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Abstract

We present a new algorithm for computing the exact null distribution of the Spearman
rank correlation statistic p, which also works in the case of ties. The algorithm is based on
symmetries in the representation of the probability generating function as a permanent
with monomial entries. We present new critical values for sample sizes 19 < n < 22.
Finally, we show how to derive the exact null distribution of Page’s L statistic from the
null distribution of p.
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1 Introduction

Spearman’s rank correlation test statistic p is a widely used nonparametric test statistic for
testing correlation. To perform the test we need the distribution of p under the null hypothesis
of no rank correlation. Computing the exact null distribution of p is a very hard problem,
since p induces a fine partition on the n! permutations of {1,...,n}. On the other hand,
this indicates that p attains many confidence levels. With respect to this aspect, p performs
better than its competitor Kendall’s 7.

Existing methods for computing the null distribution of p are based on counting permu-
tations (in a clever way), which is very time-consuming. The exact null distribution of p
when ties are not present can be found in Owen (1962) for 2 < n < 11, in de Jonge and van
Montfort (1972) for n = 12, in Otten (1973) for 13 < n < 16 (critical values) and in Franklin
(1988a) for 13 < n < 18 (complete distribution). Closed formulas for the first eight moments
are given in David et al. (1951); with the help of a computer algebra system, it is easy to com-
pute higher moments with their method. Approximations to the null distribution of p when



ties are not present were studied extensively. David et al. (1951) derive exact expressions
for cumulants of p which they use for approximations based on Edgeworth series. Franklin
(1988b) compares seven approximations (not including Edgeworth series) and concludes that
the Pearson Type Il approximation is the most accurate approximation. It is shown in Best
and Roberts (1975) that approximations based on Edgeworth series are more accurate than
Pearson Type Il approximations. For further discussion of approximations and critical values
based on Edgeworth expansions, we refer to Ramsay (1989).

In this article we compute the null distribution of p using the representation of its probability
generating function as a permanent (a ‘signless determinant’) with monomial entries, following
an idea that goes back to Olds (1938) and Kendall et al. (1939). This method also applies
in case of ties. For sample sizes up to n = 10, direct evaluation of the permanent in the
computer algebra system Maple is feasible. An alternative way of computing permanents
is using Ryser’s algorithm based on inclusion-exclusion. Unfortunately, both methods are
too time-consuming for larger sample sizes. However, the representation of the probability
generating function as a permanent reveals many symmetries which we use to achieve a
considerable reduction in the number of necessary computations. In this way, we were able to
compute the exact null distribution of p for n < 22 for the case without ties. Qur methods also
allow fast computation of tail probabilities. Computing exact tail probabilities is especially
important when ties are present, because the dependence of the null distribution on the ties
structure inhibits a compact presentation of tables with critical values.

In Section 7 we show another advantage of our approach. We show that the probability
generating function of Page’s L statistic for ordered alternatives in a randomised block design
equals the probability generating function of Spearman’s p raised to the number of blocks.

This paper is organised as follows. In Section 2 we relate Spearman’s p to statistics on
the symmetric group. The representation of the probability generating function of p as a
permanent is introduced in Section 3. Various properties of this permanent are derived in
Section 4. The implementation of our results of Section 4 is discussed in Section 5. The
computation in the case of ties is presented in Section 6. In Section 7, we show our results on
Page’s L statistic. Finally, Section 8 contains a table with new critical values of Spearman’s
p for 19 < n < 22.

