THE SMALLEST SOLUTION OF $\phi(30 n+1)<\phi(30 n)$ IS \ldots

GREG MARTIN

In a previous issue of the American Mathematical Monthly, D. J. Newman [1] showed that for any positive integers a, b, c, and d with $a d \neq b c$, there exist infinitely many positive integers n for which $\phi(a n+b)<\phi(c n+d)$, where $\phi(m)$ is the familiar Euler totient function, the number of positive integers less than and relatively prime to m. In particular, it must be the case that $\phi(30 n+1)<\phi(30 n)$ infinitely often; however, Newman mentions that there are no solutions of this inequality with $n \leq 20,000,000$, and he states that a solution "is not explicitly available and it may be beyond the reach of any possible computers". The purpose of this note is to describe a method for computing solutions to inequalities of this type that avoids the need to factor large numbers. In particular, we explicitly compute the smallest number n satisfying $\phi(30 n+1)<\phi(30 n)$.

It is quite easy to compute values of n for which $\phi(30 n+1)$ is relatively small by imposing many congruence conditions on n modulo primes, so that $30 n+1$ is highly composite. However, the numbers n that arise in this way are quite large, having hundreds of digits. Computing $\phi(30 n)$ exactly relies on the factorization of $30 n$, which for integers of this size is not possible to find in a reasonable amount of time with today's computers and factoring algorithms. The idea underlying our method is to use partial knowledge of the factorization of a large number m to get an estimate for $\phi(m)$. We rely on the following claim:

Claim 1. Let p_{i} denote the $i^{\text {th }}$ prime number. Let $q=\prod_{i=r+1}^{r+s} p_{i}$ for some positive integers r and s, and let m be an integer that is not divisible by any of the primes p_{1}, \ldots, p_{r}. Then:
(a) if $m \leq q$, then m has at most s distinct prime factors;
(b) if m has at most s distinct prime factors, then $\phi(m) / m \geq \phi(q) / q$.

Proof. Let t be the number of distinct prime factors of m, and let the prime factors be $p_{i_{1}}$, $\ldots, p_{i_{t}}$ with $i_{1}<\cdots<i_{t}$. Since none of the primes p_{1}, \ldots, p_{r} divide m, it must be the case that $i_{1} \geq r+1, i_{2} \geq r+2$, and so on. So if we define $k=\prod_{j=r+1}^{r+t} p_{j}$, we see that $k \leq \prod_{j=1}^{t} p_{i_{j}} \leq m$. But $m \leq q$ by assumption, and so $k \leq q$, which can clearly only be the case if $t \leq s$. This proves part (a) of the claim.

As for part (b), we use the fact that the function $\phi(m) / m$ can be written as a product over primes dividing m :

$$
\frac{\phi(m)}{m}=\prod_{p \mid m}\left(1-\frac{1}{p}\right)
$$

With k defined as above, notice that

$$
\frac{\phi(m)}{m}=\prod_{j=1}^{t}\left(1-\frac{1}{p_{i_{j}}}\right) \geq \prod_{j=1}^{t}\left(1-\frac{1}{p_{r+j}}\right)=\frac{\phi(k)}{k}
$$

since $1-1 / p$ is an increasing function of p. On the other hand, since $t \leq s$ by assumption, we have

$$
\frac{\phi(k)}{k}=\prod_{j=r+1}^{r+t}\left(1-\frac{1}{p_{j}}\right) \geq \prod_{j=r+1}^{r+s}\left(1-\frac{1}{p_{j}}\right)=\frac{\phi(q)}{q}
$$

since each $1-1 / p$ is less than 1 . This proves part (b) of the claim.
We now proceed to find the smallest solution of $\phi(30 n+1)<\phi(30 n)$, though it must be pointed out that the method applies to any inequality of the form $\phi(a n+b)<\phi(c n+d)$. Clearly $30 n+1 \equiv 1(\bmod 30)$ no matter what n is. Also, if n is a solution of $\phi(30 n+1)<$ $\phi(30 n)$, then we must have

$$
\frac{\phi(30 n+1)}{30 n+1}<\frac{\phi(30 n)}{30 n+1}<\frac{\phi(30) n}{30 n}=\frac{4}{15}=0.26666 \ldots,
$$

since the inequality $\phi(a b) \leq \phi(a) b$ holds for any numbers a and b. Thus it makes sense to look for numbers that satisfy both these conditions.

Claim 2. Let $z=\left(p_{4} p_{5} \cdots p_{383}\right) p_{385} p_{388}$. Then z is the smallest positive integer satisfying $z \equiv 1(\bmod 30)$ and $\phi(z) / z<4 / 15$.

Proof. A computation shows that z is indeed congruent to $1(\bmod 30)$ and that

$$
\frac{\phi(z)}{z}=\left(\prod_{i=4}^{383}\left(1-\frac{1}{p_{i}}\right)\right)\left(1-\frac{1}{p_{385}}\right)\left(1-\frac{1}{p_{388}}\right)=0.2666117 \ldots<\frac{4}{15}
$$

Suppose m is an integer satisfying $m \equiv 1(\bmod 30)$ and $\phi(m) / m<4 / 15$. Because of the congruence condition, m cannot be divisible by 2,3 , or 5 . If we define $q_{1}=\prod_{i=4}^{384} p_{i}$, then we can compute that $\phi\left(q_{1}\right) / q_{1}=0.26671 \ldots$, and so $\phi\left(q_{1}\right) / q_{1}>\phi(m) / m$. Thus if we apply part (b) of Claim 1 with $r=3$ and $s=381$, we conclude that m must have more than 381 distinct prime factors.

