
Mar. 2, 1998

The Cycling of Partitions and Compositions under Repeated Shifts

Jerrold R. Griggs1,2 and Chih-Chang Ho2

Department of Mathematics
University of South Carolina
Columbia, SC 29208 USA
email: griggs@math.sc.edu

Abstract

In “Bulgarian Solitaire”, a player divides a deck of n cards into piles. Each move
consists of taking a card from each pile to form a single new pile. One is concerned only
with how many piles there are of each size. Starting from any division into piles, one
always reaches some cycle of partitions of n. Brandt proved that for n = 1+2+ · · ·+k,
the cycle is just the single partition into piles of distinct sizes 1, 2, . . . , k. Let DB(n)
denote the maximum number of moves required to reach a cycle. Igusa and Etienne
proved that DB(n) ≤ k2 − k whenever n ≤ 1 + 2 + · · · + k, and equality holds when
n = 1+2+ · · ·+k. We present a simple new derivation of these facts. We improve the
bound to DB(n) ≤ k2 − 2k − 1, whenever n < 1 + 2 + · · ·+ k with k ≥ 4. We present
a lower bound for DB(n) that is likely to be the actual value. We introduce a new
version of the game, Carolina Solitaire, in which the piles are kept in order, so we work
with compositions rather than partitions. Many analogous results can be obtained.
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Cycling Under Repeated Shifts

Section 1. Introduction

In the early 1980’s, an article by Martin Gardner brought widespread attention
to a card game that had attracted the curiosity of some European mathematicians.
Called Bulgarian Solitaire, the game works as follows: First divide a finite deck of n
cards into piles. A move consists of removing one card from each pile and forming a
new pile. The operation is repeated over and over. We pay attention only to how many
piles there are of each positive size, ignoring the locations of the piles.

Thus, Bulgarian Solitaire can be viewed as a way of changing one partition into
another. For instance, the partition into k parts of distinct sizes from 1 to k is preserved
under the operation. Clearly, for any n, any start eventually leads to a cycle of parti-
tions, since there are only finitely many partitions of n altogether. What is striking in
playing the game is that starting from any partition of a deck of size n = 1+2+ · · ·+k
cards, one always arrives eventually at this stable partition into sizes 1 through k. This
effect is all the more dramatic in that it seems to take quite awhile in some cases with
only moderately large k, say k = 5.

We don’t know yet the reason for the appellation “Bulgarian.” However, we were
introduced to an ordered variation of the game by a Bulgarian visitor, Andrey Andreev.
In his game, which we shall call Carolina Solitaire, one also maintains an ordering of
the nonempty piles. Say we begin with n cards divided into a row of piles of sizes
c1, . . . , cr > 0,

∑
i ci = n. One card is removed from each pile, and these r cards are

then placed in a pile ahead of the others. Any exhausted pile (size 0) is ignored; only
nonempty piles are considered. For a triangular number n, say n = 1+2+ · · ·+k, this
game also appears to arrive at a stable division, with piles of sizes k, k − 1, . . . , 1.

After proving this fact for Carolina Solitaire, as well as deriving bounds on how
soon the cycling begins for arbitrary n, we asked experts for references to related work,
and our search finally led us to the literature on Bulgarian Solitaire. Our methods are
easily adapted to this simpler unordered game. In fact, we obtain improved bounds
on the maximum number of shifts needed for any game on n cards to cycle. We shall
also mention work on other variation(s) of Bulgarian Solitaire, most notably one called
Montreal Solitaire.

Let us now define the games formally, present some examples and calculations,
and describe the plan of the paper. For a positive integer n, we say λ = (λ1, λ2, . . .) is
a partition of n, and we write λ � n, provided the nonnegative integers λ1 ≥ λ2 ≥ · · ·
add up to n, If λs > λs+1 = 0, we say λ has s parts, and we often drop the zeroes,
writing λ = (λ1, λ2, . . . , λs).

The shift operation B on λ is the partition of n, denoted B(λ), obtained by de-
creasing each part λi by one, inserting a part s, and discarding any zero parts. So
B(i)(λ) denotes the partition obtained by successively applying the shift operation B
to λ a total of i times. Starting with a partition λ, we describe Bulgarian solitaire by
repeatedly applying the shift operation to obtain the sequence of partitions

λ,B(λ),B(2)(λ), . . . .
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Cycling Under Repeated Shifts

For a couple of simple examples, we note that λ = (2, 1, 1, 1, 1) � 6, gives the sequence
(2, 1, 1, 1, 1), (5, 1), (4, 2), (3, 2, 1), (3, 2, 1), . . . , while λ = (6, 1) � 7 yields (6, 1), (5, 2),
(4, 2, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1), (4, 2, 1), . . . . The first example is fixed at the
partition (3, 2, 1) after three steps, while the second example reaches a cycle after two
steps.

We say a partition μ � n is B-cyclic if B(i)(μ) = μ for some i > 0. Brandt [3]
characterized all B-cyclic partitions for Bulgarian Solitaire. In particular, when n is
a triangular number, 1 + 2 + · · · + k, he proved that (k, k − 1, ..., 2, 1) is the unique
B-cyclic partition of n, one that we end up with, no matter where we start. Note that
if n is not triangular, there is no fixed partition under B.

To measure how long it takes for Bulgarian Solitaire to cycle, for λ � n we let
dB(λ) denote the smallest integer i ≥ 0 such that B(i)(λ) is B-cyclic . Let DB(n) :=
max{dB(λ) : λ � n}, so that for any λ � n, DB(n) steps reach a cycle. Trivially,
DB(1) = DB(2) = 0 and DB(3) = 2. The values of DB(n), 4 ≤ n ≤ 36, are displayed
in Figure 1, which we worked out by computer. The data are arranged using the
representation n = 1 + 2 + · · · + (k − 1) + r, 1 ≤ r ≤ k.

Brandt [3] conjectured that DB(n) = k2 − k for triangular n, n = 1 + 2 + · · ·+ k.
Hobby and Knuth [7] confirmed this for k ≤ 10 by computer. It was first proven by
Igusa [8] and Etienne [5], apparently independently at about the same time, although
Etienne’s proof was published much later. (Note that Etienne’s paper is noted as
having been received in 1984.) In 1987 Bentz [2] also gave a different proof. In Section
2 we present our proof of Brandt’s result characterizing all B-cyclic partitions. This
leads to our simple, new proof of the value of DB(n) for triangular numbers n, given
in Section 3.

Igusa and Etienne went on to obtain the upper bound DB(n) ≤ k2−k for general
n, represented as 1+2+ · · ·+(k− 1)+ r, 1 ≤ r ≤ k. It is by no means sharp for every
n (see Figure 1). Igusa [8] mentioned that this bound follows easily from Brandt’s
conjecture using a comparison theorem by Akin and Davis [1, Theorem 3(c)]. We will
describe this comparison theorem and show the implication in Section 4. We then
prove a better general bound (Theorem 4.4), which is DB(n) ≤ k2 − 2k − 1, when
1 ≤ r < k and k ≥ 4. (Cases n = 2, 5 violate the bound.) We also present a lower
bound for DB(n) that we suspect is the correct value in general, although a proof of
this claim has eluded us.