2 The Spearman test

The Spearman test is a two-sample rank correlation test. Denote the samples by Xq,..., X,
and Yq,...,Y,, respectively. Rank both samples separately from small to large. The Spear-
man rank correlation statistic p is then defined as the sum of the squared differences between
rank scores of the pairs (X1,Y1),...,(X,,Y,). Under the null hypothesis of no rank corre-
lation, all joint rank configurations of the two samples are equiprobable. Hence, computing
the null distribution of p boils down to enumerating the values of the following statistic (in
the combinatorial sense) on §,, x §,,, where §,, denotes the symmetric group of n elements,
i.e. the group of permutations on {1,2,...,n}:

n

Sy i (o, 7) =Y (o(j) = 7(j))% (1)

i=1

Define the following equivalence relation on S, x S, : (0,7) ~ (p,<) if there exists a v € S,
such that p = cov and ( = Tov. Note that for all v € §,,, we have Sy(cov,Tov) = Sy(0,T)



since this is nothing but rearranging the sum in (1). Hence, S5 is constant on the equivalence
classes of ~. It is clear that the elements (o,1d) with ¢ € §,, form a set of representatives
for the equivalence classes of ~ and that each equivalence class has exactly n! elements. Now
define a statistic 57 on &, as follows:

Sy o — Z(g(]’) — )2 (2)

It follows from the discussion above that the distributions of the statistics 57 and 55 coincide.
Hence, we may restrict ourselves to studying 57. The statistic 57 can be written as follows:

Si=2 (3 2= Y dot)| = getnt et =23 jol) (3)

i=1

Hence, 57 is statistically equivalent to :9: = 2?21 jo(7). The distribution of:SVvl also appears
in the context of linear rank statistics with equidistant regression scores. Let R; be the rank
of X; in the pooled sample if ¢ < n and the rank of Y;_,, if ¢ > n. A linear rank statistic with
regression scores is a statistic of the form 7' = 37", a(i) R;. If the regression scores a(i) are
equidistant, i.e. a(i) = ci + d for some constants ¢ and d, then up to an affine transformation,
the distribution of T" equals the distribution of :9: Hence, computing the distribution of 5

also yields the distribution of T" when the regression scores are equidistant.

3 The probability generating function

Let A be a n* n square matrix with entries a;;. The permanent of A is defined as

per(A) = Y T a0 (4)

ceS, 7=1

The definition of the permanent resembles that of the determinant of a matrix. However,
unlike for determinants, the signs of the permutations are ignored. Endow the symmetric
group S, with the normalized counting measure, i.e. each permutation on {1,...,n} has
probability 1/n!. Then the null distribution of p and the distribution of Sy as a random
variable on §,, coincide. Following Olds (1938) and Kendall et al. (1939), we express the

probability generating function of 57 and 57 in terms of permanents:

- 1 o 1 ~
_ k _ _ k _
Z Pr(S1 =k)a" = aper(P) and Z Pr(51 =k)a" = aper(P), (5)
k=0 k=0
where
P;= 200" and Ej =29, 4,j=1,...,n. (6)

Unfortunately, the permanent does not share many of the nice properties of the determinant.
E.g., there does not exist an analogue of Gaussian elimination. However, the permanent is
invariant under transpositions of rows and columns. For other properties of permanents we
refer to Minc (1978). Several ways of computing permanents are compared in Chapter 7



of Minc (1978). The best method seems to be an algorithm based on inclusion-exclusion
due to Ryser (see Ryser (1963)). His algorithm, together with some improvements, is also
described in Nijenhuis and Wilf (1975). The Ryser algorithm was designed for matrices
with scalar entries, but it also works, although less efficient, for our matrices P and P with
monomial entries. The computer algebra system Maple has a built-in function permanent,
which computes permanents using minor expansions. We experimented both with the built-in
function permanent in Maple and a self-written implementation of the Ryser algorithm.

Our experiments show that both the built-in Maple function and our implementation of the
Ryser algorithm only work for moderate sample sizes. Above n = 10, both computation time
and memory use increase dramatically. E.g., computation time for n = 14 was 10 times larger
than for n = 13 and memory usage increased from 2 MB to 12 MB. Therefore, we need other
methods for computing the permanent of P or P. In the next sections we will derive some
theorems on the structure of P. With some small modifications, these theorems also hold for

P.

4 Symmetries and expansions

In this section we explain the main ideas that we used to compute the permanent given in
(5). We first need some notation.

