that we have at least one column z.
We concatenate the assigned columns in the same way as above, then we



change the rightmost « to u, adjoin the column y from right, and by this we
get a matrix from subgroup 3). This is clear how to convert this injective
operation, and thus we get a bijection.

The proposition is proved. U

3.2 Avoiding the patterns p, and pg
Recall that py = and pg = .

Proposition 3. There is a bijection between the edges in an (n+1)-dimensional
hypercube and 2 X n matrices avoiding ps and pg.

Proof. Any edge in an (n + 1)-dimensional hypercube can be specified by
the coordinate 7, 1 <4 < n+ 1, in which 0 has been changed to 1 or vice
versa in the endpoints of the edge, and a binary n-tuple, which gives values
of the other coordinates.

Suppose A = (a;,;) is a 2 X n matrix that avoids py and ps.

If ap; = 0 for all 4 = 1,2,...,n, there are no restrictions for the first
row of A, and clearly there is a one-to-one correspondence between such
matrices and the edges specified by changing the (n + 1)-st coordinate of
their endpoints.

Suppose now that ¢ is the minimum index such that az; = 1,1 < i < n.
It is easy to see, that in order to avoid p2 and pg, we must have a1 ; = 1 for
j=1+1,...,n, and there are no other restrictions for the elements of A.
The edges that correspond to such matrices are those having change in the
i-th coordinate of their endpoints.

The described correspondence is obviously a bijection. O

The following proposition is related to [9] by Wilf.

Proposition 4. There is a bijection between the ways to place n nonattack-
ing kings on a 2 x 2n chessboard for n > 1 and 2 X n matrices avoiding po
and peg.

Proof. For every nonattacking placement of kings, the chessboard is natu-
rally divided into n 2 X 2 cells, each containing exactly one king. We say
that a cell is of type 1 (resp. 2, 3, 4) if the king sits in its NW (resp. NE, SE,
SW) corner. The arrangement of kings is then completely specified by an
n-word over the alphabet {1,2,3,4} that satisfies certain adjacency condi-
tions (AC), namely that none of the following two letter words is permitted:
21, 24, 31, and 34.



The structure of 2 X n matrices avoiding ps and pg is described in the
proof of proposition 3. Clearly, in order to construct a bijection, we can
assume that the i-th column of our matrices corresponds to the i-th cell of
the chessboard with a king placed, that is to one of the letters 1,2,3, or 4.

If ag; = 0 for all i = 1,2,...,n then the column (00)”" corresponds to 1,
whereas (10)7" corresponds to 4. Clearly, for any such matrices we do not
violate the AC, and of course this is a one-to-one correspondence.

Suppose now that ¢ is the minimum index such that az; = 1,1 < i < n.
Thus, the columns preceding the i-th column are (00)7 or (10)”, and they
correspond to 1 or 4 respectively as above. For the other n» — ¢+ 1 columuns,
we assume that the column (11)7 corresponds to 2, (10)” and (01)” (only
column 4 is possibly (01)?) correspond to 3. Clearly we satisfy the AC.

Conversely, given a word satisfying the AC. We read it from left to right
replacing each 1 by (00)? and each 4 by (10)”. First time we meet 2 or 3,
we replace it by (11)7 or (01) respectively. Finally, we replace 2 and 3 by
(11)" and (10)” respectively.

The proposition is proved. O

Proposition 5. There is a bijection between the number of 2 x (n+ 1) 0-1
matrices containing n + 2 1s and having no zero row or column and 2 X n
matrices avoiding po and pg.

Proof. We describe a correspondence between the matrices of the first and
the second types.

The 2 x (n + 1) matrices under consideration have exactly one column
(11)" and all other columns are either (10)7 or (01)%". In our correspondence
between the matrices of two types, the position of (11)7 determines the
column of a 2 X n matrix A in which we first time meet 1 in the second
row reading from left to right. If this position is ¢ = n + 1, the second
row of A consists only of Os (for a possible structure of A see the proof
of proposition 3), in which case (10)” corresponds to itself, whereas (01)”
corresponds to (00)1. Otherwise, that is if i < n+1, (11)7 is followed either
by (10)T or by (01)”. In the former case the i-th column of A is (11)T,
whereas in the last case it is (01)?. Thus we glue two columns into one
column. For the other columns j, 1 < j <n+1, 5 #4,i+1, if j <4, then we
proceed as in the case i = n 4+ 1. Otherwise, column j determines (j — 1)-st
column of A as follows. The column (10)? corresponds to itself, and (01)7
corresponds to (11)7.

It is easy to see that the correspondence is a bijection. O



Proposition 6. There is a bijection between the number of spanning trees
of the complete bipartite graph Ks 11 and 2 X n matrices avoiding pz and

De-

Proof. The statement follows from proposition 5 after observing, that any
spanning tree of K3, can be coded by a 2 x (n + 1) matrix having exactly
one column (11)7 and other columns either (10)” or (01)7. Indeed, suppose
Kyy41 = AUB, where A = {z,y} and B={1,2,...,n+1},and i € B is
the only node connected to both z and y. We assign (11)” to 4, and for any
other node j € B, we assign (10)7 (resp. (01)7) to j if j is connected to
(resp. y). By concatenating these columns in the natural order, we get the
matrix representing a spanning tree. U

Our final illustration for this subsection is probably most interesting. It
is related to [6] by Robertson (for a survey on generalizations of this paper
see [4, Section 2.2]). However, we leave this example without proof, and we
believe this could be a good student project to solve problem 7. See, e.g., [4]
for definition of a pattern in permutations, and for the concept of pattern
avoidance.