In Section 5 we consider Carolina Solitaire, the ordered version of Bulgarian Soli-
taire. Analogous with dB(λ) and DB(n) for Bulgarian Solitaire, we introduce dC(λ)
and DC(n) for Carolina Solitaire. We show that for triangular n = 1 + 2 + · · · + k,
DC(n) = k2 − 1. For other n of the form n = 1 + 2 + · · · + (k − 1) + r, 1 ≤ r < k, we
prove DC(n) ≤ k2 − k − 2, provided that k ≥ 4. We also present a lower bound for
DC(n) that we conjecture is the correct value in general.

Other variations of Bulgarian Solitaire have been introduced: Yeh and Servedio
[9,10] studied a variation on circular compositions; Cannings and Haigh [4] investigated
“Montreal Solitaire,” in which game the rule from λ to B(λ) is changed when an
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Cycling Under Repeated Shifts

exhausted pile (size 0) in λ occurs. Akin and Davis [1] also introduced “Austrian
Solitaire.” In this game, a special pile called the bank is reserved. Each move consists
of taking a card from each pile into the bank, and then generating some new piles from
the bank by a certain rule.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
r = 1 DB(4) = 2 DB(7) = 4 DB(11) = 8 DB(16) = 15 DB(22) = 24 DB(29) = 35
r = 2 DB(5) = 3 DB(8) = 5 DB(12) = 8 DB(17) = 12 DB(23) = 18 DB(30) = 28
r = 3 DB(6) = 6 DB(9) = 7 DB(13) = 9 DB(18) = 13 DB(24) = 18 DB(31) = 24
r = 4 DB(10) = 12 DB(14) = 14 DB(19) = 16 DB(25) = 19 DB(32) = 25
r = 5 DB(15) = 20 DB(20) = 23 DB(26) = 26 DB(33) = 29
r = 6 DB(21) = 30 DB(27) = 34 DB(34) = 38
r = 7 DB(28) = 42 DB(35) = 47
r = 8 DB(36) = 56

Figure 1. DB(n) for n = 4, 5, . . . , 36.

Section 2. Characterizing Cyclic Partitions

We begin by describing B-cyclic partitions of n, a result discovered by Brandt [3].
Etienne [5] as well as Akin and Davis [1] also gave proofs. Although Etienne proved
the result for triangular n only, the idea in his proof is simple and can be applied to
general n. The approach presented here is similar to Etienne’s and we include it for
the reader’s benefit.

Theorem 2.1. [3] Let n = 1+ 2+ · · ·+ (k− 1) + r, 1 ≤ r ≤ k. Then λ � n is B-cyclic
if and only if λ has the form

(k − 1 + δk−1, k − 2 + δk−2, . . . , 2 + δ2, 1 + δ1, δ0),

where each δi is 0 or 1 and
∑k−1

i=0 δi = r.

Corollary 2.2. If n = 1 + 2 + · · · + k, then (k, k − 1, . . . , 2, 1) is the unique B-cyclic
partition of n.

In order to prove the theorem, we introduce a natural array representation of a
partition λ. We are particularly interested in the how repeatedly shifting λ affects the
position of the 1’s in the array.

For a partition λ = (λ1, λ2, . . . , λs) � n, we associate a (0, 1)-array

Mλ = [mij ]∞i,j=1, where mij =
{

1, if j ≤ s and i ≤ λj ;
0, otherwise .
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The columns of Mλ correspond to the parts of λ.
We notice that MB(λ) can be obtained directly from Mλ by a shifting process

on a (0, 1)-array. In later sections, such a shifting process can help us evaluate dB(λ)
easily for some particular partitions λ. We describe this shifting process as follows: For
a (0, 1)-array M , we say that the w-th diagonal of M consists of entries mij where
i + j − 1 = w. Assume λ = (λ1, λ2, . . . , λs) � n and its associated array Mλ is given.
Step 1. Diagonally Circular Shifting: For each diagonal of Mλ, say v1, v2, . . . ,
and vw are the entries (listed from left to right) in this diagonal, we replace them by
vw, v1, v2, . . . , and vw−1 respectively. Then we obtain a new array, denote it Mλ

′. Note
that the numbers of 1’s in columns of Mλ

′ are s, λ1 − 1, λ2 − 1, . . . , λs − 1, 0, 0, 0, . . . .
If s ≥ λ1 − 1 then Mλ

′ is the array MB(λ). If s < λ1 − 1 then we need an extra step to
obtain MB(λ).
Step 2. Left Shifting: We remove all zero entries in the first column of Mλ

′ and shift
each entry at the (i, j)-position, i ≥ s + 1, j ≥ 2, to the (i, j − 1)-position. The new
array is MB(λ).

Figure 2 shows two examples of the shifting process described above.

λ = (2, 2, 1, 1):
1

1

0

0

0

0

1

0

1

0

0

0

1

1

all zeroes

all ones

(λ) =Bλ λ ==

all ones

all zeroes
’M M M

λ = (4, 2):
0

1

1

0

0

1
all zeroes

all ones 0

λ M λ = M =

all ones 0

1 0

0 1

0
all zeroes

1 all ones 1 0

1 0

1 0

0
all zeroes(λ)M B= ’

Figure 2. A shifting process on the arrays.

Proof of Theorem 2.1. (⇐) Assume that λ has the stated form. The array Mλ has
all ones on the first k − 1 diagonals and all zeroes beyond diagonal k. Each shift just
shifts entries on diagonal k. Thus, B(k)(λ) = λ, and λ is B-cyclic .

(⇒) In the shifting process, we notice that Step 1 keeps every entry on the same
diagonal, while Step 2 always brings the entry 1 at the (s+1, 2)-position to a diagonal
with smaller index. Thus, for any B-cyclic partition μ, the shifting process from Mμ

to MB(μ) should involve Step 1 only.
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Now assume that λ is B-cyclic and λ cannot be expressed in the stated form.
Then for some w, there is a 0 in the w-th diagonal and a 1 in the (w + 1)-th diagonal.
Since the series of shifting processes from Mλ to MB(λ) to MB(2)(λ), and so on involves
Step 1 (Diagonally Circular Shifting) only, and since the integers w and w + 1 are
relatively prime, we will reach (in at most w2 −w− 1 steps) an array Mμ which has 0
as (1, w)-entry and 1 as (w + 1, 1)-entry. (Figure 3 shows an example for such a series
of shifting processes.) Then the shifting process from Mμ to MB(μ) involves Step 2, a
contradiction.

λ = ( 2 2 1 1 )

1

1

0

0

0

0

((λ) = 4 1 1 )

1

0

1

0

0

0

1

0

1

1

0

0

1

0

1

1

0

0

1

0

0

1

0

1

1

0

0

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

0

(λ) =

(λ) =(λ) =(λ) =

(λ) =

( 3 3 )

( 2 2 2 ) ( 3 1 1 1 ) ( 4 2 )

( 3 2 1 )

all zeroes all zeroes

all zeroes all zeroes all zeroes

all zeroes

all ones all ones

all ones all ones all ones

all ones

B

BBB

B

B
(2)

(3) (4) (5)

(6)

all zeroes

all ones

Figure 3. A series of shifting processes on the associated array of λ = (2, 2, 1, 1).

It is easy to see from Theorem 2.1 that for a given n with r = k, k − 1, or 1,
starting from any partition of n and repeatedly applying the shift operation B always
reaches a unique cycle of partitions of n.
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For general n, Brandt [3] also showed that the number of cycles for Bulgarian
Solitaire is 1

k

∑
d|gcd(k,r) φ(d)

(
k/d
r/d

)
, where φ(d) is the Euler φ-function. The derivation

of this formula was explained in detail later in the paper [1] of Akin and Davis.

