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1 Introduction

In the work of Gepner [1], the fusion potential for su(N)K was obtained as a
perturbation of the Landau-Ginzberg potential that generates the cohomol-
ogy ring of the Grassmannian. This implies that the fusion ring for su(N)K

and the cohomology ring of the Grassmannin are connected. The connec-
tion of these two rings may be understood as follows: Lesieur [2] noticed
that the rules of multiplying Schubert cycles[3], which are the generators of
the homology ring of the Grassmannian, formally coincide with the rules for
multiplying Schur functions [4]. On the other hand, the characters of the
irreducible representation of su(N) turn out to be given by the Schur func-
tions [5] with some constraint which is exactly the perturbation mentioned
above. Therefore, we learn that the product of characters is the same as a
product of Schur functions with this constraint which, in turn, implies the
connection between the cohomology ring for the Grassmannian and fusion
ring for su(N)K .

The potential that generates the cohomology ring of the Grassmannian
turns out to be given by a power sum symmetric function in the Chern roots
[6] that we identify with the roots of an algebraic equation, say of degree r,
i.e., of the form

yr + a1y
r−1 + · · ·+ ar−1y + ar = 0 . (1)

Geometrically, the degree r is the rank of the quotient bundle on the Grass-
mannian and the coefficients of the algebraic equation (elementary symmetric
functions) correspond to the Chern classes of this bundle. With this inter-
pretation in mind, the algebraic equation (1) is nothing but the definition
of the Chern classes of a vector bundle of rank r given by Grothendieck [7],
where y is identified with the fundamental class of degree 2 on the associated
projective bundle.

In this paper, we use the Waring formula to express the power sum sym-
metric function in the Chern roots in terms of the elementary symmetric
functions and hence obtain the cohomology potential for the Grassmannian
and the fusion potentials for su(N)K and sp(N)K . The algebraic equation
from which the su(N)K fusion potential is obtained is the one for which
r = N and aN = 1, whereas, for sp(N)K , it turns out to be a reciprocal
algebraic equation [8] of degree 2N , with the last coefficient equal to one and
a2N−i = ai.
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In our formulation, the fusion potential written in terms of the elemen-
tary symmetric functions is the explicit generalization of the Chebyshev
polynomial of one variable. Similarly, for the case of sp(N)K , we obtain
another Chebyshev polynomial in several variables. The one-variable Cheby-
shev polynomials of the first kind and second kind are known to be related
to the ordinary Lucas numbers and Fibonacci numbers respectively. In this
paper, we find a relation to the generalized Fibonacci and Lucas numbers for
the cases studied here.

Our paper is organized as follows: Section 2 gives a brief account of the
cohomology ring in order to recall some facts and fix the notation. Section
3 will be devoted to the cohomology ring potential and its connection with
the fusion ring for su(N)K . The connection of the later with the generalized
Chebyshev polynomial and the numbers of Fibonacci and Lucas will also be
discussed. In section 4, we will consider the sp(N)K fusion potential and its
connection with the reciprocal algebraic equation. Here, we will find that
the Chebyshev polynomial associated with sp(N)K is different from the one
for su(N)K for N 6= 1. In this case, the Fibonacci and Lucas numbers are of
degree 2N . Our conclusions are outlined in section 5.

2 The Cohomology Ring

In this section, we will recall briefly the definition of the cohomology ring
of the grassmannian[9] and the coresponding Landau-Ginsburg formulation
[6, 1], in order to fix our notation. The complex grassmannian manifold
here denoted by Gr(C

n) is the space of r-planes in Cn, its cohomology ring
denoted by H∗(Gr(C

n)) is a truncated polynomial ring in several variables
given by

H∗(Gr(C
n)) ∼= C[x1, · · · , xr, y1, · · · , , yn−r]/I , (2)

where xi = ci(Q) (for 1 ≤ i ≤ r) are the chern classes of the quotient bundle
Q of rank r, i.e., xi ∈ H2i(Gr(C

n)) and yj = cj(S) (for 1 ≤ j ≤ n − r) are
the chern classes of the universal bundle S of rank n − r. The ideal I in
C[x1, · · · , xr, y1, · · · , yn−r] is given by