Problem 7. Find a bijection between 132-avoiding permutations of [n + 3]
containing exactly one 128 pattern and 2 X n matrices that avoid ps and pg.

3.3 Other relations

In this subsection we list some of the sequences appearing in [8] when dealing
with multi-avoidance of right angled numbered polyomino patterns. These
references could be considered as basis for studying the relations, which
might lead to formulation of new interesting problems in this direction. We
observe that most of the objects appearing in A001787 are considered in
Subsection 3.2 with respect to their connection to avoidance of the patterns

p2 and pg.

4 Multi-avoidance of two right angled polyomino
patterns

There are 8 equivalence classes for two restrictions, which are presented in
Table 3.

According to [5, Proposition 2], when one of the patterns to avoid is py,
we have M, , = 0 for m,n > 3 with possible exception m = n = 3. This



restrictions ‘ number of rows ‘ sequence number ‘

D2, P6 m =2 A001787
p2,pr m = A001394
D1,P2,Ps m =2 A008574
P2,P3,P7 m=3 A005803
P2,D4, D5 m = A033484
D2,P4,D7 m = A079859
D2,P3,D4, D5 m = A016933
P2,D3,P4,P5 m = A017341
D2, D3, P5, P71 m = A022144

Table 2: Sequences from [8] related to the multi-avoidance of right angled
numbered polyomino patterns.

‘ class ‘ representative ‘ other members of the class ‘

A {p1,p3} C:{p1,ps}, T : {p1,p2}, CT : {p1,ps}
A {p1,p4} C:{p1,p7}

As {p2,p3} C:{ps,ps}

Ay {p3,p4} C :{ps,p7}, T : {p2,ps}, CT : {ps,p7}
As {p2,ps5} T :{p3,ps}

Ag {p2,p6} C:{ps,ps}

A7 {p2,p7} C:{pa,ps}, T : {p3,p7}, CT : {ps,p6}
Asg {p4,p7}

Table 3: The equivalence classes for two restrictions.

is easy to check that M33 = 6 for Ay, and M3 3 = 4 for Ay. Moreover, the
following proposition is true.

Proposition 8. We have
o My2=4m+2 and Myy =3-2" -2 for A, m>2 andn > 1;
o My, = M,s=06n—2 for Ay and n > 1.

Proof. We observe that My, = M, s for Ay since the transposition of the
prohibited patterns gives the same patterns.

We consider only the case n = 2 and the class A;. All other statements
from the proposition, can be proved similarly.

10



Suppose A = (a; ;) is an m X 2 matrix that avoids the patterns from A,
and m > 3.

If a1 = 0, the remain m — 1 elements in the first column must be 0,
since otherwise, independently of the value of a2, we would get p; or p3.
In order to avoid pi, we must have a;2 = 0, 1 <7 < m, and there are no
restrictions for the elements a1 2 and a,,2. So, we get 4 good matrices in
this case.

Ifa;; =1and a1 2 =0, the first row does not affect the rest of A, which
gives Mp,_12 good matrices.

Finally, if a1; = 1 and a1 2 = 1, the first column must consists of Os in
order to avoid p1, and since m > 3, any choice of az 2 leads to a prohibition
(either p; or p3). So, there are no good matrices in this case.

S0, My, 2 = Mp,_12+4 for m > 3, and that is easy to see that M > = 10.
This proves the statement. O

To prove Propositions 11 and 18 below concerning the classes A3 and
By, we need Lemma 10, which in turn uses Lemma 9.

Lemma 9. Let Ry, denote the number of m X n binary matrices that
avoid the patterns h =[]l and v : simultaneously. We assume that

Ryno = Rop =1 for myn > 0. Also, R(x,y) is the bivariate generating
function for the numbers R, ,. Then

1
k) ===
Proof. Suppose A = (a; ;) is an m x n matrix that avoids the patterns h
and v.

If a;1 = 0, clearly the first row and the first column must consist of 0s
in order to avoid h and v, which in turn courses that all entries of A must
be 0.

In the first row, all 1s must precede all Os if any. Thus, assuming that
the first 4 elements in the first row are 1s, 1 <4 < n, we have that a;; =0
foralll < j <mand (i+1) < k < n, since otherwise we have an occurrence
of v. The first row, as well as the submatrix consisting of Os, do not affect
the rest of A, and we have R,,_i; good matrices in this case. Thus, for
m,n > 1,

n n
R(m,n) =1+ Ry-1,= Y Rm-14,
=1 1=0

which using the technique of manipulations with generating functions from,
for instance, the proof of Lemma 10, gives the desired. O

11



Lemma 10. Let Ny, , denote the number of m x n binary matrices that
avoid the patterns h =[o[1 and po : simultaneously. We assume that

Npmo = Noy = 1 for myn > 0. Also, N(x,y) is the bivariate generating
function for the numbers N, . Then

3y — 2y® —xy? — 1
2y -D(@+y—-1)(y—1)

Proof. Suppose A = (a; ;) is an m x n matrix that avoids the patterns h
and po.

If the first row is (11...11) or (11...10), this row does not affect the
rest of A, and we get Np,_1, good matrices in this case.