Definition 4.1 If n is a positive integer, then we define the following:
o n. = [n/2],n5 = |n/2].
e U={l,....n.}, L={n.+1,...,n}.
o S is the set of all ordered n.-tuples with elements from {1,... ,n}.

o if S=1(s1,...,5,,) is an element of S , then A(S) is the ordered ng-tuple, the elements
of which form the set {1,... , n}\{s1,...,8,.}.

e the map T acting on{1,...,n} is defined by 7(z) =n+ 1 — x.

o if S =1(s1,...,5,.) is an element of S , then T'(S) is the ordered n. -tuple, the elements
of which form the set {T(s1),...,7(sn, )}

o for a matriz P = (P, ;); ; and ordered tuples A = (Ay,...,A;) and B = (B4,...,By),
P(A|B) denotes the submatriz of P with entries Pa, p,. In particular, we will write
P; ;(A|B) for Pa, B,. Note that P(U|S) and P(L|S) denote the upper and lower half,
respectively, of the submatriz of P consisting of the columns with indices from 5.



The first idea is to use the analogue for permanents of the Laplace expansion of determi-
nants. E.g.,if n =4 | then we may expand the permanent as follows:

1 a a2t Y
erxlxac4_er1xer1x+er1x4erxx
PEllpa 1 2 | TP e )P e 1) TP e 2 )P

29 2zt oz 1

n 1 29 z 1 n x ozt zt x

per I per [ per 1 per 91

n z zt 1 n zt 2? zt 2
PErY 4 )Pl 0 Pery . 4P 0 a4

Theorem 4.2 (Laplace Expansion)

per(P) = per(P(U1S)) per( P(LIA(S))), (7)

SEeS

with P as in (6), per(A) as in (4), and U, L, S, S and P(A|B) as in Definition 4.1.

In Franklin (1988a), essentially the same idea is used for decomposing permutations. However,
the idea is more transparent in our generating function setting.

The Laplace expansion reduces the number of operations (additions and multiplications)
needed to compute the permanent, since it efficiently combines permutations ¢y and oy if,
given a fixed tuple 5,

Y (o)== (o) =) or D (i) =iV = D (o20)— )

jES jes JEA(S) JEA(S)

Eg. if n =6 and 5 = (1,2,3), then P(U|9) is the left-upper 3x3 submatrix of matrix (8).
Let & be an arbitrary permutation of (4,5,6) and, using the cycle notation for a permutation
of (1,2,3), consider oy = (123) ¢ and o, = (132) 0. Then,

Y (i) =3P =Y (0a(j) = §)* = 6.
JES JES

Therefore, these permutations are combined and together they contribute 22° to per (P(U|S)).
It is not easy to calculate how much faster this expansion is, but the larger n is, the more
efficient this expansion is compared to direct evaluation of the permanent.

The symmetries of the distributions of 57 and EI carry over to symmetries of the matrices
defined in (6). The following example shows that because of these symmetries, it is not
necessary to evaluate all permanents of submatrices in the Laplace expansion.

Example, n = 6:



1 x a2t 2% 2 x
x 1 z at 29 216
zt x 1 z 2zt 2°
P = 9 4 4 (8)
x x x 1 x x
216 29 gt 2 1 x
x? 218 2% et g 1

Suppose S = (1,4,6). Then A(S)=(2,3,5), T(5)=(1,3,6),T(A(S)) = (2,4,5). Therefore,

1 22 2% 29 oz a2t
PU|IS)=|a a* 2'¢ P(L|IT(S))= [2' 2% =
zt oz 2? z2 22 1

PWUITAS)) = | 1ot o PALAS)) = | 0t 1

This illustrates that P(L|T(5)) can be obtained from P(U|S) by swapping the first and the
third row and the first and the third column. Therefore, their permanents are equal. This
also holds for the two other matrices.

Theorem 4.3 If n is even and S is an arbitrary ordered n/2—tuple with elements from
{1,...,n}, then

per(P(U1S)) = per( P(LIT(S))), (9)
with P as in (6), per(A) as in (4) and U, L, T, P(A|B) as in Definition 4.1.

