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Another proof of the alternating sign matrix conjecture

Greg Kuperberg

December 10, 1995

Abstract

Mills, Robbins, and Rumsey [8] conjectured, and Zeilberger [13] recently proved, that there

are 1!4!7!...(3n−2)!
n!(n+1)!...(2n−1)! alternating sign matrices of order n. We give a new proof of this result

using an analysis of the six-vertex state model (also called square ice) based on the Yang-Baxter
equation.

Mills, Robbins, and Rumsey [8] conjectured that:

Theorem 1 (Zeilberger) There are

A(n) =
1!4!7! . . . (3n − 2)!

n!(n + 1)!(n + 2)! . . . (2n − 1)!

n × n alternating sign matrices.

Here, an alternating sign matrix or ASM is a matrix of 0’s, 1’s, and −1’s such that the non-
zero elements in each row and column alternate between 1 and −1 and begin and end with 1, for
example:









0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0









Alternating sign matrices are related to a number of other combinatorial objects that, remarkably,
are also enumerated or conjectured to be enumerated by ratios of progressions of factorials or
staggered factorials [9, 11].

Zeilberger [13] recently proved Theorem 1 by establishing that ASM’s are equinumerous with
totally symmetric, self-complementary plane partitions, which were enumerated by Andrews [1].
In this paper, we present a new proof. The most interesting part of the proof is due to Izergin and
Korepin [5, 7], who follow Baxter’s remarkable use of the Yang-Baxter equation [2].

If x is a number, define the x-enumeration A(n;x) of n× n ASM’s as their total weight, where
the weight of an individual matrix is xk if it has k entries equal to −1. A variation of the proof
establishes another conjecture of Mills, Robbins, and Rumsey:

Theorem 2 ASM’s are 3-enumerated by

A(2n + 1; 3) =

(

3n(n+1)/2 2!5!8! . . . (3n − 1)!

(n + 1)!(n + 2)! . . . (2n)!

)2

A(2n; 3) = 3n−1 (3n − 1)!(n − 1)!

(2n − 1)!2
A(2n − 1; 3)
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A second variation establishes the well-known 2-enumeration of ASM’s [4, 8]:

A(n; 2) = 2n(n−1)/2.

Finally, the following result, also conjectured by Mills, Robbins, and Rumsey, follows easily from
the general method:

Theorem 3 For each n, there exists a polynomial B(n;x) such that

A(n;x) = B(n;x)B(n + 1;x)

for n odd and

A(n;x) = 2B(n;x)B(n + 1;x)

for n even.

Mills, Robbins, and Rumsey further conjectured that for n odd, B(n;x) is the x-enumeration
of vertically symmetric ASM’s (where the weight is xk if there are k ones to the left of the middle
column), but this relation remains open.
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1 State sums

The six-vertex model in general refers to the multiplicative weighted enumeration of orientations
of a tetravalent planar graph G (called states) such that at each vertex, two arrows go in and two
go out. Number the six allowed orientations incident to a given vertex (called states of a vertex) 1
through 6:

1 2 3 4 5 6

State i at vertex v is given a weight w(i, v). The weight of a state of G is the product of the weights
of its vertices, and the state sum is the total weight of all states. The six-vertex model may also be
considered with boundary conditions, meaning that there may be univalent vertices whose edges
have fixed orientations. In particular, consider a six-vertex state of an n×n square grid with edges
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pointing inward at the sides and outward at the top and bottom:

The six-vertex model on a square grid is also called square ice. A square ice state can be converted
to an ASM by the correspondence

1 −1 0 0 0 0

This conversion is bijective [4, 10]. Thus, the enumeration of ASM’s is equivalent to a six-vertex
state sum in which all weights are 1.

Let h be a complex number or an indeterminate, let qx denote ehx, and let [x] denote qx/2−q−x/2

q1/2−q−1/2 .

We will consider various half-integral Laurent polynomials, meaning polynomials with integral or
half-integral exponents of either sign such that the difference between any two exponents is an
integer. For example, if q is fixed, [x] is a half-integral Laurent polynomial in qx. Given two such
polynomials P (t) and Q(t) over a ring A, we will say that Q divides P if P (t)/Q(t) ∈ A[t1/2, t−1/2].
For example, t divides 1.