Otherwise, since h is prohibited, the first row consists of 7 1s followed by
0s, where 1 < i < mn — 2. Since ps is prohibited, the columns from (i + 1)st
to (n —1) must consist of 0s, and because we have at least one such column,
in order to avoid h, the last column must also consist of 0s. The remain
submatrix B of A formed by first ¢ columns without the first row, must
avoid h, po, but also v = (otherwise we have an occurrence of py with
appropriate element from the last m — ¢ columns). Since if a matrix avoid
v it avoids py, we may assume that B avoids two patterns, h and v, and
thus according Lemma 9, there are R,,_1; good matrices in this case. We
observe, that is was essential to define R,, o = Ry, = 1 in order to count
all possibilities to form A. We now have

N(xvy) =

n—2

Nm,n = 2Nm71,n + Z Rmfl,i
1=0

for m,n > 1. Multiplying both parts of the equality by x", summing over
all n > 0, and assuming that Ny, (z) = )", <y Nm,n, we have

14 Nyy(2) = =2+ 2Ny 1 (2) + —— Ryp 1 (&) — 2Rm1(2) — Bon1(2),

1-=z
and thus
1
Np(z) = 2N () + (1 — - 1> Ry_1(z)—1=
m—1 1 '
2" No(z) + <(1—x —x—l) R,-(x)—l) gm—i=1,

12



We now multiply both parts of the equality by y™, sum over all m > 0, and
take into account that Ny(z) =1/(1 — z) to get

Nzy) = (1—w)21—2y)+1—y2y (1—316—1/ (1:96_:6_1) _$>

which gives the desirable after simplification. O

Proposition 11. For the class A3, we have My, n = Mp m, M1 = My =
2™ and for m,n > 2,

m—2

Mm,n =2+ Mmfl,nfl + 2]\Im,nfl + Z (2Ni,n71 + Pm,n,i)a
=1

where Prpno = Mm—1n-1, Pn2i=Pom,;= 2m=L " and for m,n >3,

min(i,n—2) , . 9
. Z n pa—
Pm,n,i = 2Zj\lmfifl,nfl + ; (k) ( k >Pm1,n1,i1-

Proof. Suppose A = (a; ;) is an m X n matrix that avoids the patterns from
Az, and m,n > 2.

Suppose a(1,1) = 0. If a(1,2) = 1 then all other elements in the first
column must be 1 (p3 is prohibited), which courses that all other elements
from the first row must be 1 (p2 is prohibited). Now the first column and the
first row do not affect the rest of A, and we have M,,_1 ,_1 good matrices
in this case. If a(1,2) = 0 then all other elements in the first column must
be 0 (p2 is prohibited), which gives that all other elements from the first row
must be 0 (p3 is prohibited). This is easy to see now that in order to avoid
p2 and p3, all other elements from A but a,,, must be 0. So we choose a,, y,
in two ways which gives two good matrices.

Suppose now that a(1,1) = 1, and the first column is either (11...11)7

r (11...10)%. Such column does not affect the rest of A and we have
2M,;, n—1 good matrices in this case.

We observe that in the remain cases having a(1,1) = 1, we have either

a) exactly one 0 in the first column in position (i + 1), or

b) the first column is (11...100...0)", where 1 <i < m — 2.
13 m—u
In case b), to avoid p3, the (i + 1)st row must consist of 0s, which gives
that all elements below this row, except possibly a, ,, must be 0 (the same

13



considerations as above when a(1l,1) = a(1,2) = 0). Clearly, the remain

elements of A form a i x (n — 1) matrix that avoids , p2 and p3, or just

and po, since once we avoid , we avoid p3 as well. The number of

such matrices N;,_1 was discussing in Lemma 10, and could be obtained
by expanding N (z,y). So, in case b) we have 2N; ,_; good matrices.

In case a), to avoid ps, the (i 4 1)st row must consist of 1s. Let Py, ;
denote the number of such matrices, that is the matrices avoiding ps and
p3, having a; 1 = 0, and all other elements in the first column and row 7 are
1for 1 <i < m— 2. We consider the matrix B formed by intersection of
columns 2,3,...,(n — 1) and the first ¢ rows. B is possibly empty. If all
entries of B are 1s, we can choose the entries of A to the right of B in 2°
ways, and there are no restrictions, except for avoiding ps and ps3, for the
remain elements of A, which form a (m —4—1) x (n — 1) matrix. Thus, the
number of good matrices in this case is ZiMm_i_lyn_l.

Suppose now that B has at least one 0, and thus we have n,m > 3. One
can see that in order to avoid ps and p3, each column, as well as each row
of B, must contain at most one 0. Thus, the maximum number of 0Os is
given by min(i,n — 2). Moreover, once we place a 0 in B, the entries of A
staying in the same row or column with this 0, must be 1, which does not
affect the rest of A, and thus gives P, _1 ,—1,—1 good matrices. Finally, we

observe that if we want to place k Os in B, we can do that in (;) (”EZ) ways
by choosing first rows and then columns from the 0s. The initial conditions
for P, 5 are easy to get.

We sum the results in a) and b) over ¢ from 1 to m — 2, to get the truth
the statement.

Initial values for M,, , can be found in Table 4.

anl‘n:2‘n:3‘n:4‘n:5‘

m=1 1 4 8 16 32

m =2 4 12 30 70 158
m=3 8 30 90 244 626
m =4 16 70 244 760 2214

Table 4: Initial values for M,, ,, and the class Aj.