(1 + x1 + x2 + · · ·+ xr)(1 + y1 + y2 + · · ·+ yn−r) = 1 , (3)

which is the consequence of the tautological sequence on Gr(C
n)

0 −→ S −→ V −→ Q −→ 0 ,
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where V = Gr(C
n)×Cn. By using equation (3), one may rewrite H∗(Gr(C

n))
as

H∗(G(Cn)) ∼= C[x1, · · · , xr]/yj , (4)

where yj are expressed in terms of xi, and yj = 0 for n − r + 1 ≤ j ≤ n,
and x0 = y0 = 1. The classes yj can be written inductively as a function of
x1, · · · , xr via

yj = −x1yj−1 − · · · − xj−1y1 − xj for j = 1, · · · , n − r . (5)

We will give later on an explicit formula for the y′
js in terms of the x′

is
without the use of induction .

In the Landau-Ginsburg formulation, the potential that generates the
cohomolgy ring of the grassmannian as explained in [6, 1, 10], is given by

Wn+1(x1, · · · , xr) =
r∑

i=1

qn+1
i

n + 1
, (6)

where, xi and qi are related by

xi =
∑

1≤l1<l2···<li≤r

ql1ql2 · · · qli . (7)

Usually the description of the cohomology ring is given in terms of the qi

variables, however, in the next section, we will write down the potential in
terms of the x′

is, i.e., as a solution to the above system of equations. Note
that, as was shown explicitly in [10], the cohomology ring of the grassmannian
is given by

∂Wn+1

∂xi

= (−1)nyn+1−i, for1 ≤ i ≤ r , (8)

implying that diWn+1 = 0, for i = 1, · · · , r.

3 The Cohomology Ring Potential

A formula for the Landau-Ginsburg potential Wn+1(x1, · · · , xr) is given in
terms of the generators of H∗(Gr(C

n)), and when we consider the potential
Wn(x1, · · · , xr) instead with n = N + k, r = N and xN = 1 we obtain the
fusion potential of the su(N)K [1]. The fusion potential in this formulation
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is the explicit generalized Chebyshev polynomial in several variables. The
ordinary Fibonacci and the Lucas numbers are known to be connected to
Chebyshev polynomial of the second kind and the first kind respectively[13].
Here we will find the connection between the fusion potential of the su(N)K

algebra and the kth order Fibonacci and the Lucas numbers. The following
formulae for the potential, the classes yj in terms of the xi classes and, in
general, the connection between Segre classes of any vector bundle of rank
n in termes of Chern classes are first proposed, then later proved using the
theory of symmetric functions [11].

proposition 1 The potential Wn+1(x1, · · · , xr) that generates the cohomol-
ogy ring of the grassmannian H∗(Gr(C

n)) in terms of the generators xi =
ci(Q) for 1 ≤ r is given by the formula

Wn+1(x1, · · · , xr) =

[n+1

2 ]
∑

k1=0

· · ·

[n+1

r ]
∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!
×

(

n −
∑r−1

j=1 jkj

)

!
(

n + 1 −
∑r

j=2 jkj−1

)

!
x

n+1−2k1−···rkr−1

1 xk1

2 · · ·xkr−1

r . (9)

The above formula reduces to the fusion potential of su(N)K algebra when
we consider the potential Wn(x1, · · · , xr) instead, with n = N +k, r = N and
xN = 1 which in turn is the explicit multidimentional analogue of Chebyshev
polynomial of the first kind. Finally the fusion potential and the multidimen-
tional analogue of the Chebyshev polynomial of the second kind are shown to
be related the kth order Lucas and Fibonacci numbers respectively.