Section 3. Evaluating DB(n) for Triangular Numbers n

The partition λ = (2, 2, 1, 1) in Figure 3 gives DB(3) ≥ 32−3. In general, we have

Theorem 3.1. [1, 2, 5] If n = 1 + 2 + · · ·+ k, then DB(n) ≥ k2 − k.

Proof. It suffices to present λ � n such that dB(λ) = k2−k. Let λ = (λ1, λ2, . . . , λk+1)
where λ1 = k−1, λi = k−i+1 for i = 2, 3, . . . , k, and λk+1 = 1. By repeatedly applying
the shifting process (described in previous section) to the arrays Mλ, MB(λ), . . ., it is
easy to see that

B(k)(λ) = (λ1, λ2, . . . , λk−1, λk + 1),

B(2k)(λ) = (λ1, λ2, . . . , λk−1 + 1, λk),

...

B((k−2)k)(λ) = (λ1, λ2, λ3 + 1, λ4, λ5, . . . , λk),

B((k−1)k−1)(λ) = (λ1 + 2, λ2, λ3, . . . , λk−1), and

B((k−1)k)(λ) = (k, k − 1, k − 2, . . . , 2, 1).

Therefore dB(λ) = k2 − k.

Before we prove in Theorem 3.7 that for triangular n, the lower bound k2 − k is
the actual value of DB(n), we need some notation and lemmas. Let us start with the
example for n = 15: The 176 partitions of 15 can be arranged in a tree illustrated in
Figure 4 (from [3]) so that the vertices correspond to the partitions and going down
corresponds to applying B. (Thus, the root of the tree is the partition (5, 4, 3, 2, 1).)
In this figure, each vertex is labeled with the number of parts for its corresponding
partition.

For a partition λ � n, we associate a sequence seqB(λ) = 〈c1, c2, . . .〉, where ci

is the number of parts in B(i−1)(λ). For instance, the top left vertex in Figure 4
(corresponding to the partition λ = (4, 4, 3, 2, 1, 1) � 15) has the associated sequence
seqB(λ) = 〈6, 5, 5, 5, 4, 5, 6, 5, 5, 4, 5, 5, 6, 5, 4, 5, 5, 5, 6, 4, 5, 5, 5, 5, 5, . . .〉.

In Figure 4, we observe that the pattern “x − 1, x, x, . . . , x, x + 1” appears quite often
in most associated sequences. It will play a pivotal role in our process for evaluating
DB(n). To study this pattern, we associate each partition with a diagram: Given a
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6 6 7 6 6 8 6 7 6 8 7 8 6 7 7 7

5 6 5 5 7 5 6 5 7 5 7 6 6 5 6 6

4 6 5 4 5 11

5 4 3 9 4 9 5 4 3 10 4

4 8 4 3 4 9 3 6 9

7 3 5 8 3 7 8 8 7 13

4 6 7 4 7 6 2 12 3

5 6 5 3 11 2 11

5 4 10 3 10 5

4 9 4 2 15

5 8 3 8 14 1

7 4 7 7 13 2

4 6 3 9 12 2 12

8 5 11 3 11 4

4 7 4 10 3 2

5 6 3 9 3 9 9 6 5 9

5 4 8 4 8 5 2 6 8 4

5 7 4 3 7 5 3

6 4 3

4

5

5 4 6 5 10 104

10

5

6

5

6

5 3

9

6

7

8

Figure 4. A tree for the partitions of 15.

partition λ = (λ1, λ2, . . . , λs) � n, let seqB(λ) = 〈c1, c2, . . .〉 be its associated sequence.
Then diagramB(λ) is defined to be the diagram shown in Figure 5, where each λi-
column (resp., ci-column) has λi (resp., ci) 1’s on the top and has infinitely many
0’s on all other entries. For example, if λ = (4, 2, 2, 2) then diagramB(λ) is shown in
Figure 6(a).

We notice that there are ci 1’s in the row corresponding to ci. Furthermore,
diagramB(λ) can be regarded as bookkeeping for the shift operation B on λ, since
we can easily obtain B(i)(λ) from diagramB(λ) for any integer i. For example, the
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C

C

C

λ λ λ

.....

.....
.....

.....
.....

.....

......
.....

.....

.....

2

3

1

1 2 S

Figure 5. diagramB(λ).
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1
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1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0 0

0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

.....

1 1 1 1 0 0 0

1

1

1

1

1

1 0 0 0 0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
. ...

...
...

...
...

...
...

Figure 6. (a) diagramB(λ) for λ = (4, 2, 2, 2) (b) The rectangle below c3.

rectangle below c3 (see Figure 6(b)) gives B(3)(λ) = (4, 3, 2, 1) and the rectangle below
c6 gives B(6)(λ) = (4, 3, 2, 1).

Proposition 3.2. Assume n ≥ 1, λ � n, and seqB(λ) = 〈c1, c2, . . .〉. Then
(1) ci+1 ≤ ci + 1 for i ≥ 1.
(2) For n = 1 + 2 + · · · + (k − 1) + r, where 1 ≤ r ≤ k, the sum of any k consecutive

terms in the sequence is at most k(k − 1) + r.
(3) (The Sandwich Property) If i < j and ci < x < cj , then there exist integers p and q

such that i ≤ p < q ≤ j, q ≥ p+2, and (cp, cp+1, . . . , cq) = (x−1, x, x, . . . , x, x+1).

Proof. (1) follows from the definition of the shift operation B. To prove (2), we see
for i > 0 in diagramB(λ) that ci+1 + ci+2 + · · · + ci+k is the number of 1’s in the k

rows labelled by ci+1, ci+2, . . .. These come from B(i)(λ) (in the rectangle below ci),
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or from the staircase consisting of j − 1 squares to the right of ci+j , 1 ≤ j ≤ k. Thus,
ci+1 + · · ·+ ci+k ≤ n + 1 + 2 + · · ·+ (k − 1) = k(k − 1) + r.

For (3), choose p as large as possible such that i ≤ p < j and cp ≤ x − 1.

We next require a series of lemmas that rely on Proposition 3.2 and diagramB(λ).

Lemma 3.3. Let λ � n = 1 + 2 + · · · + k and seqB(λ) = 〈c1, c2, . . .〉. Then
(1) dB(λ) = t, where 〈ct, ct+1, . . .〉 = 〈k − 1, k, k, . . .〉.
(2) If dB(λ) = t ≥ k + 1 then at least one of the following holds:

(i) (cp, cp+1, . . . , cq) = (k − 1, k, k, . . . , k, k +1) for some p, q with t− k ≤ p < q ≤
t − 1 and q ≥ p + 2;

(ii) (cp, cp+1, . . . , cq) = (k − 2, k − 1, k − 1, . . . , k − 1, k) for some p, q with
t − k + 1 ≤ p < q ≤ t + 1 and q ≥ p + 2.

Proof. (1) By Theorem 2.1, we have dB(λ) = t where seqB(λ) = 〈c1, . . . , ct, k, k, k, . . .〉
and ct 	= k. Then Proposition 3.2 forces ct = k − 1.