O

Proposition 12. The bivariate generating function for the classes A4, Ag,
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and Ag is

2zy
M = .

Proof. We prove the statement for the class A4, all other classes can be
considered in the same way.

Suppose A = (a; ;) is an m x n matrix that avoids the patterns from Aj.

If the first column consists of 1s, it does not affect the rest of A, and
thus we have M,, ,—1 good matrices in this case. Otherwise, suppose that
am—i+1,1 = 0 and aj; =L form —4+2 < j <mand 1 <47 < m. That
is the down most 0 from the first column is a,,—;4+1,1. We can now choose
the remain elements from the first column in 2™~ ways, and our choice of
Aj1, 1 < j < m — i, uniquely determines the j-th row of A, since we need
to avoid p3 and p4. Thus, each of the fist m — ¢ rows of A consists of either
only 1s or only 0s, which, with the first column, do not affect the rest of A,
and therefore give M; ,,_1 good matrices.

We have

m
Mm,n = Mm,n—l + Z Mi,n—12m7l-
i=1
Multiplying both parts of the equality above by 2", summing over all n > 0,
assuming that M, o = 0 and denoting By, (z) = ), <o Mmpz", we have

By (z) =xBp, 1(z) + Z Bi(z)2™"a",
=1
and thus .
o m—i,.i

i=1
Now considering By, (z) — 2B,,—1(z), we get

(1 = 2)(Bm(z) = 2Bm-1(z)) = 2Bm(2),

which gives

221 2 27\ !
B,,(z) = T 2me,1(x) = (1 — 23:) Bi(x).

2z
Clearly, B = Mg — 1 =
early, By(x) nE>0 T o5 50

B (o) = 22 (272 mh e 220\
)= T o \ 1= 22 T1-z\1-22) -
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Finally, taking into account that By(z) must be 0 rather than z/(1 — x)
according to the formula above, we have that M (z,y is given by

Z By (z)y™ = x Z <2 -2z y)m x 2zy
m = : - = .
oot 1—xm20 1-2z l—z 1-2z+y—uzy)

U
Proposition 13. We have that My, » = (m + 1)2™ and
My, = (m 4 3)2mFn 2 —on _gm+l 4y
for As, m > 1 and n > 3.

Proof. Suppose A = (a; ;) is an m x n matrix that avoids As.

We first consider the case n = 2. The number of good matrices having
am,1 = 1 is equal to that having a,,1 = 0, since taking the complement of
p2 and ps, we get pa and ps.

Assume that ap, ;1 = 1. If the other elements from the first column are
1s, the first column does not affect the second column, and we have 2™
good matrices in this case. If we have 0 in the first column, we assume
that the down most 0 is in position m — 4, where 1 <7 < m — 1. Clearly,
we can choose the elements above this 0 in 27°~! ways and each such
choice uniquely determines the elements a2, 1 < j < m — i, because of the
prohibitions. We now can choose the remain elements in the second column
in 2¢ ways, to get 2" + Ef:ll 2m=1=120 = (m +1)2™~! good matrices in the
case a1 = 1. According to the discussion above, the case a1 = 0 gives
us the same number of good matrices, which proves the statement.

Suppose that n > 3. Like above, we can assume that a,,; = 1 and then
multiply the obtained result in this case by 2. If the first column consists
of only 1s, this column does not affect the rest of A, and we get M,
good omatrices in this case. Otherwise, assume that the down most 0 from
the first column is in the (m — i)-th row, 1 <47 < m — 1. In order to avoid
p2, all other elements from the (m — ¢)-th row must be 1. This courses that
agj =1form—i+1<k<mand2<j<n—1,since we need to avoid
ps. Moreover, we cannot have 1s above the down most 0 in the first column.
Indeed, if we have 1 above the down most 0, the row corresponding to this 1
must be (100...0) in order to avoid ps, but this would lead to an occurrence
of p2 (since the (m —4)-th row is (011...1), it is below, and n > 3).

So, the remain elements in the first row are 0s, which uniquely fills all
the elements to the right of these Os (they must be 1s in order to avoid ps).

16



Finally, we can choose the remain elements in the last column in 2¢ ways,
which gives 377" 2 = 2™ — 2 good matrices.

Summarizing all the cases, we have that M,,, = 2(M;,,—1 + 2™ — 2),
which gives the desired, since My, ; = 2. ]

Proposition 14. We have that M, , = (m+1)""'2™ for A7 and m,n > 1.

Proof. Suppose A = (a;,;) is an m x n matrix that avoids Asz.

Clearly, if n > 2 then in the first column, 0 cannot be above 1, since
p2 and p7 are prohibited and we cannot then choose all elements for the
second column. There are no extra restrictions for A, thus we choose the
number of Os in the first column in m + 1 ways (the places for them will
be determined) and multiply it by My, ,—1 to get My, , = (m + 1) My, 1.
Since My, 1 = 2™, we get the desired. O

5 Multi-avoidance of three right angled polyomino
patterns

There are 12 equivalence classes for three restrictions, which are presented
in Table 5.

The statements in Proposition 15 concerning the avoidance of the pattern
p1 and two more patterns, are easy to prove, and we prove only one of them
to demonstrate our approach for such statements.