Proof: First note that (T'(5))y = n + 1 — Sigj41-x = 7+ 1 — S, /241_k, because n is even.
From (6) we know that P; ; = P,41_;n41—;. Therefore, with k =n/2+1 - 7,

Pi,j(U|S) = PUi,S] = Pz’,SJ = Pn-l—l—i,n—l—l—Sj
= Pl s (T(nsory = Prjaaizimyzri—i (L, T(5)).

So we may obtain the matrix P(L|T(S)) from the matrix P(U|S) by swapping the ¢th and
(n/241—1)th row and the jth and (n/24+1—j)th column for7,j = 1,... ,n/2. Since swapping
of rows and swapping of columns leaves the permanent invariant, the permanents of P(L|T(5))
and P(U|S) are equal. We replace S by T'(A(S)) and we note that A(A(S)) = 5, where A is
as in Definition 4.1. The result is that the permanents of P(L|A(S)) and P(U|T(A(S))) are
also equal and our proof is complete. a

It trivially follows from (2), that the null distribution of p is symmetric around its mean.
In order to exploit this symmetry, we now define a linear operator ¥; that operates on
polynomials.



Definition 4.4 The operator Vs is defined by
War(a) = 2aM=, (10)
where M equals twice the mean of p, i.e., M = n(n? —1)/3. The definition of ¥y is extended

by linearity to arbitrary polynomials.

Example, n = 3:

Let § = (1,2), then A(S) = (3), T(S) = (2,3), T(A(S)) = (1). So,
rwis)= (1 1) pasn=m raren= (7)) Peiraes) = @)

We have n = 3 and therefore M = 8. Hence,

\Ilg(per(P(U|S))per( (LIA(S ) ) = Ug(1+2?)=2°+2°

= per (P(UIT(5))) per( P(LIT(A(S))) ).
Theorem 4.5 Let Yy, be as in Definition 4.4, then

Vs (per(P(U|S)) per(P(L|A(S)))) = per(PUIT(S))) per( P(LIT(ALS)))), (1)

with P as in (6), per(A) as in (4), and U, L, S , A, T and P(A|B) as in Definition 4.1.

Proof: It suffices to find a bijection of S, X 8y, : (01,02) — (07, 03) such that

JLIT(A(S))) = 2™,

nf
H Py iy s (U1S) T Pragiy s (LIACS H Por (i (UIT()) T Posin
7=1 J=1 /

J=1

(12)

where M = n(n% —1)/3. We accomplish this by establishing bijective correspondences in the

following commutative diagram:

(01,02) —— o

l L

(07,03) —— o~
where o € S, is such that ¢(5) C U and o* € S,, is such that 6*(T(5)) C U. We define
o a(5)=01(4)j=1,... ne
o G(AS);) = 02(i) H 1er = L, g



¢ 071(j) = o(7(5))), j = 1, s me
o 05(j)=0"(T(A(5);) —ne, j=1,...,n7.

Since the elements of S and A(5) together form the set {1,...,n}, the relation (12) is easily
seen to be equivalent to

H Pos).i H Py =M. (13)

Hence, it suffices to find a bijective correspondence between ¢ and ¢* such that (13) holds.
Define

o*(j) =o(n+1-7j), (14)

i.e., 0 = o o7. Obviously, this is a bijection on S, such that o*(7T(5)) = o(T?*(5)) = o(5) C
U. Substitution of (14) into (13), yields that (13) is equivalent to

> (e(i) - 5) +E a(n+1-j)=j5)" =M. (15)
=1
However, this holds for any ¢ € § by a straightforward computation, using the well-known
identities (a —0)* + (¢ +b)* = 2(a* + b*) and 37, j> = n(n+ 1)(2n + 1)/6. o
5 Computation of the probability generating function