To prove the above formula, we use the fundamental theorem on symmet-
ric functions[4], which states that any symmetric function can be written as
a polynomial in the elementary symmetric functions. The potential for the
cohomology ring of the grassmannian, H∗(Gr(C

n)) is generated by

Wn+1(x1, · · · , xr) =
r∑

i=1

qn+1
i

n + 1
,

i.e., the power sum symmetric functions in the Chern roots 2,qi. From [11],
we learn that there is an explicit formula for the power sum in terms of the

2qi are the formal variables satisfying
∑

r

i=0
xit

i =
∏

r

i=1
(1 + qit).
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elementary symmetric functions. As a matter of fact, this formula was given
by Waring [8, 12] in connection with the theory of algebraic equations in
which he found a general expression for the power sum of the roots of an
algebraic equation of order r in terms of its coefficients. This formula reads

sn = n
∑

(−1)n+l1+···+lr
(l1 + · · · + lr − 1)!

l1! · · · lr!
xl1

1 · · ·xlr
r , (10)

where sn denotes the power sum, the x′
is are the elementary symmetric func-

tions, and the summation is taken over all positive integers or zero such that
l1 + 2l2 + · · ·+ rlr = n.

It is clear from equation (10) that we obtain the formula for the cohomol-
ogy potential given by equation (9): Simply shift n to n+1 in equation (10),
set l1 = n + 1 − 2l2 − · · · − rlr and now by making the change of variables
l2 = k1, · · · , lr = kr−1, the formula is obtained. To prove that the potential
Wn+1(x1, · · · , xr) generates the cohomology ring, we need the following for-
mula that relates the Chern classes of the universal bundle, yj, to the Chern
classes of the quotient bundle xi

yj = (−1)j

[ j

2 ]∑

k1=0

· · ·

[ j

r ]∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · · kr−1!
×

(

j −
∑r−1

l=1 lkl

)

!

(j −
∑r

l=2 lkl−1)!
x

j−2k1−···rkr−1

1 xk1

2 · · ·xkr−1

r . (11)

Again we can use the theory of symmetric functions to prove the equation.
This time however, we use the relation between the homogeneous product
sum (also called the completely symmetric functions) and the elementary
symmetric functions. The Segre classes, denoted by sj , of a vector bundle of
rank n has an expression similar to that for the Chern classes of the universal
bundle but with r = n and with j allowed to take the values 1, 2, · · · , n. Now
the proof that Wn+1(x1, · · · , xr) generates the cohomology ring follows by
differenting this potential with respect to xi, 1 ≤ i ≤ r. Thus, we obtain

∂Wn+1

∂xi

= (−1)i−1

[n+1−i
2 ]
∑

k1=0

· · ·

[n+1−i
r ]
∑

kr−1=0

(−1)k1+2k2+···+(r−1)kr−1

k1! · · ·kr−1!
×

(

n + 1 − i −
∑r−1

j=1 jkj

)

!
(

n + 1 − i −
∑r

j=2 jkj−1

)

!
x

n+1−i−2k1−···rkr−1

1 xk1

2 · · ·xkr−1

r . (12)
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¿From equation (11), we see that yn+1−i is exactly the expression for ∂Wn+1

∂xi
up

to (−1)n which is zero for i = 1, · · · , r, by definition of the cohomology ring.
Therefore, ∂Wn+1

∂xi
= (−1)nyn+1−i implying that diW = 0 for i = 1, · · · , r.