(2) For i > j, let ei,j denote the entry in the ci-row and the cj-column of
diagramB(λ). Then et,t−1 = 1. Since ct = k − 1, we have et,i = 0 for some i,
t − k ≤ i ≤ t − 2. We choose such i as large as possible. Then et,i+1 = 1, and,
since ct+1 = k = ct + 1, comparing rows for ct and ct+1 in diagramB(λ), we have
et+1,i+1 = 1 as well. The column below ci+1 then has 1’s down at least as far as the
row for ct+1. Proposition 3.2(1) gives ci ≥ ci+1 − 1, which forces all entries in the
ci-column above the 0 at et,i to be 1’s. Therefore, ci = t − i − 1 and ci+1 = t − i.

If i ≥ t−k +1, then ci ≤ k−2, and (ii) holds by the Sandwich Property. Else, we
have i = t−k, ct−k = k−1, and ct−k+1 = k. If cj ≤ k−2 for some j, t−k+2 ≤ j ≤ t−1,
(ii) holds by the Sandwich Property, while if cj ≥ k+1 for some such j, (i) holds. Else,
suppose for contradiction that k − 1 ≤ cj ≤ k, for j = t − k + 2, t − k + 3, . . . , t − 1:
Since i = t − k, the row for ct in diagramB(λ) consists of k − 1 1’s followed by all
0’s. The row for ct+1 is then k 1’s followed by all 0’s. There are k 1’s at the tops of
columns ct+1, ct+2, . . .. Hence, in the rectangle below ct−1, we have just k−1 1’s in the
first row, followed by k − j + 1 1’s in row j, 2 ≤ j ≤ k. Rows below that are all 0. In
total, we have n − 1 1’s in the rectangle, which is a contradiction since this rectangle
represents, after reordering the columns if necessary, a partition of n.

Lemma 3.4. Let λ = (λ1, λ2, . . . , λs) � n ≥ 1 and seqB(λ) = 〈c1, c2, . . .〉. If for some
p, k,

(cp, . . . , cp+k) = (k − 2, k − 1, k − 1, . . . , k − 1, k),

then p + k ≤ n + 1.

Proof. Let ei,j (resp., fi,j) denote the entry in the ci-row and the cj-column (resp.,
λj-column) of diagramB(λ). Then we have ep+k−2,p = 1 and ep+k−1,p = 0, since
cp = k − 2. By the given condition, in the cp+k-row we also have ep+k,j = 1 for
j = p + 1, p + 2, . . . , p + k − 1. Note that in addition to these k − 1 entries of 1, there
is exactly one more 1 in the cp+k-row, since cp+k = k.
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If fp+k,j = 1 for some j, 1 ≤ j ≤ s, then p + k ≤ λj ≤ n. Else, ep+k,j = 1 for
some j, 1 ≤ j ≤ p − 1. In fact, j = 1, for, otherwise, we have ep+k,j−1 = 0, and, since
cp+k = k = cp+k−1 + 1, comparing rows for cp+k and cp+k−1 in diagramB(λ), we also
have ep+k−1,j−1 = 0. Similarly, since cp+k−1 = cp+k−2, ep+k−2,p = 1, and ep+k−1,p = 0,
and comparing rows for cp+k−1 and cp+k−2 in diagramB(λ), we have ep+k−2,j−1 = 0.
Then cj > cj−1 + 1, a contradiction. So j = 1, and then p + k − 1 ≤ c1 ≤ n.

Lemma 3.5. Let λ � n ≥ 1 and seqB(λ) = 〈c1, c2, . . .〉. If for some integers x, p, q,
q ≥ p + 3 and

(cp, cp+1, . . . , cq) = (x− 1, x, x, . . . , x, x + 1),

then either p ≤ x or

(cp′ , cp′+1, . . . , cq′) = (x′ − 1, x′, x′, . . . , x′, x′ + 1)

for some integers x′, p′, q′ with x′ ≤ x, 2 ≤ q′−p′ < q−p, and p−x ≤ p′ < q′ ≤ p+1.

Proof. We assume p ≥ x+1 and prove the existence of x′, p′, and q′. For i > j, let ei,j

denote the entry in the ci-row and the cj-column of diagramB(λ). Then ep,p−1 = 1.
Since cp = x − 1, we have ep,p′ = 0 for some p′, p − x ≤ p′ ≤ p − 2. We choose
such p′ as large as possible. Then ep,j = 1 for j = p′ + 1, p′ + 2, . . . , p − 1, and, since
cp+1 = x = cp + 1, comparing rows for cp+1 and cp in diagramB(λ), we also have
ep+1,j = 1 for j = p′ + 1, p′ + 2, . . . , p. The column below cp′+1 then has 1′s down at
least as far as the row at cp+1. Proposition 3.2(1) gives cp′ ≥ cp′+1 − 1, which forces
all entries above the zero at ep,p′ to be 1’s. Therefore cp′ = p − p′ − 1, cp′+1 = p − p′,
and ep+2,p′+1 = 0.

Since cp+2 = x = cp+1, comparing rows for cp+2 and cp+1 in diagramB(λ), we
have ep+2,j = 1 for j = p′ +2, p′ +3, . . . , p+1. If ep+3,p′+2 = 1 then cp′+2 = p− p′ +1,
and we are finished. So we may assume ep+3,p′+2 = 0 and cp′+2 = p − p′.

Since cp+3 = x = cp+2, comparing rows for cp+3 and cp+2 in diagramB(λ), we
have ep+3,j = 1 for j = p′ +3, p′ +4, . . . , p+2. If ep+4,p′+3 = 1 then cp′+3 = p− p′ +1,
and we are finished. So we may assume ep+4,p′+3 = 0 and cp′+3 = p−p′. Continue this
process . . . .

So we may assume eq−1,p′+q−p−2 = 0, cp′+q−p−2 = p − p′, and eq−1,j = 1 for
j = p′ + q− p− 1, p′ + q− p, . . . , q− 2. Since cq = x+1 = cq−1 +1, comparing rows for
cq and cq−1 in diagramB(λ), we have eq,p′+q−p−1 = 1, and hence cp′+q−p−1 = p−p′+1.
This completes the proof.

Lemma 3.6. Let λ � n ≥ 1 and seqB(λ) = 〈c1, c2, . . .〉. If

(cp, cp+1, cp+2) = (x − 1, x, x + 1),

then p ≤ x.

Proof. For i > j, let ei,j denote the entry in the ci-row and the cj-column of
diagramB(λ). Then ep,p−1 = 1. Assume the contrary, i.e., p > x. Then cp = x−1 < p−1

11
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implies ep,i = 0 for some i, 1 ≤ i ≤ p − 2. Choose such i as large as possible. Then
ep,i+1 = 1. Since cp+1 = x = cp + 1 and cp+2 = x + 1 = cp+1 + 1, comparing rows
for cp, cp+1, and cp+2 in diagramB(λ), we also have ep+2,i+1 = ep+1,i+1 = 1. Thus
ci+1 > ci + 1, a contradiction.

We are now in a position to prove

Theorem 3.7. [5, 8] If n = 1 + 2 + · · ·+ k, then

DB(n) = k2 − k.

Proof. Note that from Theorem 3.1 we have DB(n) ≥ k2 − k. Now we prove DB(n) ≤
k2 − k. Let λ � n. It suffices to show dB(λ) ≤ k2 − k. We may assume k ≥ 3, since
it is easy to verify that dB(λ) ≤ k2 − k for k = 1, 2. Further, we may also assume
dB(λ) ≥ k+1. (Otherwise, dB(λ) ≤ k < k2−k, since k ≥ 3.) Let seqB(λ) = 〈c1, c2, . . .〉
where 〈ct, ct+1, . . .〉 = 〈k − 1, k, k, k, . . .〉. Then dB(λ) = t and at least one of (i), (ii) of
Lemma 3.3 holds.

