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Abstract

There is a theory of continued fractions for Laurent series in x
−1 with

coefficients in a field F . This theory bears a close analogy with classical
continued fractions for real numbers with Laurent series playing the role
of real numbers and the sum of the terms of non-negative degree in x

playing the role of the integral part.
In this paper we survey the Laurent series u, with coefficients in a

finite extension of GF(2), that satisfy an irreducible equation of the form

a0(x) + a1(x)u + a2(x)u2 + a3(x)u3 = 0

with a3 6= 0 and where the ai are polynomials of low degree in x with
coefficients in GF(2). We are particularly interested in the cases in which
the sequence of partial quotients is bounded (only finitely many distinct
partial quotients occur). We find that there are three essentially different
cases when the ai(x) have degree ≤ 1. We also make some empirical
observations concerning relations between different Laurent series roots
of the same cubic.

1 Introduction

Let F be a field and F (x) be the field of rational functions over F in an inde-
terminate x. Let E = F ((x−1)) be the field of formal Laurent series

u = amxm + am−1x
m−1 + am−2x

m−2 + · · ·

in x−1 with coefficients in F . If am 6= 0 we say that the degree of u is m. E is a
topological field. Its topology is characterized by the property that a sequence
un of formal Laurent series converges to zero when their degrees converge to −∞.

The relationship between F (x) and the extension field E bears a close anal-
ogy to that between the rational numbers and the real numbers with polynomials
in x playing the role of integers.

In particular most of the basic facts about continued fractions for real num-
bers have analogies for E. For a Laurent series u we define its integral part to
be the sum of the terms of nonnegative degree in x.
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Then we define the continued fraction expansion of u with an inductive
calculation as follows. We set u0 = u. Given ui we define pi to be the integral
part of ui. If pi 6= ui, we define find ui+1 by 1/(ui − pi) so that ui satisfies

ui = pi +
1

ui+1
.

If pi = ui we terminate the procedure. The pi’s are called the partial quotients
the ui’s the complete quotients.

The sequence of p’s terminates exactly when u is rational. If it terminates
with pn, then we have

u = p0 +
1

p1 +
1

p2 +
1

.. . 1

pn
.

Otherwise it makes sense to write

u = p0 +
1

p1 +
1

p2 +
.. .

Indeed if we define cn by

cn = p0 +
1

p1 +
1

p2 +
1

.. . 1

pn
,

cn is called the nth convergent to u and the sequence c0, c1, . . . of convergents
converges in E to u.

More generally in the irrational case each complete quotient has the contin-
ued fraction expansion

un = pn +
1

pn+1 +
1

pn+2 +
.. .

We say that an irrational Laurent series u has bounded partial quotients if
the polynomials pk are bounded in degree and we say that a Laurent series is
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algebraic if it is algebraic over F (x). It can be proved that algebraic Laurent
series whose minimum polynomials have degree 2 always have bounded partial
quotients. In fact the sequence of partial quotients is eventually periodic (by
analogy with the theory of continued fractions for quadratic algebraic numbers).

Baum and Sweet showed in [1] that, when F = GF(2), the cubic equation
(in y with coefficients in F (x))

x + y + xy3 = 0

has a unique Laurent series solution with coefficients in GF(2) and that this
solution has bounded partial quotients. Their proof does not yield a descripton
of what the sequence of partial quotients is. Later Mills and Robbins succeeded
in giving a complete description of that sequence of partial quotients in [4]. They
also provided some examples in higher characteristic. Nevertheless it appears
that there is still very little known about the nature of continued fractions of
algebraic Laurent series. In particular, even though there seem to be many
examples with bounded partial quotients, for any particular example, it may
be difficult or impossible to provide a proof. Baum and Sweet also gave some
simple examples with unbounded partial quotients.

Algebraic Laurent series with unbounded partial quotients can also be quite
complicated even when the partial quotient sequence is recognizable. Such Lau-
rent series were studied by Mills and Robbins in [4] and by Buck and Robbins
in [2] and Lasjaunias in [3].