This shows the isomorphism between the usual definition of the cohomology
ring of the grassmannian H∗(Gr(C

n)) and the Landau-Ginsburg formulation.
Now, we come to the connection between the cohomology potential and

fusion potential of su(N)K algebra. We consider the potential Wn(x1, · · · , xr)
with n = N + k, r = N and set xN = 1 in the expression of Wn(x1, · · · , xr)
to obtain the following potential

WN+K(x1, · · · , xN = 1) =

[N+K
2 ]
∑

k1=0

· · ·

[N+K
N ]
∑

kN−1=0

(−1)k1+2k2+···+(N−1)kN−1

k1! · · ·kN−1!
×

(

N + K − 1 −
∑N−1

j=1 jkj

)

!
(

N + K −
∑N

j=2 jkj−1

)

!
x

N+K−2k1−···−NkN−1

1 xk1

2 · · ·x
kN−2

N−1 , (13)

this potential is no longer quasihomogeneous. The quasihomogeneous part
of this potential is obtained by setting kN−1 = 0. To see that this potential
is the natural analogue of Chebyshev polynomial of the first kind in several
variables, we specialize the potential to the case of su(2)K and find

(2 + K)W2+K(x) = (2 + K)

[K+2

2 ]
∑

l=0

(−1)l

l!
×

(K + 1 − l)!

(K + 2 − 2l)!
xK+2−2l . (14)

By setting n = K + 2, one has

nWn(x) = n

[n
2 ]∑

l=0

(−1)l

l!
×

(n − 1 − l)!

(n − 2l)!
xn−2l . (15)

This is exactly the Chebyshev polynomial of the first kind [13]. In this rep-
resentaion the Chebyshev polynomial is monic and with integer coefficients.

It remains to be seen that the analogue of the Chebyshev polynomial of
the first kind in several variables is the fusion ring of the su(N)K algebra.
This is a simple consequence of the relation between our cohomology potential
and the Chern classes of the universal bundle S. By using equation (12) in
the su(N)K case, one has

yN+K−i = (−1)i+1∂WN+K−i

∂xi

for 1 ≤ i ≤ N − 1, (16)
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which is the ideal of the fusion ring for su(N)K [1]. Therefore the fusion ring
for su(N)K is R = C[x1, · · ·xN−1]/(yK+1, yK+2, · · · , yK+N−1). In terms of
Young tableaux, this is equivalent to setting to zero all reduced tableaux (no
columns with N boxes) for which the first row has length equal to K + 1-
this is the level truncation. The Giambeli-like formula [1] when applied to
the completely symmetric representation, then the fusion ideal for su(N)K

reads

[1, · · · 1]
︸ ︷︷ ︸

j

= det x1+l−s, for 1 ≤ l, s ≤ j, K + 1 ≤ j ≤ N + K − 1. (17)

Therefore the completely symmetric function yj given by (11) is the explicit
expression for the Giambeli-like formula when restricted to [1, · · ·1] (with j
entries), where K + 1 ≤ j ≤ N + K − 1.

¿From Gepner [1] we learn that there are two ways to obtain the fusion
potential for su(N)K algebra. One way is to use the following expresion

WN+K(x1, · · · , xN = 1) =
(−1)N+K

(N + K)!

dN+K

dtN+K
log

(
N∑

i=0

(−1)ixit
i

)∣
∣
∣
∣
∣
t=0

, (18)

with x0 = xN = 1. Alternatively, we use the recursion relation satisfied by
the potential

N∑

i=0

(−1)ixi(N + s − i)WN+s−i = 0 . (19)

Therefore, our expression for the fusion potential is simpler and more trans-
parent. It gives the integrability of the Chern classes yj (completely sym-
metric functions) to a potential as a consequence of the cohomology of the
Grassmannian. Furthermore, from our fusion potential which is the explicit
Chebyshev polynomial of the first kind in several variables, one can read off
directly the su(N)K fusion potential for any N and K.

Before we make the connection between the fusion potential of su(N)K

algebra and the Fibonacci numbers and Lucas numbers of kth order, we will
first give the definition of these numbers. We will then recall the connection
between the ordinary Fibonacci and Lucas numbers with the Chebyshev
polynomial of one variable.

definition 1 The kth order Fibonacci numbers Fn+1 and Lucas numbers Ln

are defined, respectively, by Fn+1 = Fn + Fn−1 + · · · + Fn−k, Ln = Ln−1 +

8



Ln−2 + · · ·Ln−k, with the initial conditions F−k+1 = · · · = F−1 = 0 and
similarly for the Ln’s.