A vertex labelled by x:

x

denotes the six weights:

−q−x/2 −qx/2 [x − 1] [x − 1] [x] [x]

(1)

(Since the weights are invariant under rotation by 180 degres, but not 90 degrees, the meaning of a
vertex depends on which pair of kitty-corner quadrants contains its label.) Such a vertex is called
an R-matrix and is also denoted as R(x).
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Theorem 4 (Baxter) If x = y + z, the R-matrices R(x), R(y), and R(z) satisfy the equation

x

y

z =

y

x
z

This remarkable identity is known as the star-triangle relation or the Yang-Baxter equation[2].
Specifically, R(x) is said to parameterize the trigonometric solutions to the Yang-Baxter equation.
Before proving it, we discuss exactly what the equation means. Each of the two graphs in the
equation has six external edges, meaning edges with a univalent vertex. For each external edge on
the left, there is a corresponding external edge on the right whose univalent vertex is in the same
position; for example, on both sides there is a lowest univalent endpoint, and the two edges with
this endpoint correspond to each other. For each of the 64 orientations of the external edges on
the left, one can form a state sum Z by summing over admissible orientations of the three internal
edges, and one can consider the same orientation on the right and form another state sum Z ′. The
equation then says that the Z = Z ′ in all 64 cases. In order for the state sum to be non-zero, three
edges must point in and three must point out, so the identity is trivial in 44 of the 64 cases. Note
further that the equation simply says that the left side is invariant under rotation by 180 degrees,
so the 20 non-trivial numerical identities reduce to 10 identities repeated twice. The argument
that follows uses other tricks to further reduce the number of numerical identities to one which can
checked be checked easily:

Proof: We first rearrange the left side of the Yang-Baxter equation:

y

x

z

Consider the following augmentation of the six-vertex model: Suppose that a graph has a curved
edge with a horizontal tangent at a point p and which is concave down at p. If the edge is oriented
to the left in some six-vertex state, p is assigned a multiplicative weight of −q1/2, but if it points to
the right, it is assigned a multiplicative weight of 1. Contrariwise, if the tangent is horizontal but
the curve is concave up, p has weight −q−1/2 when the edge points to the left and weight 1 when
it points to the right. With this convention, the following simple identities hold:

= = = −q1/2 − q−1/2 = −[2] (2)

Moreover, R(x) can be expressed as

x
= [x] + [x − 1]
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Thus, a six-vertex state sum involving R-matrices can be expanded as a sum of curves in a calculus
in which each closed loop contributes a factor of −[2]. (This calculus is called the Temperley-Lieb

category and is closely related to the quantum group Uq(sl(2)) [6].) The calculus is invariant under
isotopy of curves by equation (2). The left side of the Yang-Baxter equation then expands to
eight terms, which may collected into five terms corresponding to the five crossingless matchings
of six points on a circle. Three of the matchings are invariant under rotation by 180 degrees. The
coefficients of the other two are

[z − 1][x][y − 1]

and
[z][x − 1][y − 1] + [z][x][y] + [z − 1][x − 1][y] − [2][z][x − 1][y].

These two quantities are rendered equal by the identities x = y + z, [−a] = −[a], and

[a][b] − [a + 1][b − 1] = [a − b + 1].

Thus, the left side is invariant under rotation by 180 degrees. 2

As a final notational convenience, define

x

y

=
x − y

when the lines rather than the vertices of a tetravalent graph are labelled. Following Izergin
and Korepin [5, 7], consider n × n square ice with arbitrary parameters X = x0, . . . , xn−1 and
Y = y0, . . . , yn−1 for the horizontal and vertical lines:

x0

x1

xn−1

y0 y1 yn−1

...
. . .

· · ·

· · ·

...

Let Z(n;X,Y ) be the resulting state sum.

Lemma 5 (Baxter) The function Z(n;X,Y ) is symmetric in the xi’s and in the yi’s.

Proof: Consider the ith and i + 1st horizontal lines. An extra vertex (implicitly labelled by
xi − xi+1) may be introduced on the left at the expense of a generically non-zero multiplicative
factor:

· · ·
xi+1

xi

= [xi − xi+1 − 1] · · ·
xi

xi+1
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This relation holds because in an allowed state, all four edges of the new vertex must point to
the right. By the Yang-Baxter equation, the vertex can be moved from the left side to the right,
whereupon it can be removed, which recovers the multiplicative factor. This operation switches
the labels xi and xi+1. Therefore Z(n;X,Y ) is symmetric in xi and xi+1 for each i, which renders
it symmetric in all xi’s. The same argument applies to the yi’s. 2

Lemma 6 If xi = yj + 1, then

Z(n;X,Y ) = −q−1/2





∏

k 6=i

[xi − yk]









∏

k 6=j

[xk − yj]



Z(n − 1;X \ xi, Y \ yj).

Proof: Assume first that i = j = 0. By Figure (1), the upper left vertex must have state 1 in
a non-zero state of the grid. This forces the rest of the top row to have state 5 and the rest of
the left column to have state 6, which yields the given multiplicative factor. (In terms of ASM’s,
only those matrices with a 1 in the top left corner contribute.) The remainder of the grid is an
n − 1 × n − 1 square ice state.