In this paper we survey cubic Laurent series in characteristic 2. More pre-
cisely we report on algebraic Laurent series with coefficients in a finite field of
characteristic 2 that are solutions of an irreducible equation of the form

a0(x) + a1(x)y + a2(x)y2 + a3(x)y3 = 0

where the polynomials ai(x) have coefficients in GF(2). We concentrate pri-
marily on the cases where the coefficients ai(x) have degrees ≤ 1. However, we
also make some general observations concerning the relationships that appear
to hold between different roots of the same cubic.

2 Algorithms

In this section we explain how we perform the calculations in our survey.
Let F be a finite field of characteristic 2. In most of what follows F will

be the field GF(2). Suppose that we are given polynomials a0(x), a1(x), a2(x),
a3(x) with a3(x) 6= 0 in F [x]. There are at most three Laurent series u in E,
with coefficients in an algebraic extension of F , that satisfy the equation

a0(x) + a1(x)u + a2(x)u2 + a3(x)u3 = 0 . (1)

Using classical Newton polygon methods, we can find the beginnings of the Lau-
rent series solutions for any algebraic equation. From the initial parts of these
Laurent series we can calculate the first few partial quotients of any solution.
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When a solution has bounded partial quotients, this method requires O(n2) field
operations to find n partial quotients. However, in the case of cubic equations
in characteristic 2, the method, implicit in Mills and Robbins [4], allows for
calculation of n partial quotients in O(n) time when the degrees of the partial
quotients are bounded. We review that method here.

The key to the computation is to rewrite (1) in the form

u =
Q(x)u2 + R(x)

S(x)u2 + T (x)
(2)

expressing u as a fractional linear transformation of u2 with coefficients that are
polynomials in x.

We can assume without loss of generality that no non-constant polynomial
divides all four of Q, R, S and T . Let D = QT − RS. If D = 0, then u is a
rational function of x. But we are only interested in u’s for which the minimum
polynomial is cubic. So we may assume that D 6= 0. We will call the degree of
D the height of the cubic Laurent series u and denote this quantity by ht(u).

Suppose that u is such a Laurent series with partial quotients p0, p1, p2, . . .
and complete quotients u0, u1, u2, . . . . Then we have

ui = pi + 1/ui+1 =
pui+1 + 1

ui+1

for all i ≥ 0. This shows that ui is a fractional linear transformation of ui+1

where the matrix that relates them has determinant 1. It follows that, for any i
and j, ui and uj are related by a fractional linear transformation of determinant
1 with polynomial coefficients.

In characteristic 2, since squaring is linear, it is immediate that u2 has
partial quotients p2

0, p
2
1, p

2
2, . . . and complete quotients u2

0, u
2
1, u

2
2, . . . . Again,

for any i and j, u2
i and u2

j are related by a fractional linear transformation of
determinant 1.

It follows that, for any i and j, ui is a fractional linear transformation of u2
j

with the degree of the determinant equal to ht(u). Suppose that, for some i and
j, we know polynomials Q, R, S and T such that

ui =
Qu2

j + R

Su2
j + T

(3)

There are three useful computational principles. First, if we know the value of
pj, we can deduce that

ui =
Q(p2

j + 1/u2
j+1) + R

S(p2
j + 1/u2

j+1) + T
=

(Qp2
j + R)u2

j+1 + Q

(Sp2
j + T )u2

j+1 + S
(4)

so that we have found the matrix relating ui and uj+1 by performing a suitable
column operation on our matrix and exchanging columns.
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Similarly, if we know the value of pi, we can deduce that

ui+1 = 1/(pi + ui) =
Su2

j + T

(Q + piS)u2
j + (R + piT )

(5)

so that we have found the matrix relating ui+1 and uj by performing a suitable
row operation on our matrix and exchanging rows.

Finally the main computational principle is that, if we have an equation of
the form (3) with known Q, R, S and T and the degree of pj is also known, then
we can sometimes deduce that pi is (the integral part of) the quotient when Q
is divided by S. Note that from (3) we always have

ui −
Q

S
=

Qu2
j + R

Su2
j + T

−
Q

S
=

−D

S(Su2
j + T )

.