For k = 2, these are the definitions of the ordinary Fibonacci and Lucas
numbers which are given by Fn+1 = Fn + Fn−1 and Ln = Ln−1 + Ln−2, i.e.,
any number is the sum of the previous two. The Chebyshev polynomial of the
second kind U(x

2
) is known to be related to the ordinary Fibonacci numbers,

and The Chebyshev polynomial of the of the first kind T (x
2
) is known to be

related to the Lucas numbers [13] via the following specializations:

Fn+1 =
Sn(i)

in
, n = 0, 1 · · · , (i2 = −1), (20)

where,

Sn(x) = U
(

x

2

)

=

[n
2 ]∑

k=0

(−1)k

(

n − k

k

)

xn−2k ; (21)

and

Ln =
Cn(i)

in
n = 0, 1 · · · , (22)

where,

Cn(x) = 2T
(

x

2

)

=

[n
2 ]∑

k=0

(−1)k n

n − k

(

n − k

k

)

xn−2k . (23)

By applying a similar procedure, the analogue of the Chebyshev polynomial
of the second kind in several variables and the fusion potential reduce to the
following two sequences of numbers, respectively:

Fn+1 =

[n
2 ]∑

l1=0

· · ·

[n
k ]
∑

lk−1=0

1

l1! · · · lk−1!

(

n −
∑k−1

j=1 jlj
)

!
(

n −
∑k

j=2 jlj−1

)

!
, (24)

Ln = n

[n
2 ]∑

l1=0

· · ·

[n
k ]
∑

lk−1=0

1

l1! · · · kk−1!

(

n − 1 −
∑k−1

j=1 jlj
)

!
(

n −
∑k

j=2 jlj−1

)

!
(25)

One can see that these numbers are indeed those given in the definition above,
for example, for k = 2 they are the ordinary Fibonacci and Lucas numbers
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respectively. For k = 3 we have the third order Fibonacci and Lucas numbers
and we have computed the first few of them as given below

F
(3)
n+1 = 1, 1, 2, 4, 7, 13, 24, 44, 81, · · · , (26)

L(3)
n = 1, 3, 7, 11, 21, 39, 71, 131, · · · . (27)

In terms of the level K, and for a fixed value of N in the su(N)K , one can
see that the first term in the Fibonacci sequence will start at n = N +K +1,
whereas that of the Lucas sequence will start at n = N + K, and N is
identified with the order of these two series.

The formula given above corresponding to kth order Fibonacci numbers
is in a full agreement with that obtained by Lascoux [14] in which he showed
by using the theory of symmetric functions that kth order Fibonacci numbers
are given by the following multinomial

Fn+1 =
∑

I

(

ℓ(I)
m1, · · ·mk

)

(28)

where the summation is taken over all partitions I = 1m12m2 · · · of weight n =
m1+2m2+· · ·+kmk and ℓ(I) is the length of the partition m1+m2+· · ·+mk.

The equivalence of our formula for the kth order Fibonacci numbers and
those given by Lascoux follows by expanding the multinomial (28), and fixing
m1 as m1 = n − 2m2 − · · · − kmk and then changing the variables as we did
before to obtain the cohomology potential.