The general case follows from Lemma 5. 2

Lemma 7 The quantity qnx0/2Z(n;X,Y ) is a polynomial in qx0 of degree at most n − 1.

Proof: If we multiply all weights of vertices in the first row by qx0/2, then qx0 appears linearly
in those weights in which it appears at all. Therefore the modified state sum

Z ′(n) = qnx0/2Z(n;X,Y )

is a polynomial in qx0 . The first row is the only row in which x0 appears. In this row, there must
be one vertex in state 1, whose modified weight does not involve x0, and n − 1 vertices in state 5
or 3. (In terms of ASM’s, there must be a 1 in the top row.) Therefore Z ′(n) has degree at most
n − 1. 2

Theorem 8 (Izergin,Korepin) The state sum Z(n;X,Y ) is given by

Z(n;X,Y ) =
(−1)n

(

∏n−1
i=0 q(yi−xi)/2

)

∏

0≤i,j<n[xi − yj][xi − yj − 1]
(

∏

0≤j<i<n[xi − xj ]
)(

∏

0≤i<j<n[yi − yj]
) det M,

where

Mi,j =
1

[xi − yj][xi − yj − 1]
.

Proof: Lemmas 6 and 7, together with Z(0) = 1, inductively determine Z(n) by Lagrange
interpolation. It is routine to check that the right side satisfies Lemma 6. To check that it also
satisfies Lemma 7, Let P be the numerator, let Q be the denominator, let D be the determinant,
and let D′ be a term in the expansion of the determinant. The product PD is a half-integral
Laurent polynomial because PD′ is for any choice of D′. Moreover, Q divides PD, because D is
antisymmetric in the xi’s and in the yj’s and therefore in the qxi ’s and in the qyj ’s. Thus, P

QD
is a half-integral Laurent polynomial polynomial in qx0. Finally, the leading term (expanded as
a Laurent polynomial in qx0) of any PD′ has exponent (2n − 3)/2, while the trailing term has
exponent (1 − 2n)/2. Therefore the same is true of PD, and P

QD has leading exponent at most

(n− 2)/2 and trailing exponent at least −n/2. In conclusion, qnx0/2 P
QD is a polynomial in qx0 and

has degree at most n − 1. 2
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2 Determinants

Consider the state-sum value

Z 1

2

(n) = Z(n;
1

2
,
1

2
, . . . ,

1

2
, 0, 0, . . . , 0).

In any n × n square ice state, there are n more vertices in state 1 than state 2, equal numbers in
states 3 and 4, and equal numbers in states 5 and 6. Since the weights of these states in R(2) are
−q−1/4, −q1/4, −[12 ], −[12 ], [12 ], and [12 ], respectively, it follows that

A(n;x) = [
1

2
]n−n2

(−1)nqn/4Z 1

2

(n), (3)

where x = 1/[12 ]2 = [2] + 2. Unfortunately, the determinant in Theorem 8 is singular for Z1/2(n).
Therefore, we will instead evaluate

Z 1

2

(n; ǫ) = Z(n;
1

2
+ ǫ,

1

2
+ 2ǫ, . . . ,

1

2
+ nǫ, 0,−ǫ,−2ǫ . . . , (1 − n)ǫ)

when h = 4π
√
−1

3 , which implies that x = 1.
Let s = qǫ. Firstly,

[kǫ +
1

2
][kǫ − 1

2
] =

sk + 1 + s−k

−3

and

[kǫ] =
sk/2 − s−k/2

√
−3

.

The matrix M of Theorem 8 becomes

Mi,j =
−3

si+j+1 + 1 + s−(i+j+1)
.

The state sum becomes

Z 1

2

(n; ǫ) =
q−n/4s−n2/23−n(n+1)/2

∏

0≤i,j<n(si+j+1 + 1 + s−(i+j+1))
∏

0≤j<i<n(s(i−j)/2 − s(j−i)/2)2
detM.

The determinant of M can be computed using the following two lemmas, for which we extend the

bracket notation by defining [x]t = tx/2−t−x/2

t−t−1 for any t.

Lemma 9 (Cauchy) Let X = x0, . . . , xn−1 and Y = y0, . . . , yn−1 be variables, and let

T (n;X,Y )i,j =
1

[xi − yj]t

for 0 ≤ i, j < n. Then

detT (n, k; t) =

(

∏

0≤j<i<n[xi − xj ]t

)(

∏

0≤i<j<n[yi − yj]t

)

∏

0≤i,j<n[xi − yj]t
.
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Proof: Let D be the determinant, let P be the denominator, and let Q be the numerator. Then
the arguments of Theorem 8 apply, but with the conclusion that P

QD is a degree 0 polynomial in

all variables, i.e., a constant. Let D′ be the diagonal term in the determinant; D′ is the only term
such that PD′ is not divisible by any [xi − yi]t. All factors of P

QD′ cancel at the specialization

xi = yi and all other terms of P
QD vanish; therefore P

QD = 1. 2

Lemma 9 can also be proved by induction using Dodgson’s condensation method [9, 10].
Let T (n) = T (n; 1, 2, . . . , n, 0,−1,−2, . . . , 1 − n). Then

T (n)i,j =
1

[i + j + 1]t

and detT (n) is given by Lemma 9.