Proposition 15. We have

e My, =0 for Bi-Bg, m,n > 3, with two exceptions: M3z =4 for By,
and M33 =2 for Bs;

o My, =M,2=2n+4 for By and n > 2;

e My, =6 and My, 2 = 4m for Ba, m > 2, and n > 3;

o My, =0 and My, 2 = 2" for B3, m > 2, and n > 3;
o My, =M, =4n for By and n > 2;

o My, =2n+4 and M,,» = 4m for Bs and m,n > 2;

o My, =M, =28 for Bg and n > 2.

17



‘ class ‘ representative ‘ other members of the class ‘

By {p1,p2,p3} | C:{p1,p5,p6}

82 {p17p27p4} C: {p17p57p7}7 T: {p17p37p4}7
CT : {p1,ps,pr}

B3 {p1,p2,p5} | T :{p1,p3,p6}

By {p1,p2,p6} | C:{p1,p3,p5}

B5 {p17p27p7} C: {p17p47p5}7 T: {p17p37p7}7
CT : {p1,p4,ps}

Bg {p1,p4,p7}
By {p2,p3,p4} | C:{ps,pe,p7}

Bg {p2,p3,05} | C: {p2,ps5.06}, T : {P2,P3, D6},
CT : {p3,ps,p6}

By {p2,p3,p7} | C : {pa,p5,p6}

Bio {p2,p0,p5} | C:{p2,p5,p7}, T : {P3,P1,D6},
CT : {ps3,ps, p7}

B11 {p2,p1,06} | C :{p3,ps,p7}, T : {p3,pa,p5},
CT : {p2,ps, pr}

Bia | Ap2,ps,p7} | C:{pa,ps,p7}, T : {p3,pa,p7},
CT : {p4,ps,p7}

Table 5: The equivalence classes for three restrictions.

Proof. Let us prove that M,, s = 4m for By and m > 2.

Suppose A = (a;;) is an m X 2 matrix that avoids Bs.

Suppose a,,1 = 0. Then if we assume that there are at least two 1s in
the first column, say in positions 1 < i1 < 492 < m, then we cannot fill the
position a;, 2 since the patterns p; and ps are prohibited. So, there is at
most one 1 in the first column, which gives m possibilities. Moreover, all
elements in the second column, but a,, 2 are uniquely determined because
of the patterns p; and p4. So, we have 2m possibilities in this case.

If a1 = 1 then in order to avoid the prohibitions, all Os must be above
all 1s, and again all elements in the second column, but a,, s are uniquely
determined. Which gives 2m possibilities, and proves the statement. U

Proposition 16. For By, My, , = My, n—1 + M1 + 2 for m,n > 2 and
My, =M, =2"

Proof. Suppose A = (a; ;) is an m X n matrix that avoids Bz, and m,n > 2.
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If a1, = 0 and a1 2 = 0 then the first column must consist of Os (A avoids
p2), and thus the first row consists of 0s (A avoids p3). Now all the elements
but a,, , must be 0, since A avoids py and p3. So we have two good matrices
in this case.

If 11 = 0 and a1 2 = 1 then the first column must consist of 1s (A avoids
p3), and thus the first row consists of 1s (A avoids ps). Now the first row
and the first column do not affect the rest of A, and thus we have My,_1 1
good matrices in this case.

If 17 = 1 and the first column does not contain Os, we have M, ,_1
good matrices, since the first column does not affect the rest of A in this
case.

If a;; = 1 and the first column has at least one 0, the first row must
consist of only 1s, since py is prohibited. To count the number of matrices
in this case we can take the number of matrices having only 1s in the first
row without additional restrictions (there are M,y,_1, such matrices), and
subtract the number of matrices having only 1s in the first row and the first
column. We get M,,,_1, — M;,—1,,—1 good matrices in this case.

Finally, we sum the numbers from the four cases to get the desired. [

Proposition 17. For Bs, My, , = (n+2)2™ 1 +2m(n—1) —2 for m,n > 2
and Ml,n = Mn,l = 2",

Proof. Suppose A = (a; ;) is an m X n matrix that avoids Bg, and m,n > 2.

Let us first find M,,>. If a;; = 0 and a;2 = 1 then clearly the first
column must consist of 1s and there are no restrictions for the second column.
Thus we get om—1 good matrices in this case. If a;; = 0 and a; 2 = 0 then
the first column must consist of 0s, which leads that the second column,
maybe except the element a,, » must consist of 0s, so we get 2 good matrices
in this case.

If ay; = 1 and a;2 = 0 there are no restrictions for the rest of A —
there are M,,_1 2 matrices in this case. If a;; = 1 and a;2 = 1, since ps is
prohibited, the first column consists of only 1s and we can choose any other
element in two ways. We have 2! good matrices in this case.

One can now see that M, 9 = My, 12 + 2™ + 2 = 2™ 4+ 2m — 2 since
Mo =4.

Let us find a recursion for My, , where m > 2 and n > 3.

If a1 = 0 then the same arguments as for the case n = 2 work. Thus
we get 2™ 4+ 2 good matrices in this case.

If a1,; = 1, then either the first row consists only of 1s, in which cases we
have My, ,—1 good matrices, or there is at least one 0 there. This 0 courses
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that the first row must consists of 0s (ps is prohibited), which using n > 3
gives that a; ; =0 for 1 <i<n—1and 1 < j <m (p2 is prohibited). Since
p3 is prohibited, all the elements from the last column, but a,, , must be 0.
Moreover, one can see that in the first column, all 0s must be below 1s, since
otherwise A contains the pattern ps. Now, we choose the number of 0Os in
the first column in m — 1 ways (this number is between 1 and m — 1), then
choose the element ay,, in two ways, which gives 2(m — 1) good matrices
in this case.