If (ii) holds with q = p+k, we have p = t−k +1 and q = t+1. Note that Lemma
3.4 gives p + k ≤ n + 1. Then dB(λ) = t = p + k − 1 ≤ n ≤ k2 − k, since k ≥ 3.

Else, (i) or (ii) holds and q ≤ p + k − 1. By Lemmas 3.5 and 3.6, seqB(λ) has
at most k2 − 2k − 1 terms before the cp-term. Then dB(λ) = t ≤ (p − 1) + k + 1 ≤
(k2 − 2k − 1) + k + 1 ≤ k2 − k.

We observe that for k = 2 (resp., k = 3), λ = (1, 1, 1) (resp., λ = (2, 2, 1, 1)) is
the only partition of n = 1 + 2 + · · ·+ k achieving dB(λ) = k2 − k. For k ≥ 4, we have

Theorem 3.8. Let k ≥ 4 and n = 1 + 2 + · · ·+ k. If λ � n with dB(λ) = k2 − k, then
the associated array Mλ = [mij ]∞i,j=1 satisfies the following conditions (illustrated in

Figure 7):
(1) mij = 1 for j ≤ k + 3 − 2i,
(2) mij = 0 for j ≥ 2k + 1 − 2i, and
(3) |{(i, j) : j = k + 4 − 2i, mij = 0}| ≤ 2.

Proof. If k ≥ 4 and dB(λ) = k2−k, the proof of Theorem 3.7 implies (i) of Lemma 3.3
holds and q = p+k−1. Further, we have seqB(λ) = 〈c1, c2, . . .〉 where (ck, ck+1, ck+2) =
(k − 1, k, k + 1) and (c2k, c2k+1, c2k+2, c2k+3) = (k − 1, k, k, k + 1).

For i > j, let ei,j denote the entry in the ci-row and the cj-column of diagramB(λ).
Then ek+2,k+1 = 1 and ek+2,k = 1. We also have ek+2,i = 1 for i = 1, 2, . . . , k − 1.
(Otherwise, we choose i as large as possible such that 1 ≤ i ≤ k−1 and ek+2,i = 0. By
comparing rows for ck+2, ck+1, and ck in diagramB(λ), we have ek,i = ek+1,i = 0, and
hence ci+1 > ci + 1, a contradiction.) Therefore, ci ≥ k + 2 − i for i = 1, 2, . . . , k + 2,
and hence Condition (1) holds.

We also have e2k,i = 1 for i = k + 1, k + 2, . . . , 2k − 1. (Otherwise, we choose i
as large as possible such that k + 3 ≤ i ≤ 2k − 2 and e2k,i = 0. Then e2k,i+1 = 1. We

12
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1

1
.
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.

=

2 22
....

*

2 -2

k+1

k

M λ

Among the 
(k + 3)/2� entries marked by *, at most two are zeroes.

Figure 7. Conditions for Theorem 3.8.

note that e2k+1,k+1 = 1 and e2k+2,k+1 = 0, since ck+1 = k. By comparing rows for
c2k, c2k+1, and c2k+2 in diagramB(λ), we have e2k+2,i+1 = e2k+1,i+1 = 1, and hence
ci+1 > ci + 1, a contradiction.) Therefore, e2k,i = 0 for i = 1, 2, . . . , k, and Condition
(2) holds.

Since e2k,k+3 = 1, by comparing rows for c2k, c2k+1, c2k+2, and c2k+3 in diagramB(λ),
we have e2k+3,k+3 = e2k+2,k+3 = e2k+1,k+3 = 1, and hence ck+3 ≥ k. So we have∑k+2

j=1 ek+3,j ≥ k, and hence Condition (3) holds.

We have checked by computer that the converse of this theorem is true for k =
4, 5, 6, 7. (In particular, the converse with Condition (3) removed is also true for k =
4, 5, 6.) When k = 8, there are 1276 partitions satisfying all three conditions in Theorem
3.8, but 9 partitions among them have dB(λ) = 20 	= k2 − k. So the three conditions
given in Theorem 3.8 are necessary, but not sufficient, for the associated array of
extremal partitions.

Section 4. Evaluating Bounds on DB(n) for Non-Triangular Numbers n

For any non-triangular n, we can write n = 1 + 2 + · · · + (k − 1) + r, where
1 ≤ r < k. In this section we first prove DB(n) ≤ k2 − k based on Theorem 3.7 and a

13
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comparison theorem from [1]. Then we improve this bound to k2 − 2k − 1 for k ≥ 4.
We also present a lower bound that is likely the actual value.

Let Λ = ∪∞
i=1Λi where Λi denotes the set containing all partitions of i. For λ =

(λ1, λ2, . . .) and μ = (μ1, μ2, . . .) in Λ, we define a partial ordering (i.e., a reflexive,
antisymmetric and transitive relation) by:

λ ≤ μ ⇔ λi ≤ μi for i = 1, 2, . . . .

Then we have the following theorem due to Akin and Davis [1, Theorem 3(c)]:

Theorem 4.1. If λ, μ ∈ Λ and λ ≤ μ, then B(λ) ≤ B(μ).

Proof. Let x1, x2, . . . and y1, y2, . . . (not necessarily in non-increasing order) be the
parts of two partitions x and y respectively. We observe that if xi ≤ yi for i ≥ 1, then
x ≤ y. (To verify this, we may assume further, without loss of generality, that the xi’s
are already in non-increasing order. If y1 < y2, we interchange y1 and y2, then xi ≤ yi

for i ≥ 1 still holds. If y2 < y3, we interchange y2 and y3, then xi ≤ yi for i ≥ 1 still
holds. Continuing this process, eventually we can arrange all yi’s in non-increasing
order and xi ≤ yi for i ≥ 1 still holds. Therefore x ≤ y.)

Now we assume λ, μ ∈ Λ and λ ≤ μ. Let λ = (λ1, λ2, . . .) and μ = (μ1, μ2, . . .),
where λ1 ≥ · · · ≥ λs > λs+1 = 0, μ1 ≥ · · · ≥ μt > μt+1 = 0, and λi ≤ μi for
i ≥ 1. Then the parts of B(λ) are x1 = s, x2 = λ1 − 1, x3 = λ2 − 1, . . . , xs+1 =
λs−1, xs+2 = 0, xs+3 = 0, . . .. Similarly, the parts of B(μ) are y1 = t, y2 = μ1−1, y3 =
μ2 − 1, . . . , yt+1 = μt − 1, yt+2 = 0, yt+3 = 0, . . .. Since xi ≤ yi for i ≥ 1, we have
B(λ) ≤ B(μ) by the observation above.

Combining this theorem with Theorem 3.7, we can show

Theorem 4.2. [5, 8] Let n = 1 + 2 + · · ·+ (k − 1) + r, 1 ≤ r < k. Then

DB(n) ≤ k2 − k.