In order to apply Theorem 4.2, we need a rule that, given the tuple 5, generates the next

tuple, S, such that, starting with (1,...,n.), all elements of S are considered once. We use the
following rule: let s, be the largest element in 5 for which sy4+1 < n and s;+1 ¢ 5. We denote
the first {—1 elements of 5 by s1,...s,—1 and we denote the number of elements larger or equal
to s; by ¢(€). If sy exists, then we define the next tuple S = (s1,...,80-1,80+1,...,s0+¢({)).
If no such s, exists, then S = (n —n.+1,...,n) and we are done. Two examples for n = 8:

S =1{1,3,4,6} — § = {1,3,4,7} (16)

5 =1{2,3,7,8) — § = {2,4,5,6}. (17)

In order to avoid unnecessary evaluations of permanents, we use Theorem 4.3 (if n is even)
and Theorem 4.5. Let S < 5 denote the event that S is considered before 5, which is the
case if s; < §;, where ¢ is the smallest element of 5 such that s; # §;. Using this notation we
present the algorithm for computing P = per(P) if n is even:

1. P=0,5=(1,...,n)
2. compute 7T'(.5) and T(A(S5))
3.1 T(5) < 5 or T(A(S)) < S — Py =0, else Q = per (P(U|S)) per(P(L|A(S)))

4. (a) if T(S)= S and § < T(A(S)) — Py = 20



(b) if § < T(S)and T(A(S)) =85 — P1=Q+ ¥y(Q)
(¢) if § < T(S)and S < T(A(S)) — P1 =2(Q+ ¥ (Q))

5. P=P+P
6. if sy <n—mn.+1— stop,else §=(s1,...,50-1,5+1,...,5+ ¢({)) and go to 2.

Application of Wy is justified by Theorem 4.5 and multiplication by two is justified by
Theorem 4.3. Both theorems reduce the computing time by nearly a factor 2. If n is odd, we
skip the comparisons of S with T(A(5)), since we can not apply Theorem 4.3 in this case.
All we need to store is P, so we do not use much memory.

The probability generating function is an elegant tool for computing the exact distribution
of p. However, direct computing with polynomials, as we do in the theorems mentioned in
the previous section, involves the use of a computer algebra package, e.g. Maple. Professor
Andries Brouwer provided us with a much faster implementation in C, where polynomials are
represented by arrays. He also showed us that with his implementation, the Laplace expansion
of Theorem 4.2 is efficient for small sizes as well. He therefore used the the Laplace expansion
more than once for each step. This is not the case for our implementation in Maple.

6 Ties

When ties are present, it is customary to assign average rank scores to the observations. Let
(Z1,...,7%y,) be the X-sample or the Y-sample. We denote by kz the number of different
values Z{ < ... < Z;, k < n. The size of the jth tie is denoted by {z; for j = 1,...,k and
Z = X or Y. The average scores for the ties are defined by:

7—1
- . 1
az(j) = z 7+ 5 (Ez;+1), (18)
=1
for j =1,...,k (the sum is empty for j = 1). Then the rank scores are
az(l) =...= az(fZl) = 52(1), . ,az(n +1-— ka) =...= az(n) = 52(16), Z=XorY.

Conditional on the tie structure, Spearman’s p for tied observations is now defined as:

n

p=> (QY(U(K)) - ax(ﬁ))2 (19)

=1

Note that when there are no ties, p reduces to p. Given a certain tie structure, we apply
(5) with P;; = (ay (i) —ax(j))% ¢, = 1,...,n to find the conditional probability generating
function of p. Theorem 4.2 holds for any permanent, so we may also apply it here. However,
we are able to make it more suitable for computation when ties occur, because then some



columns of P coincide. In order to reformulate (7) we need the following notation:
-1
o= ) bzit!
=1

, 0 if ¢, = 0,
I'iy) = L
(Tj,....Tj+1,—1} if1<t; <71y,

TeT <

k

U ro)
g

Z ty = ne = [n/2].