Although the expression for the kth order Lucas number were not given
in [14], we can see however that the equivalent formula for these numbers is

Ln = n
∑

I

(

ℓ(I) − 1
m1, · · ·mk

)

. (29)

4 sp(N)K Fusion Potential and the Reciprocal

Algebraic Equation

We recall from the last section that the Waring formula computes the power
sum of roots of an algebraic equation in terms of it coefficients. These coef-
ficients are identified with the elementary symmetric functions, in terms of
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the Chern roots they are given by xi =
∑

1≤l1,...,li≤r ql1ql2 · · · qli. The alge-
braic equation from which one computes the cohomology ring potential has
the form

yr + a1y
r−1 + · · ·+ ar−1y + ar = 0, (30)

where the coefficients ai are identified with the elementary symmetric func-
tions, and the roots of this algebraic equation are qi for i = 1, · · · , r.

The fusion potential for the su(N)K algebra may be obtained from the
following algebraic equation

yN + a1y
N−1 + · · · + aN−1y + 1 = 0 (31)

The last coefficient is set equal to 1 due to the constraints xN = q1q2 . . . qN =
1, which in turn corresponds to the fact that the determinant of the maximal
torus of SU(N) group is the identity. The diagonal elements of this torus are
qi = ei(θi−θi−1) for i = 1, . . . , N with the convention θ0 = θN = 1. With this
motivation in mind, one would like to know whether one can write down an
algebraic equation corresponding to groups other than SU(N), in particular,
the unitary symplectic group Sp(N). Having written down such an algebraic
equation, the fusion potential for the sp(N)K algebra is obtained using the
Wearing formula. This turns out to be true as we will shortly see.

¿From [15] we learn that any n × n unitary symplectic matrix (with
n = 2m) can be diagonalized with diagonal elements of the form qi and q−1

i

for i = 1, . . . , m, and with determinant equal to 1. Therefore the algebraic
equation that we are looking for is the one for which both qi and q−1

i are
roots and where the last coefficient is equal to one. Such algebraic equations
are called reciprocal equations of the first class [8]. In our case, this algebraic
equation has the form

y2m + a1(y
2m−1 + y) + a2(y

2m−2 + y2) + · · ·+ amym + 1 = 0 (32)

where ai = a2m−i. Note that in this case, the elementary symmetric functions
are functions of both qi and q−1

i that we denote by Ei. Now, the natural power
sum to consider for the reciprocal algebraic equation has the form

Wn(E1, . . . , Em) =
1

n

m∑

i=1

(qn
i + q−n

i )

11



as both qi and q−1
i are roots of equation (32). This is exactly the form pro-

posed by [18] . Therefore, by applying the Waring formula to this expression,
one obtains

Wn(E1, . . . , Em) =

[n
2 ]∑

k1=0

· · ·

[ n
2m ]
∑

k2m−1=0

(−1)k1+2k2+···+(2m−1)k2m−1

k1! · · ·k2m−1!
×

(

n − 1 −
∑2m−1

l=1 lkl

)

!
(

n −
∑2m

l=2 lkl−1

)

!
E

g(n,m)
1 E

k1+k2m−1

2 · · ·Ekm−1

m , (33)

where g(n, m) = n − 2k1 − · · · − (2m − 2)k2m−2 − 2mk2m−1. In obtaining
the above equation, we have used the condition l1 + 2l2 + · · · + 2ml2m = n,
and the change of variables l2 = k1, · · · , l2m = k2m−1.

In the following we will briefly recall the classical tensor ring for sp(N)
and the modified fusion ring [18, 17], namely, the sp(N)K algebra and hence
write explicitly the fusion potential for the latter. The classical tensor ring for
sp(N) is the finite ring, R = C[χ1, · · · , χN ]/IC , where χj are the characters
of the fundamental representation corresponding to a single column of length
j. These characters are related to the elementary symmetric function Ej [19]
by

χj = Ej − Ej−2 (34)

The classical ideal IC is obtained by using this equation with the property
that Ej = E2N−j and E0 = E2N = 13, which follows from its generating
function [19]

E(t) =
∞∑

j=0

Ejt
j =

N∏

i=1

(1 + qit)(1 + q−1
i t). (35)

Therefore, the classical ideal IC is given by

χN+1 = 0,

χN+1 + χN = 0,
...