Lemma 10 Let

S(n; s, t)i,j =
s(i+j+1)/2 − s−(i+j+1)/2

t(i+j+1)/2 − t−(i+j+1)/2

for 0 ≤ i, j < n. Then

detS(n; s, t) =
(−1)n(n−1)/2

(t1/2 − t−1/2)n





∏

0≤j<i<n

[i − j]2t









∏

0≤i,j<n

s1/2t(i−j)/2 − s1/2t(j−i)/2

[i + j + 1]t



 .

Proof: The quantity sn2/2(det S(n; s, t) has degree n2 as a polynomial in s. Moreover, for
0 ≤ k < n,

S(n; tk, t)i,j = [k]ti+j+1 =

k−1
∑

ℓ=0

A(tℓ−(k−1)/2)i,j ,

where the matrix A(z) given by
A(z)i,j = zi+j+1

has rank 1. Thus, the rank of S(n; tk, t) is at most k, and it follows that (s − tk)n−k divides
detS(n; s, t). Similarly, (s − t−k)n−k divides the determinant for 1 ≤ k < n. These divisibilities
determine detS(n; s, t) up to a factor which is a function of t. The leading coefficient is then
(det T (n))/(t1/2 − t−1/2)n. 2

The determinant of −M/3 = S(n; s, s3) is given by Lemma 10. Collecting factors yields

Z1/2(n; ǫ) =
q−n/4s−n2/23−n(n+1)/2

(

∏

0≤i,j<n[3(i + j + 1)]s

)

(

∏

0≤i,j<n[i + j + 1]s

)(

∏

0≤j<i<n[i − j]2s

)

(−3)n(−1)n(n−1)/2

[3]ns





∏

0≤j<i<n

[3(i − j)]2s
[3]2s









∏

0≤i,j<n

[3]s[3(i − j) + 1]s
[3(i + j + 1)]s





= q−n/4s−n2/2(−1)n





∏

0≤j<i<n

[3(i − j)]s
3[i − j]s





(

n−1
∏

i=0

∏3i+1
j=1 [j]s

∏n+i
j=1[j]s

)

Note that the second factor is Andrews’ q-enumeration of descending plane partitions [9] with q
replaced by s. Taking the limit as ǫ → 0 and combining with equation (3), the factors of q and −1
cancel, the factors of s become factors of 1, and the brackets disappear. The result is

1!4!7! . . . (3n − 2)!

n!(n + 1)!(n + 2)! . . . (2n − 1)!.
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This completes the proof of Theorem 1.
For general x, the matrix M becomes

Mi,j =
x2 − 4x

si+j+1 + 2 − x + s−(i+j+1)
.

There are two other values of x when the denominator is a cyclotomic (Laurent) polynomial in some
power of s, namely x = 2 and x = 3. In the former case, −M/4 = S(n; s2, s4), whose determinant
is given by Lemma 10; alternatively, the determinant may also be derived from Lemma 9. In the
latter case, −M/3 = S′(n; s, s3), where

S′(n; s, t)i,j =
si+j+1 + 1

ti+j+1 + 1
.

A variation of Lemma 10 establishes the determinant of S′(n; s, t); the leading coefficient is simply
the determinant of S(n; t, t2). These manipulations clearly lead to product formulas for A(n; 2)
and A(n; 3), and in particular, to a proof of Theorem 2. We omit the details of rearranging and
cancelling factors to put the product formulas in their standard form.

Finally, we use Theorem 8 to prove Theorem 3. Recall the variables xi and yi in the definition
of Z, which are not to be confused with the x of A(n;x). If we set xi = 1

2 + fiǫ and yj = fjǫ for
some fi’s such that fn−1−i = −fi, then Z(n;X,Y ) again converges to A(n;x) up to normalization
as ǫ → 0. In this case, the corresponding matrix M is given by

Mi,j =
x2 − 4x

sfi−fj + 2 − x + sfj−fi
.

This matrix M possesses the symmetry (i, j) 7→ (n − 1 − i, n − 1 − j), i.e., it commutes with the
antidiagonal permutation matrix P . Therefore, a change of basis divides M into blocks correspond-
ing to the eigenspaces of P . Therefore the determinant of M is the product of the determinants of
the blocks. This is the origin of the factorization of the A(n;x)’s into the B(n;x)’s.
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