So, My, = My pn—1 + 2m=1 1 9m with M, 2 given above. This proves
the statement. O

Proposition 18. For By, we have

2zy(ly —zy +x — 1)
2z —1)2y —)(z+y—1)

M(xvy) =

Proof. Suppose A = (a; ;) is an m X n matrix that avoids By, and m,n > 2.

If apm,1 = 0 or ay,,;1 = 1 and all other elements from the first column are
Is, the first column does not effect the rest of A, and thus we have 2M,, ,,_1
possibilites here. Also, in order to avoid py and p7, all 1s in the first column
must be above all 0s. Thus, we can assume that in the first column ¢ Os are
below m — ¢ 1s, where 2 < i < m.

Clearly, in order to avoid p3, the rows m —14+1, m —i+2,...,m—1
must consist only of 0s. Which, in turn, courses that each element in the
last row, except possibly a, , must be 0 (A avoids po).

Now, the (m — i) x (n — 1) matrix B that is formed by all but the first
column and all but the last ¢ rows must avoid the patterns from By but

also the pattern h =[0o[1] (an occurrence of h in B, with the corresponding

Os in the last 7 rows of A will form the pattern ps). Moreover, if a matrix
avoids h, it also avoids p3 and p7, and thus the restrictions for B, we need
to control, are ps and h. We can now use Lemma 10 to get that there are
Np—in—1 choices for B, which we must sum over ¢ and multiply by 2, the
number of ways to choose a,,,. We observe, that it was necessarily to define
Noyn = Npo = 1 for all m,n > 0, in order to count all the possibilities to
construct A.
We have, that for m,n > 2,

m
Mm,n = 2]Wm,n—l +2 Z Nm—i,n—la
=2

with M, = 2™ and M, = 2"
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Suppose M, (2) = Y, ~o Mmpz™. Using manipulations similar to that
as, for instance, in Lemma 10, one can get

m—2
Mo (z) = —22 <2m1 —mAl Y N,-(ac)) .

1=0

Multiplying both parts of this equality by y™, summing over m > 0, taking
into account that My(xz) = 0, and simplifying the result, one can get the
desired. O

Proposition 19. For By, we have M, ,, = 2™t —2"—2M 42 for m,n > 1.

Proof. Suppose A = (a; ;) is an m x n matrix that avoids Byg, and m,n > 2.

This is easy to see that if the first column of A consists of either only 0s
or only 1s, the rest of A does not depend on the first column. Thus, in this
cases we have 2M,, ;,_1 good matrices.

Suppose the first column contains at least one 0 and at least one 1.
Clearly, all Os in the first column must be above all 1s, since ps and ps are
prohibited. But now all the elements to the right of the 0s must be 1s (py
is prohibited), which leads that all the remain elements, but that in the
last column must be equal 1 (ps is prohibited), and there are no additional
restrictions for A. So, if the number of 1s in the first column is ¢, the number
of good matrices in this case is given by E’::ll 20 =2m 2,

Finally, My, , = 2Mp, -1 + (2™ — 2), and we are done since M, | =
2m, O

Proposition 20. Suppose M, (z,y) and Ms(x,y) are the bivariate generat-
ing functions for the class Bi1 and Bia respectively. Then,

2zy

(1-22)(1-=y)

Ml(xuy) = M2(y7x) =

Proof. We consider only the class Bi1, since one can study Bis in the same
way changing rows to columns and vice versa in the considerations. One
then get the same recursion as for By after switching m and n.

Suppose A = (a;,j) is an m X n matrix that avoids Bii, and m,n > 2.

If a;1 = 1 then the first row consists of 1s, since otherwise we cannot
choose a1 (ps4 and pg are prohibited). The first row now does not affect the
rest of A, and we have M,,_1, good matrices in this case.

If a1,1 = 0 and all other elements from the first row are 1s, the first row
does not affect the rest of A, and we also have M,,_; , good matrices in this
case.

21



Suppose a1,; = 0 and the first row contains at least one more 0. Clearly,
all Os must proceed all 1s in the first row, since otherwise there is an ele-
ment in the second row, that we cannot choose (p4 and pg are prohibited).
Moreover, all the enteries below all but the rightmost 0 must be 0 (po is
prohibited). If the number of in the first row Osis i+ 1, 1 <7 <n — 1 then
the first ¢ columns, as well as the first row, do not affect the rest of A and
could be removed, which gives Z?:_f My, —1 n—i good matrices.

We now have

n—1

Mm,n = Z Mmfl,nfi + Mmfl,n-
=0

Multiplying both parts of the equality above by =", summing over all n > 0,
assuming that M,, o = 0 and denoting By, (z) = ), <o Mm 2", we have

n—1
B,, (:E) = Z Z Mm,l,n,ix”_lfﬁl + Bm,1($),

n>0 =0
and thus
1 2z 2 —z\"
B, (z) = Bm,l(x)l — x+Bm,1(x) =1= me,l(x) = (1 — x) Bi(z).
Clearly, Bi(z) = Z oz 1= "2 which gives that M (z,y) is given
7 1 _ 2$’ 7

by

6 Multi-avoidance of four right angled polyomino
patterns

There are 12 equivalence classes for four restrictions, which are presented in
Table 6.