Proof. Let λ � n. It suffices to show dB(λ) ≤ k2 − k. We choose μ, ν such that
μ � (1 + 2 + · · · + (k − 1)), ν � (1 + 2 + · · · + k), and μ ≤ λ ≤ ν. By Theorem
4.1, we have that B(k2−k)(μ) ≤ B(k2−k)(λ) ≤ B(k2−k)(ν). Note that Theorem 3.7
gives B(k2−k)(μ) = (k − 1, k − 2, . . . , 2, 1) and B(k2−k)(ν) = (k, k − 1, . . . , 2, 1). Thus
B(k2−k)(λ) has the form stated in Theorem 2.1 and dB(λ) ≤ k2 − k.

We prove an analogue of Lemma 3.3 for non-triangular n. Applying it along
with Lemmas 3.4, 3.5, and 3.6 leads to an improved upper bound on DB(n) for non-
triangular n.

Lemma 4.3. Let λ � n = 1 + 2 + · · · + k + r, 1 ≤ r < k, and seqB(λ) = 〈c1, c2, . . .〉.
(1) If (ct, . . . , ct+k−1) = (ct+k, . . . , ct+2k−1) = · · ·, i.e., ct+i = ct+i+k for i ≥ 0, then

dB(λ) ≤ t − 1. (Thus we can find dB(λ) by choosing such t as small as possible.)

14
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(2) If ct = k−1, ct+1 = k, ct+i = ct+i+k for i ≥ 0, and (ct−k, . . . , ct−1) 	= (ct, . . . , ct+k−1),
then at least one of (i), (ii) of Lemma 3.3 holds.

Proof. (1) If ct+i = ct+i+k for i ≥ 0, then each ct+i is the number of parts for some B-
cyclic partition, and hence Theorem 2.1 gives k−1 ≤ ct+i ≤ k for i ≥ 0. In particular,
we note that the rows for ct, ct+1, . . . , ct+k−1 in diagramB(λ) each consists of k−1 or k

1’s. Then B(t−1)(λ) has the stated form of Theorem 2.1, since it is represented by the
rectangle below ct−1, after reordering the columns if necessary. Therefore, B(t−1)(λ) is
B-cyclic , and hence dB(λ) ≤ t − 1.

(2) The proof is similar to that of Lemma 3.3(2). In the last case, we suppose
for contradiction that ct−k = k − 1, ct−k+1 = k, and k − 1 ≤ cj ≤ k, for j =
t − k + 2, t − k + 3, . . . , t − 1. Similar to the proof of (1), then the rectangle below
ct−k−1 in diagramB(λ) gives that B(t−k−1)(λ) is B-cyclic . Thus, by Theorem 2.1,
B(t−k−1+i)(λ) = B(t−1+i)(λ) for i ≥ 0. Counting the number of parts in each partition,
we have (ct−k, . . . , ct−1) = (ct, . . . , ct+k−1), a contradiction.

Theorem 4.4. Let n be non-triangular and n = 1 + 2 + · · ·+ (k − 1) + r, 1 ≤ r < k.
Then
(1) DB(n) ≤ k2 − 2k − 1 for k ≥ 4.
(2) Furthermore, equality holds when k ≥ 4 and r = k − 1.

Proof. (1) We may assume k ≥ 5, since we have DB(n) ≤ 7 for k = 4 from Figure 1. Let
λ � n. It suffices to show dB(λ) ≤ k2−2k−1. Let seqB(λ) = 〈c1, c2, . . .〉. Let B(t−1)(λ)
be B-cyclic for some t ≥ 1. Then Theorem 2.1 gives ct+i = ct+i+k and k−1 ≤ ct+i ≤ k
for i ≥ 0. Further, we may assume ct = k − 1 and ct+1 = k, since r 	= k. We choose
such t as small as possible. If t ≤ k, then dB(λ) ≤ t − 1 ≤ k − 1 < k2 − 2k − 1, since
k ≥ 5. So we may assume t ≥ k + 1 and (ct−k, . . . , ct−1) 	= (ct, . . . , ct+k−1). Then, by
Lemma 4.3, at least one of (i), (ii) of Lemma 3.3 holds.

If (ii) holds with q = p + k, we have (p, q) = (t − k + 1, t + 1). Note that Lemma
3.4 gives p + k ≤ n + 1. Then dB(λ) ≤ t − 1 = p + k − 2 ≤ n − 1 < k2 − 2k − 1, since
k ≥ 5.

Else, if (i) or (ii) holds and q ≤ p + k − 2, by Lemmas 3.5 and 3.6, seqB(λ) has
at most k2 − 3k − 1 terms before the cp-term. Then dB(λ) ≤ t − 1 ≤ (p − 1) + k ≤
(k2 − 3k − 1) + k = k2 − 2k − 1.

Else, suppose for contradiction that (i) or (ii) holds with q = p + k − 1: if (i)
holds with q = p + k − 1, we have (p, q) = (t − k, t − 1) and ct−1 = k + 1, which is
a contradiction, since, by Proposition 3.2(2), we have ct−1 ≤ k; else, (ii) holds with
q = p + k − 1, we have (p, q) = (t − k + 2, t + 1) and ct−k+2 = k − 2, which is also
a contradiction, since, by comparing rows for ct+1 and ct in diagramB(λ), we have
ct−k+2 	= k − 2.

(2) Assume k ≥ 4 and r = k − 1. By (1), it suffices to present λ � n such that
dB(λ) = k2 − 2k − 1. Let λ = (λ1, λ2, . . . , λk+1) where λ1 = k − 1, λ2 = k − 2,
λi = k − i + 1 for i = 3, 4, . . . , k, and λk+1 = 1. Imitating the proof of Theorem 3.1,
we can show that dB(λ) = k2 − 2k − 1.
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So far we have obtained an upper bound for DB(n) in Theorem 4.4. Next we will
find a lower bound for DB(n) and conjecture this lower bound is the actual value of
DB(n).

Lower Bound Theorem 4.5. For n ≥ 3 and n = 1+2+ · · ·+(k−1)+r, 1 ≤ r ≤ k,

DB(n) ≥

⎧⎪⎨
⎪⎩

(k − 3 − r)k + r + 2 for 1 ≤ r < 
k−1
2 �

n − k + 1 for r = 
k−1
2 � or 
k+1

2 �
(r − 2)k + r for 
k+1

2 � < r ≤ k.

Proof. It suffices to present λ � n such that dB(λ) is the stated lower bound on DB(n).
We consider three cases: (Associated arrays for two extremal partitions in Case (1)
and (3) are illustrated in Figure 8.)

Case (1) 1 ≤ r < 
k−1
2 �: Let λ = (λ1, λ2, . . . , λk) where λ1 = k − 2, λi = k − i for

i = 2, 3, . . . , k − r − 1, and λi = k − i + 1 for i = k − r, k − r + 1, . . . , k. Imitating the
proof of Theorem 3.1, we can show that dB(λ) = (k − 3 − r)k + r + 2.

Case (2) r = 
k−1
2 � or 
k+1

2 �: Let λ = (1, 1, . . . , 1) with n parts of 1. By applying
induction on i, we can show that B(1+1+2+3+···+i)(λ) = (n− (1+2+ · · ·+ i), i, i−1, i−
2, . . . , 2, 1) for i = 1, 2, . . . , k− 2. Thus dB(λ) = 1+1+2+3+ · · ·+(k− 2)+ (r− 1) =
n − k + 1.

Case (3) 
k+1
2 � < r ≤ k: Let λ = (λ1, λ2, . . . , λk+1) where λi = k−i for i = 1, 2, . . . , k−

r + 1, λi = k − i + 1 for i = k − r + 2, k − r + 3, . . . , k, and λk+1 = 1. Imitating the
proof of Theorem 3.1, we can show that dB(λ) = (r − 2)k + r.