χj + χ2N+2−j = 0.

3This is exactly the condition that follows from a reciprocal algebraic equation of degree
2N , with the last coefficient a2N = 1.
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The sp(N)K fusion ring is obtained by a further modification of the clas-
sical sp(N) tensor ring in which tableaux with more than K columns are
eliminated. This is equivalent to writing the sp(N)K-fusion ring as R =
C[χ1 , · · · , χN ]/If , where the ideal If is given by

JK+1 = 0 ,

JK+2 + JK = 0 ,

.

.

.

JK+N + JK−N+2 = 0 . (36)

Jj represents the character of the single row tableaux of length j which is a
completely symmetric function whose generating function is [19],

J(t) =
∞∑

j=0

Jjt
j =

N∏

i=1

1

(1 − qit)(1 − q−1
i t)

. (37)

Since E(t)J(−t) = 1, the completely symmetric functions can be written
in terms of the elementary symmetric functions as will be given explicitly
below.

The truncation given by eq.(36) can be written as the ideal generated
by setting to zero the derivative of the potential Wn (33), for certain values
of n and m. This means that the fusion ring for sp(N)K can be written as
R = C[χ1 , · · · , χN ]/dWn . To see this we differentiate the potential Wn with
respect to Ei finding,

∂Wn

∂Ei

=







(−)i+1(Jn−i + Jn+i−2m) for 1 ≤ i ≤ n − 1

(−)i+1Jn−i, for i = m ,
(38)

where Jj is given explicitly by

Jj = (−1)j

[ j

2 ]∑

k1=0

· · ·

[ j

2m ]
∑

k2m−1=0

(−1)k1+2k2+···+(2m−1)k2m−1

k1! · · · k2m−1!
×

(

j −
∑2m−1

l=1 lkl

)

!
(

j −
∑2m

l=2 lkl−1

)

!
E

j−2k1−···−(2m−2)k2m−2−2mk2m−1

1 E
k1+k2m−1

2 · · ·Ekm−1

m . (39)
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¿From eq..(38), we see that the critical points of the potential Wn, ∂Wn

∂Ei
= 0

do indeed correspond to the fusion ideal If provided n = N + K + 1 and
m = N .

The fusion potential for sp(N)K algebra is obtained by using the relation
χj = Ej −Ej−2. Setting χ1 = x and χ2 = y, the fusion potentials for sp(1)K

and sp(2)K are

(2 + K)W2+K(x) = (2 + K)

[K+2

2 ]
∑

l=0

(−1)l

l!

(K + 1 − l)!

(K + 2 − 2l)!
xK+2−2l, (40)

and

(3 + K)W3+K(x) = (3 + K)
∑[K+3

2 ]
k1=0

∑[K+3

3 ]
k2=0

∑[K+3

4 ]
k3=0

(−1)k1+2k2+3k3

k1!k2!k3!
×

(2+K−k1−2k2−3k3)!
(3+K−2k1−3k2−4k3)!

x3+K−2k1−2k2−4k3(1 + y)k1. (41)

¿From equation (40) we see that this is the Chebyshev polynomial of
the first kind for su(2)K as it should be, since sp(1) = su(2). For levels
K = 1 and K = 2, equation (41) gives the following potentials 4W4 =
x4 − 4x2y + 2y2 + 4y − 2 and 5W5 = x5 − 5x3y + 5xy2 + 5xy − 5x. These
were the potentials obtained in [16] using the recursion relations.