Another computation reveals that the only numbers with at least 382 distinct prime factors that are less than z are the numbers $p_{4} p_{5} \cdots p_{382} m^{\prime}$, where $m^{\prime} \in\left\{p_{383} p_{384} p_{385}, p_{383} p_{384} p_{386}\right.$, $\left.p_{383} p_{385} p_{386}, p_{383} p_{384} p_{387}, p_{383} p_{385} p_{387}, p_{384} p_{385} p_{386}, p_{383} p_{384} p_{388}, p_{383} p_{386} p_{387}\right\}$; and none of these numbers are congruent to $1(\bmod 30)$.

Let us define $n=(z-1) / 30$, which by Claim 2 is both an integer and the smallest possible solution of $\phi(30 n+1)<\phi(30 n)$. (Small wonder that we haven't stumbled across any solutions of this inequality - n has 1,116 digits!) It would be quite gracious of n to be an actual solution, and indeed it is.

First we show that $\phi(30 n+1) /(30 n+1)<\phi(30 n) / 30 n$. We have already computed that

$$
\begin{equation*}
\frac{\phi(30 n+1)}{30 n+1}=\frac{\phi(z)}{z}=0.2666117 \ldots \tag{1}
\end{equation*}
$$

It turns out that n is divisible by both 60 and $p_{4,874}=47,279$, so let us define $n^{\prime}=$ $n /\left(60 p_{4,874}\right)$. We can compute that n^{\prime} is not divisible by any of the first 80,000 primes. This computation can be done most quickly by multiplying the primes together in blocks of 1,000 , say, and computing the greatest common divisor of n^{\prime} and the product. Since computing greatest common divisors is a very fast operation, checking that n^{\prime} is not divisible
by any of the first 80,000 primes takes only a few minutes on a workstation-much more reasonable than trying to factor a number with over a thousand digits.

Now define $q_{2}=\prod_{i=80,001}^{80,186} p_{i}$. We compute that q_{2} has 1,118 digits and so $q_{2}>n>n^{\prime}$. By using parts (a) and (b) of Claim 1 with $r=80,000$ and $s=186$, we see that $\phi\left(n^{\prime}\right) / n^{\prime} \geq$ $\phi\left(q_{2}\right) / q_{2}$. Therefore, since $\phi(a b)=\phi(a) \phi(b)$ when a and b are relatively prime, we compute that

$$
\begin{equation*}
\frac{\phi(30 n)}{30 n}=\frac{\phi\left(30 \cdot 60 p_{4,874}\right)}{30 \cdot 60 p_{4,874}} \frac{\phi\left(n^{\prime}\right)}{n^{\prime}} \geq \frac{4}{15}\left(1-\frac{1}{47,279}\right) \frac{\phi\left(q_{2}\right)}{q_{2}}=0.2666124 \ldots . \tag{2}
\end{equation*}
$$

This shows that $\phi(30 n+1) /(30 n+1)<\phi(30 n) / 30 n$, which doesn't quite imply that $\phi(30 n+1)<\phi(30 n)$, but only $\phi(30 n+1)<\phi(30 n)(1+1 /(30 n))$. However, the numbers computed in (11) and (22) differ in the sixth decimal place, while multiplying by $1+1 /(30 n)$ leaves a number unchanged until past the 1100th decimal place.

Therefore we have proved:
Theorem. The smallest solution of $\phi(30 n+1)<\phi(30 n)$ is

[^0]I would like to thank Mike Bennett for verifying the above computations and to acknowledge the support of National Science Foundation grant DMS 9304580.

References

[1] D. J. Newman, Euler's ϕ function on arithmetic progressions, Amer. Math. Monthly 104 (1997), 256-257.
School of Mathematics, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540, U.S.A. gerg@math.ias.edu

[^0]: $n=232,909,810,175,496,793,814,049,684,205,233,780,004,859,885,966,051,235,363,345,311,075,888,344,528,723,154,527,984$, $260,176,895,854,182,634,802,907,109,271,610,432,287,652,976,907,467,574,362,400,134,090,318,355,962,121,476,785,712$, $891,544,538,210,966,704,036,990,885,292,446,155,135,679,717,565,808,063,766,383,846,220,120,606,143,826,509,433,540$, $250,085,111,624,970,464,541,380,934,486,375,688,208,918,750,640,674,629,942,465,499,369,036,578,640,331,759,035,979$, $369,302,685,371,156,272,245,466,396,227,865,621,951,101,808,240,692,259,960,203,091,330,589,296,656,888,011,791,011$, $416,062,631,565,320,593,772,287,118,913,728,608,997,901,791,216,356,108,665,476,306,080,740,121,528,236,888,680,120$, $152,479,138,327,451,088,404,280,929,048,314,912,122,784,879,758,304,016,832,436,751,532,255,185,640,249,324,065,492$, $491,511,072,521,585,980,547,438,748,689,307,159,363,481,233,965,802,331,725,033,663,862,618,957,168,974,043,547,448$, $879,663,217,971,081,445,619,618,789,985,472,074,303,100,303,636,078,827,273,695,551,162,089,725,435,110,246,701,964$, $021,045,849,081,811,604,427,331,227,553,783,590,821,510,091,607,567,178,842,569,576,699,548,038,217,673,171,895,383$, $249,326,800,667,432,993,531,186,437,659,910,632,865,419,892,370,957,722,154,266,351,039,808,548,150,828,868,968,820$, $675,198,820,381,135,523,646,361,202,383,915,218,571,017,801,463,011,491,108,784,343,253,284,393,511,650,254,506,597$, $923,969,653,616,813,897,710,621,756,693,827,471,154,701,151,222,320,443,347,408,180,047,964,860$.