Conjecture 4.6. [5] Assume n ≥ 3.

(1) If n ∈ [1 + 2 + · · ·+ (K − 1), 1 + 2 + · · ·+ (K − 1) + 
K−2
2 �], then DB(n) strictly

decreases from (K − 1)2 − (K − 1) to �K2−2K
2 �.

(2) If n ∈ [1 + 2 + · · · + (K − 1) + �K−2
2 �, 1 + 2 + · · · + (K − 1) + K], then DB(n)

strictly increases from �K2−2K
2 � to K2 − K .

Actually Etienne gave K2 − K in stead of (K − 1)2 − (K − 1) in (1) and gave
(K + 1)2 − (K + 1) in stead of K2 − K in (2). Both of these seem to be mistakes.

According to [5], this conjecture was confirmed for n = 3, 4, 5, . . . , 55. Here we
suggest a stronger conjecture that is confirmed for n = 3, 4, 5, . . . , 36 (see Figure 1),
and also for r = k − 1, k.

Conjecture 4.7. In Theorem 4.5 “DB(n) ≥” can be replaced with “DB(n) =.”
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Case (1)

1 0

00

0

01

1 0

1 1

11

1 1

Case (3)
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0

1 0

1 0

1 0

1 0

1 1

1 1

1 1 1

all ones

all zeroes all zeroes

= =

....
....

....
....

....
....

....
....

k k-1 -1

r r -2

M Mλ λ

Figure 8. Associated arrays for two extremal partitions in Theorem 4.5.

Section 5. Carolina Solitaire: A Variation of Bulgarian Solitaire

Let us now define Carolina Solitaire formally, and then derive analogues of some of
the results for Bulgarian Solitaire. For a positive integer n, we say λ = (λ1, λ2, . . .) is a
composition of n, and we write λ |= n, provided that the positive integers λ1, λ2, · · · , λs

(not necessarily in non-increasing order) add up to n and λi = 0 for i ≥ s + 1. We say
such λ has s (positive) parts, and we often drop the zeroes, writing λ = (λ1, λ2, . . . , λs).

The shift operation C on λ is the composition of n, denoted C(λ), obtained by
decreasing each part λi by one, inserting a part = s as the first part, and discarding
any zero parts. So C(i)(λ) denotes the composition obtained by successively applying
the shift operation C to λ a total of i times. Starting with a composition λ, we describe
Carolina Solitaire by repeatedly applying the shift operation C to obtain the sequence
of compositions

λ, C(λ), C(2)(λ), . . . .

For a couple of simple examples, we note that λ = (2, 1, 1, 1, 1) |= 6 gives the sequence
(2, 1, 1, 1, 1), (5, 1), (2, 4), (2, 1, 3), (3, 1, 2), (3, 2, 1), (3, 2, 1), . . . , while λ = (6, 1) |= 7
yields (6, 1), (2, 5), (2, 1, 4), (3, 1, 3), (3, 2, 2), (3, 2, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2),
(3, 2, 1, 1), (4, 2, 1), . . . . The first example is fixed at the composition (3, 2, 1) after
five steps, while the second example reaches a cycle after four steps.

We say a composition μ = (μ1, μ2, . . . , μs) |= n is a permutation of a composition
λ = (λ1, λ2, . . . , λs) |= n if the parts μi of μ are a permutation of the parts λi of λ. We
notice the connection between Bulgarian Solitaire and Carolina Solitaire: If μ |= n is a
permutation of λ � n then, for i > 0, C(i)(μ) |= n is also a permutation of B(i)(λ) � n.
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Similar to B-cyclic partition, dB(λ), and DB(n) in Bulgarian Solitaire, we can
define C-cyclic composition, dC(λ), and DC(n) in Carolina Solitaire: We say a compo-
sition μ |= n is C-cyclic if C(i)(μ) = μ for some i > 0. We will prove in Theorem 5.1
that λ |= n is C-cyclic if and only if λ � n is B-cyclic . To measure how long it takes
for Carolina Solitaire to cycle, for λ |= n we let dC(λ) denote the smallest integer i ≥ 0
such that C(i)(λ) is C-cyclic . Let DC(n) := max{dC(λ) : λ |= n}, so that for any λ |= n,
DC(n) steps reach a cycle. Trivially, DC(1) = DC(2) = 0 and DC(3) = 3. The values of
DC(n), 4 ≤ n ≤ 36, are displayed in Figure 9, which we worked out by computer. The
data are arranged using the representation n = 1 + 2 + · · · + (k − 1) + r, 1 ≤ r ≤ k.

We will show in Theorem 5.5 that DC(n) = k2 − 1 whenever n = 1 + 2 + · · ·+ k.
When n is a non-triangular number, we will prove in Theorem 5.8 that DC(n) ≤
k2 − k − 2 for k ≥ 4. We also present in Theorem 5.9 a lower bound for DC(n) that
we conjecture is the correct value in general.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
r = 1 DC(4) = 3 DC(7) = 6 DC(11) = 11 DC(16) = 19 DC(22) = 29 DC(29) = 41
r = 2 DC(5) = 5 DC(8) = 8 DC(12) = 12 DC(17) = 17 DC(23) = 23 DC(30) = 34
r = 3 DC(6) = 8 DC(9) = 10 DC(13) = 13 DC(18) = 18 DC(24) = 24 DC(31) = 31
r = 4 DC(10) = 15 DC(14) = 18 DC(19) = 21 DC(25) = 25 DC(32) = 32
r = 5 DC(15) = 24 DC(20) = 28 DC(26) = 32 DC(33) = 36
r = 6 DC(21) = 35 DC(27) = 40 DC(34) = 45
r = 7 DC(28) = 48 DC(35) = 54
r = 8 DC(36) = 63

Figure 9. DC(n) for n = 4, 5, . . . , 36.

Now we start with the characterization of C-cyclic compositions. Similar to the
associated (0, 1)-array for a partition, we can define the associated (0, 1)-array for a
composition λ = (λ1, λ2, . . . , λs) |= n:

Mλ = [mij ]∞i,j=1, where mij =
{

1, if j ≤ s and i ≤ λj ;
0, otherwise .

The columns of Mλ correspond to the parts of λ.
We notice that MC(λ) can be obtained directly from Mλ by a shifting process on

a (0, 1)-array: Assume λ = (λ1, λ2, . . . , λs) |= n and its associated array Mλ is given.
Step 1. Diagonally Circular Shifting: This is the same as Step 1 for Bulgarian
Solitaire described in Section 2. After Step 1, we obtain a new array, denote it Mλ

′.
Note that the numbers of 1’s in columns of Mλ

′ are s, λ1−1, λ2−1, . . . , λs−1, 0, 0, 0, . . . .
If λi − 1 = 0 and λi+1 − 1 > 0 for some i, then we need an extra step to obtain MC(λ).
Otherwise, Mλ

′ is the array MC(λ).
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Step 2. Left Shifting: Whenever there is some integer j such that the j-th column of
Mλ

′ is an all zero column and the (j + 1)-th column of Mλ
′ is not an all zero column,

we remove the j-th column and shift each column with larger index one column to the
left. We repeat this shifting until there does not exist such an integer j.