In the cases, when one of the patterns to avoid is pi, it is not difficult
to see that M,,, = 0 for m,n > 3. Moreover, one can consider the cases
m =2 or n =2 to get the truth of the following proposition.
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‘ class ‘ representative ‘ other members of the class ‘

C1 | {p1,p2,p3,p4} | C : {p1,p5,p6,p7}

Co | {p1,p2,p3,p5} | C : {p1,p2,p5,p6}, T : {P1,P2,P3,P6},
CT : {p1,p3,p5,p6}

C3 | {p1,p2,p3,p7} | C : {p1,P1,05,P6}

Cs | {p1,p2,p4,05} | C: {p1,p2,p5,07}, T : {p1,13,P1, 16},
CT : {p1,p3,p6,p7}

Cs | {p1,p2,p1,06} | C :{p1,p3,p5,p7}, T : {p1,p3,04,P5},
CT : {p1,p2,p6,p7}

Cs | {p1,p2,pa,07} | C:A{p1,p1,p5,p7}, T : {p1,p3,p4,p7},
CT : {p1,p4,ps,p7}

Cr | {p2,p3,p4,05} | C : {p2,05,p6,07}, T : {P2,P3,P4, 6},
CT : {p3,ps,p6,p7}

Cs | {p2,p3,pa,p7} | C : {pa,p5,p6,p7}

Co | {p2,p3,p5,P6}
Cio | {p2:p3,p5,p7} | C : {p2,pa,p5,p6}, T : {p2,p3, 6,07},
CT : {p3,p1,ps5,p6}

Ci1 | {p2,p1, 05,07} | T : {p3,P1,p6,D7}

Ci2 | {p2,p4,ps,p7} | C : {p3,p4,p5,p7}

Table 6: The equivalence classes for four restrictions.

Proposition 21. We have
o Myo =06 and My, 2 = Ma,, =4 for Ci, and m,n > 3;
o My2=2(m+1) and M, =0 for Co and C4, and m > 1, n > 3;
e My 2 =M, =56 for C3, and m,n > 2;
o My2=2(m+1) and Ma, =6 for Cs, and m,n > 2;
® My,2="6 and My, =4 for Cs, and m > 2, n > 3.

For example, to prove, in Proposition 21, that M,, 2 = 2(m + 1) for C,
and m > 1, we proceed as follows.

Suppose A = (a;;) is an m X 2 matrix that avoids C, and a;; = 0.
Then assuming that m > 2 and that in the first column we have an extra
0, we get a contradiction with an attempt to choose a12 (p1 and ps are
prohibited). So, the first column consists of 1s, and a1 = 1 since py is
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prohibited. Moreover, all other elements but a,,» must be 0 in order to
avoid p1, which gives us two matrices avoiding Co after choosing a,, 2.

If a1 = 1 then a1 2 = 0 assuming m > 2, since otherwise we have an
occurrence of py or p5. But in this case, the first row does not affect the rest
of the matrix, which gives M;,_1 » good matrices.

S0, M2 =2+ Mpy,—12 and M; o = 4. This recursion proves the state-
ment.

Proposition 22. We have
Mppn = (n+ 12" +2(n—1) for Cz, m > 2 and n > 1;
My, = 8 for Cg and m,n > 2;

Mm,n = 2m+n—1 for C11 and C12, and m,n > 1.

Proof. Suppose an m x n matrix A = (a; ;) avoids the patterns from a class
under consideration.

For the first statement, suppose n > 2. If a;; = 1 then a;1, for 2 <
i < m, must be 1, since elsewise, we cannot fill the first row (ps and ps
are prohibited). Since the first row now does not affect the rest of A, we
have M, ,—1 good matrices in this case. If a;; = 0 then either az; = 0
or az; = 1. In the first subcase the first row must consists of 0s, since
p3 is prohibited, which leads that the first column consists of Os, since ps
is prohibited. In the second subcase, since po is prohibited, the first row
consists of 1s, which leads that the first column consists of 1s, since p3 is
prohibited. Since ps is prohibited, all columns but the last must consist of
1s. We have no additional restrictions, and the remain elements in the last
column can be chosen in 2™~ ways. Thus,
Mm,n = VMmmn—1 + 2m—1 + 27

which proves the statement since M, ; = 2™.

To prove the second statement, we observe that the element a; o deter-
mines uniquely all the elements but a;; in the first column and first row
(these elements will be equal to aj2). This, in turn, determines all the el-
ements but a,,, for m,n > 2 which must be also equal to a1 in order to
avoid all restrictions. So, we choose each of a1, a1,1 and a,, , in two ways,
which gives 8 matrices for any m,n > 2.

In the third statement, we consider only the class Ci; (C12 can be con-
sidered similarly). This is easy to see, that if n > 2 and a;; = 0 then in
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order to avoid py and p7, the first column must consists of 0s, which does
not affect the rest of A, and we have M, ,_1 good matrices in this case. If
a1,1 = 1 then to avoid ps and ps, the first column must consists of 1s, which
also does not affect the rest of A, and we have the same number of good
matrices. Thus, My, , = 2My, 5,1, and we are done since M, =2™. [

Proposition 23. We have
o My =2"+2"4+2(nm—n—m) for Cg, and m,n > 1;
o My =2"+2m(n —1) for Cyg, and m,n > 1.

Proof. Suppose an m X n matrix A = (a; ;) avoids a class under considera-
tion.