Using the above notation and Definition 4.1, we now rewrite (7) as

per(P) = Y ﬁ (izjf) per(P(U|T)) per(P(L|A(T))). (20)

TeT j=1

Note that the presence of ties has several effects on computing the conditional null distribution
of p. Since 7 is smaller than S, we need to compute less permanents and to perform less
multiplications, which in itself is favourable. However, we can not apply Theorems 4.3 and
4.5, because, in general, P is not symmetric when ties are present. The structure of the
ties effects the number of values that p attains. The following examples illustrate this. If
there are no ties, then the number of different values that p attains equals 1+ n(n% — 1)/6.
In particular, if n = 6, then p attains 36 values. In the extreme case that at least one of
the samples has one tie of size 6, p attains one value only. If the available rank scores are
{1%, 1%,3,4,5,6} and {1,2,3,4,5%,5%}, then the number of values that p attains goes up to
81. If p attains few values, then computation time goes down, because this speeds up the
time-consuming multiplications that take place after the expansion.

Joeri Roels developed a fast implementation of the above way of computing the conditional
null distribution in both Pascal and C. In order to increase speed, it is important to multiply
all scores by 2, in order to get rid of the fraction caused by the averaged rank scores.

7 Page’s L-statistic

Page’s test (see Page (1963)) is a test for ordered alternatives in a randomised block design.
Within each block rank scores 1,...,t are assigned to ¢ treatments. Let 3; denote the block
effect of the jth treatment. The null hypothesis is

Ho:p=...=0

and the alternative hypothesis is

Hy o <0 < By,

10



with at least one strict inequality. Let & be the number of blocks. The statistic L is defined
as:

L=>jRj,
7=1

where R; is the sum of the b ranks assigned to treatment j. The following theorem shows why
we can use the theorems in the previous sections for computing the exact null distribution of

L.
Theorem 7.1 Under Hy, we have
0 . 1 N\ b
Grata) = Y Pt =y = (G per(P)) (21)
k=0

where P is defined in (6).

Proof: Under Hy, there is no block effect and hence the rank configurations of all blocks are
identical, as well as independent. Hence,

Gye(z) = i Pr (L = k) 2*

k=0
00 t

= Z Pr Z JR; =k ¥
k=0 7=1

(
P
o
\_‘;‘H
Lol
[~z
H
e N
N
9
i
9
Lol
e
m
1 Q)=
»
o
(]~
2
S
o
e
|
T
&
B

k=0 u=1 7=1 =1
1 0 b b t
= 2 # o) QYD Jeili =k ot
k=0 u=1 =1 j=1
00 00 t
1
:(t')bzz# Ub65t|2]ab(j):ﬁ zt
(=0 k=¢ 7=1
b—1 b—1 ¢
# (017---7Ub—1)€®5t|szUi(j)Ik—ﬁ A
u=1 =1 j=1
1 00 t
:WZ# UbESt|Ejab(j):K zt .
) =0 7=1
0 b—1 b—1 ¢t
Yo #{on o) e @S YD Goi()=mg e
m=0 u=1 =1 j=1

1 -
= yper (P) Gy_14.

The last equality holds, because we recognize the probability generating function of :9: (see
(3) and (5)). Iteration of this argument completes the proof. a

11



8 Exact critical values for n = 19, ..., 22

In this section we present new tables with exact critical values of Spearman’s p for sample sizes
19 < n < 22. We stress the fact that for the case n = 22 one has to consider HZM 1 = 175560

0.0005 | 0.001 | 0.0025 | 0.005 | 0.01 | 0.025 | 0.05 | 0.10 | 0.15 | 0.20
19 332 370 426 474 | 530 616 | 694 | 788 | 854 | 906
20 408 450 516 572 | 636 736 | 824 | 932 | 1006 | 1066
21 494 544 618 684 | 756 868 | 970 | 1090 | 1174 | 1242
22 592 650 734 808 | 890 | 1018 | 1132 | 1268 | 1362 | 1436

Table 1: Exact left critical values of Spearman’s p for n = 19...22.

times more permutations than for the largest case known in the literature up to now, n = 18.
The results are given in Table 1. We did not print the entire null distribution, because
even when we use the symmetry around the mean of p, this would involve printing about
6,000 values of the statistic together with their corresponding tail probabilities. The entire
distribution can be obtained from the authors on request.
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