Using the shifting process described above and imitating the proof of Theorem
2.1, we can show

Theorem 5.1. Let n = 1 + 2 + · · ·+ (k − 1) + r, 1 ≤ r ≤ k. Then λ |= n is C-cyclic if
and only if λ has the form

(k − 1 + δk−1, k − 2 + δk−2, . . . , 2 + δ2, 1 + δ1, δ0),

where each δi is 0 or 1 and
∑k−1

i=0 δi = r.

Corollary 5.2. If n = 1 + 2 + · · · + k, then (k, k − 1, . . . , 2, 1) is the unique C-cyclic
composition of n.

By Theorems 2.1 and 5.1, λ |= n is C-cyclic if and only if λ � n is B-cyclic . So
the number of cycles for Carolina Solitaire is the same as that for Bulgarian Solitaire.

Next we shall prove DC(n) = k2 − 1 for triangular n.

Proposition 5.3. Let n = 1 + 2 + · · · + k and λ |= n. Then λ is a permutation of
(k, k − 1, . . . , 2, 1) if and only if dC(λ) ≤ k − 1.

Proof. If λ is a permutation of (k, k − 1, . . . , 1), it is easy to see that C(k−1)(λ) =
(k, k − 1, . . . , 1) and dC(λ) ≤ k − 1. If λ is not a permutation of (k, k − 1, . . . , 1), then
there exists μ = C(i)(λ), i ≥ 0, such that μ is not a permutation of (k, k − 1, . . . , 1)
and C(μ) is a permutation of (k, k − 1, . . . , 1). We note that μ must be a permutation
of (k + 1, k − 1, k − 2, k − 3, . . . , 2), and hence C(k−1)(μ) = (k, k − 1, . . . , 3, 1, 2) is not
C-cyclic . Therefore, dC(μ) ≥ k and dC(λ) ≥ k.

Combining Proposition 5.3 with Theorem 2.1, we have the following corollary that
describes the relation between Carolina Solitaire and Bulgarian Solitaire when n is a
triangular number.

Corollary 5.4. Let n = 1 + 2 + · · · + k and let λ |= n be a permutation of λ′ � n.
(1) dC(λ) ≤ k − 1 if and only if dB(λ′) = 0.
(2) If dC(λ) ≥ k then dC(λ) − dB(λ′) = k − 1.

Combining Corollary 5.4 with Theorem 3.7, we can prove:

Theorem 5.5. If n = 1 + 2 + · · · + k, then

DC(n) = k2 − 1.

Now we turn our attention to the value of DC(n) for non-triangular n.
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Proposition 5.6. Let λ |= n and n = 1 + 2 + · · ·+ (k − 1) + r, 1 ≤ r < k.

(1) If λ is a permutation of some C-cyclic composition of n, then dC(λ) ≤ k − 1.

(2) If λ is not a permutation of any C-cyclic composition of n, then dC(λ) ≥ k − 1.

Proof. (1) Assume λ is a permutation of μ |= n, where μ has the stated form of
Theorem 2.1. Then we note that C(k−1)(λ) also has the stated form of Theorem 2.1.
Thus C(k−1)(λ) is C-cyclic and dC(λ) ≤ k − 1.

(2) It is easy to verify the statement for k ≤ 3. So we may assume k ≥ 4. If λ

is not a permutation of any C-cyclic composition of n, then there exists μ = C(i)(λ),
i ≥ 0, such that μ is not a permutation of any C-cyclic composition and C(μ) is a
permutation of some C-cyclic composition. By Theorem 2.1, we note that μ must be
a permutation of (k + δk−1, k − 2 + δk−3, k − 3 + δk−4, . . . , 3 + δ2, 2 + δ1, δ0 + δk−2),
where each δi is 0 or 1, δ0 ≤ δk−2, and (δk−1, δk−2) 	= (0, 1). Then C(k−2)(μ) does not
have the stated form of Theorem 2.1. So dC(μ) ≥ k − 1, and hence dC(λ) ≥ k − 1.

We note that from the condition “dC(λ) = k − 1”, we cannot determine whether
λ is a permutation of some C-cyclic composition of n. For example, when k = 4,
λ = (3, 2, 4) |= 9 with dC(λ) = 3 is a permutation of the C-cyclic composition (4, 3, 2);
however, λ = (5, 4) |= 9 with dC(λ) = 3 is not a permutation of any C-cyclic composi-
tion.

Similar to Corollary 5.4 for triangular n, we have the following corollary that
describes the relation between Carolina Solitaire and Bulgarian Solitaire when n is
not a triangular number:

Corollary 5.7. Let n = 1 + 2 + · · · + (k − 1) + r, 1 ≤ r < k, and let λ |= n be a
permutation of λ′ � n.

(1) If dC(λ) ≤ k − 2 then dB(λ′) = 0.

(2) If dC(λ) ≥ k − 1 then dC(λ) − dB(λ′) = k − 2 or k − 1.

Proof. (1) follows immediately from Proposition 5.6(2) and we can prove (2) by ap-
plying induction on dC(λ). (For the induction basis, we note that if dC(λ) = k − 1,
then dB(λ′) = 0 or 1 by Proposition 5.6.)

We are now in a position to prove

Theorem 5.8. Let n be non-triangular and n = 1 + 2 + · · ·+ (k − 1) + r, 1 ≤ r < k.
Then

(1) DC(n) ≤ k2 − k − 2 for k ≥ 4.

(2) Furthermore, equality holds when k ≥ 4 and r = k − 1.

Proof. (1) follows from Theorem 4.4 and Proposition 5.7. To prove (2), it suffices
to present λ |= n such that dC(λ) = k2 − k − 2. Let λ = (λ1, λ2, . . . , λk+1) where
λ1 = k − 1, λ2 = k − 2, λi = k − i + 1 for i = 3, 4, . . . , k, and λk+1 = 1. Imitating the
proof of Theorem 3.1, we can show that dC(λ) = k2 − k − 2.
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Using the results for DB(n) and considering the relations between dC(λ) and
dB(λ), we have proven Theorems 5.5 and 5.8 for DC(n). We can also prove these two
theorems in another way: Note that we have Lemmas 3.3, 3.4, 3.5, 3.6, and 4.3 for
Bulgarian Solitaire. If we consider analogous lemmas for Carolina Solitaire, then we
can prove Theorems 5.5 and 5.8 directly.

Similar to Theorem 4.5 for DB(n), we have the following “Lower Bound Theorem”
for DC(n):

Lower Bound Theorem 5.9. For n ≥ 3 and n = 1+2+ · · ·+(k−1)+r, 1 ≤ r ≤ k,

DC(n) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(k − 2 − r)k + r for 1 ≤ r < 
k−1
2 �

n − 1 for 
k−1
2 � ≤ r ≤ 
k+1

2 � and r = 1
n for 
k−1

2 � ≤ r ≤ 
k+1
2 � and r ≥ 2

(r − 1)k + r − 1 for 
k+1
2 � < r ≤ k.

Proof. Similar to the proof of Theorem 4.5, we consider three cases: 1 ≤ r < 
k−1
2 �,


k−1
2 � ≤ r ≤ 
k+1

2 �, and 
k+1
2 � < r ≤ k. For each case, we take the same extremal

partition (composition) as that in the proof of Theorem 4.5.

We conclude this paper by giving the following conjecture that is confirmed for
n = 3, 4, . . . , 36 (see Figure 9), and also for r = k − 1, k.

Conjecture 5.10. In Theorem 5.9 “DC(n) ≥” can be replaced with “DC(n) =.”
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