The generalized Chebyshev polynomial in several variables for sp(N)K is
obtained from the power sum Wn given in equation (33) with n = N +K +1
and m = N ,

W (E1, · · · , EN) =

[N+K+1

2 ]
∑

k1=0

· · ·

[N+K+1

2N ]
∑

k2N−1=0

(−1)k1+2k2+···+(2N−1)k2N−1

k1! · · ·k2N−1!
×

(

N + K −
∑2N−1

l=1 lkl

)

!
(

N + K + 1 −
∑2N

l=2 lkl−1

)

!
E

f(N,K)
1 E

k1+k2N−1

2 · · ·E
kN−1

N , (42)

where f(N, K) = N + K + 1 − 2k1 − · · · − (2N − 2)k2N−2 − 2Nk2N−1. This
is different from the generalized Chebyshev polynomial in several variables
for su(N)K for N 6= 1. The above results can be stated by the following
proposition,

14



proposition 2 The fusion potential for the sp(N)K algebra is obtained from
the power sum of the roots of a reciprocal algebraic equation of degree 2N ,
the last coefficient of which is 1. The associated generalized Chebyshev poly-
nomial of the first kind in terms of the elementary symmetric functions is
given by the equation (42).

¿From the expression for the Chebyshev polynomial in several variables
(42), one notes that the Lucas numbers are of order 2N . Therefore these
sequences are the same as those associated with su(N)K with N even. The
difference however, is that in the latter the sequence starts at n = 2N + K,
whereas that associated with sp(N)K starts at n = N + K + 1. The point
that is interesting to note is that the Fibonacci numbers associated to sp(N)K

are combinations of two Fibonacci numbers. One can see this from (38) by
considering the analogue of the Chebyshev polynomial that is associated with
sp(N)K of the second kind. These numbers follow from ∂WN+K+1/∂E1 =
JK+N + JK−N+2, N 6= 1, to give the following Fibonacci type sequences of
order 2N .

F̃N+K+2 = FN+K+1 + FK−N+3, (43)

where,

Fj =

[ j

2 ]∑

k1=0

· · ·

[ j

2N ]
∑

k2N−1=0

1

k1! · · ·k2N−1!

(

j −
∑2N−1

l=1 lkl

)

!
(

j −
∑2N

l=2 lkl−1

)

!.
(44)

As an example we have computed the Fibonacci numbers associated with
sp(2)K using equation 43. The first few numbers are given below,

3, 5, 10, 19, 37, 71, 137, · · · (45)

where the first term in this sequence corresponds to formally to K = 0. We
see that this sequence is a fourth order sequence and is different from the
one obtained for su(4)K.

5 Conclusions

In this paper we have seen that the cohomology potential that generates
the cohomology ring of the Grassmannian Gr(C

n), the fusion potentials for
su(N)K and that for sp(N)K are obtained from suitable algebraic equations
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using the Waring formula (10) that computes the power sum of roots in terms
of the elementary symmetric functions. The roots of these algebraic equations
are in one to one correspondence with the elements of the diagonalized form
of the unitary matrix groups U(N), SU(N) and Sp(N).

In this algebraic formulation we see clearly that the isomorphism of Lie
algebras should be translated into the identification of the corresponding
algebraic equations. For example su(2) and sp(1) have the same algebraic
equations which follow from eq.(31) and eq.(32). As sp(2) = so(5) the fusion
potential for so(5)K should be given by eq. (41) and hence the corresponding
algebraic equation is

y4 + χ1(y
3 + y) + (χ2 + 1)y2 + 1 = 0 . (46)

Therefore algebraic equations could be used for classifying fusion rings.
In this paper we also obtained an explicit connection between the fusion

potentials and the Chebyshev polynomial in several variables for su(N)K ,
which would be difficult to see in the formulation of [1] and [16]. These poly-
nomials were shown to be related to the Fibonacci and the Lucas numbers.
In the case of sp(N)K the Fibonacci numbers are of order 2N and appear to
be new as they are different from those of su(N)K of the same order, however
the Lucas numbers in both cases have the same order and belong to the same
sequence.

We will see in our forthcoming paper [20] that the ordinary Fibonacci
numbers arise as intersections numbers on the moduli space of the holomor-
phic map from the sphere CP 1 into the Grassmannian G2(C

5).
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