Let us prove the first statement. Clearly, if n > 2, we cannot have any
0 above any 1, since in this case we cannot fill the position next to 0 in the
same row (p2 and p7 are prohibited). Moreover, if the first row consists of
only 1s, we have no restrictions for the rest of A, which gives M, ,_1 good
matrices.

Suppose that a,, 1 = 0 and all the other elements in the first column are
1s. Since py4 is prohibited, all the elements, but in the last row, must be 1.
Now we have now restrictions for the remain elements in the last row, and
we can choose them in 27! ways.

So, we need only to consider the case when a;; = a1 =--- =a;;1 =1
for 0 < k < m — 2, and the other elements from the first column are Os.
Clearly, because of the restrictions, a;; = 1 for 1 <4 < kand 2 < 5 < n,
and a;; = 0 for k <4 <m —1and 2 < j < n. Moreover, we get at least
one row counsisting of only 0Os, which leads to all the elements from the last
row, but a,,, must be 0 (ps is prohibited). Thus, in this subcase we have 2
good matrices, which after variation of k gives 2(m — 1) good matrices.

We now have that

Mpn = Myt +2"1 +2(m — 1)
with M, 1 = 2™, which gives the desired.
To prove the second statement, we use exactly the same considerations
to get the recursion M, , = My, ,—1 + 2m, with M,,; = 2™, which gives

the result.
O
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7 Multi-avoidance of five or more of right angled
polyomino patterns

If the number of restrictions is seven, then obviously M,, , = 0, for m,n > 2.
If we prohibit six patterns then it is easy to show the truth of the following
proposition.

Proposition 24. Suppose p is the only allowed pattern. Then
¢ My =2,ifp=p1 and m,n > 2;
¢ My =0, if p=p4 or p=p7 and m,n > 2;
e Myy =2 and My, , =0, if p=p> or p=ps5, and n > 2 and m > 3;
o Myu2=2and My, =0, if p=p3 orp=ps, and n > 3 and m > 2.

In the case of five restrictions, we have 8 equivalence classes, which we
list in Table 7.

‘ class ‘ representative ‘ other members of the class ‘

Dy | {p1,p2,p3, 01,05} | C: {p1,p2,p5,06,07}, T : {p1,p2,P3,01,06},
CT : {p1,p3,p5,P6,P7}

Dy | {p1,p2,p3,p1,p7} | C: {p1,P1,05,D6, 07}

D3 | {p1,p2,p3,P5,P6}
Dy | {p1,p2,p3,p5,07} | C: {p1,02,P1,05,P6}, T : {P1,P2,P3,P6,P7},
CT : {p1,p3,P4,P5,P6}

Ds | {p1,p2,p4,p5,p7} | T : {p1,p3,P1,P6,P7}

Ds | {p1,p2,p1,p6,07} | C: {p1,03,P1,05,P7}

D7 | {p2,p3,p1,p5,06} | C : {p2,p3,05,06,P7}

Dg | {p2,p3,p1,p5,07} | C : {p2,P1,05,06, 7}, T : {P2,P3,P4,D6,P7},
CT : {p3,p4,p5,p6,P7}

Table 7: The equivalence classes for five restrictions.

The following statement is easy to check.
Proposition 25. We have
e My, 2 =4 for D1, Dy, D5, and m > 2;

o Myo =4 and My, 2 = My, =2 for Dy, and m,n > 3;
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[ J M272 =4 for Dg,‘
o My 2= M, =4 for Ds, and m,n > 2;

e My = 0 for all non-mentioned above cases of m,n > 2 and the
classes D1-Dg.

To illustrate how the results from Proposition 25 can be obtained, we
observe that, for instance, Ms, = 4 for Dg and n > 2, is given by the
following considerations. A matrix that avoids Dg has either (0,0)” or
(1,0)" as the first column, (1,1)% or (1,0)* as the last column, and a number
of columns (1,0)7 between them, which gives four possible matrices for each
n, since otherwise we have an occurrence of prohibition.

Proposition 26. We have
e My, =6 for D7, and m,n > 2;
o Myp=2(n—1)+2" for Dg, m >2 and n > 1.

Proof. Suppose A = (a; ;) is an m x n matrix without prohibitions.

To prove the first statement, we consider the element ay ;.

If a1 = 0 then is is easy to see that either a;7 = a1; = 0 or a;1 =
aj; = 1forall 2 <7< mand 2 < j < n. In the former case, all but the
element a,, , must be 0, whereas in the second case, all but a,, , must be 1.
If ;1,1 = 1, all but ay,, must be 1. Now, choosing a, , to be equal 0 or 1
gives us six matrices avoiding Dy.

To prove the second statement, we also consider a ;.

Suppose a1 = 0. If a;; = 1 for some ¢, 2 < % < m, then we get
a prohibition p, or p; when we fill the first row. Thus the first column
consists of 0s, which leads to the first row consists of Os, since otherwise we
have an occurrence of p3. Now, clearly, in order to avoid p,, all elements
but a,, ,, must be 0, which gives two matrices avoiding Dg in this case.

Suppose a1 = 1. If a;; = 0 for some ¢, 2 < % < m, then we get
a prohibition ps or ps when we fill the first row. Thus the first column
consists of 1s, which does not affect the rest of the matrix A. So, we have
M., n—1 good matrices in this case.

So, My, n = My, ,—1 + 2, which with the condition M, ; = 2™ gives the
desired. O
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