Since deg(pj) = deg(uj) is known, we can compute deg(Su2
j). If deg(Su2

j) >

deg(T ), then we know deg(Su2
j + T ) and therefore deg(S(Su2

j + T )). Finally, if
this last degree exceeds ht(u), then we can conclude that ui and Q/S have the
same integral part and that therefore pi is the quotient when Q is divided by S.
(We remark that, with sufficiently detailed knowledge of uj, it is possible that
we can deduce that deg(S(Su2

j +T )) > ht(u) without requiring that deg(Su2
j) >

deg(T ). But in our computations we deduce new partial quotients this way only
when we have the sufficient conditions that deg(S) + 2 deg(pj) > deg(T ) and
2 deg(S) + 2 deg(T ) > ht(u).)

Once pi is known we can perform an operation of type (5) and obtain a
new relation of the form (3) from which we may be able to find another partial
quotient, and so forth.

When we cannot deduce the value of pi this way, we may still be able to
make progress if we know sufficiently many terms of the sequence pj , pj+1, . . . .
Let us assume that j > 0 so that deg(pj) > 0. If deg(S) ≥ deg(T ), then
deg(S(Su2

j + T )) = 2(deg(S) + deg(uj)). Moreover subsequent operations of
type (4) will always yield relations of the form (3) in which deg(S) ≥ deg(T ),
where the sequence of S’s have degrees increasing by at least 2. Thus after
a few steps of this type we will be in position to compute one or more new
partial quotients pi. If we are stuck with a case in which deg(S) < deg(T ),
then a transformation of type (4) will yield a new relation of the form (3) in
which deg(T ) is smaller than it was before. But there can be only finitely many
steps of this type. Thus eventually we will arrive at the favorable case where
deg(S) ≥ deg(T ) and in a few more steps we will be able to compute a new
partial quotient.

We can now see the outline of a general computational procedure. We start
with a relation of the form (3) and i = j = 0 and use classical methods to
compute the first few partial quotients p0, p1, . . . . Then, when possible, we use
the main principle above to compute a new partial quotient pi and adjoin it to
our list of known partial quotients, if it is not already known. (If it is already
known, we have a check on our results.) We then use the value of pi to obtain
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a new relation of the form (3) where i has been replaced by i + 1. If we cannot
use the main principle, provided pj is known, we make a transformation of the
type (4) yielding a new relation where j has been replaced by j + 1. Thus
the first type of step produces new partial quotients and advances i while the
second type of step uses old partial quotients and advances j. If the partial
quotient pj is always known when needed, we can continue indefinitely. In
particular if i > j we can continue. We have observed empirically that on
average in this algorithm i increases twice and fast as j so the production rate
for partial quotients is approximately twice the consumption rate with small
local variations. However, our initial relation of the form (3) has i = j = 0, so
there can be some difficulty getting started. Thus we use classical methods to
find a few partial quotients for an initial supply. After the first few steps, i seems
to stay reliably ahead of j so production stays reliably ahead of consumption.

The computational procedure can also be thought of as the operation of an
automaton. From this point of view a state of the automaton is one of the
matrices relating ui and u2

j from which no deduction of a partial quotient is
immediately possible. We think of the use of pj as the reading of an input by
the automaton, and we regard any partial quotients pi, pi+1, · · · that can be
computed as new outputs and we view the state arrived at, after computing the
new partial quotients, as the new state. Note that this automaton is unusual in
that its inputs come from its previous outputs.

In examples with bounded partial quotients it appears that only finitely
many states occur, so we have something like a finite state automaton. However,
we note that this is not what is usually meant by a finite state automaton.
The reason is that we do not see every partial quotient being read in every
state. Instead we typically find that, for each state, there are certain partial
quotients that are never read when we are in that state. Moreover, it is usually
the case that if one of these were read while in that state, partial quotients
never previously seen would be output, or states never previously seen would
occur. Indeed it seems to be the avoidance of certain combinations of states and
input polynomials that makes the partial quotient sequence bounded. Thus the
automaton description of the partial quotient sequence removes the algebra of
the problem and makes it combinatorial. But it does not solve the problem
since there appears to be no simple way to prove that the unseen combinations
will never occur.

The finite automaton description does, however, lead to the possibility of
even more efficient computation of the partial quotient sequence since we can
remember every combination of input polynomial and state that occurs and
what the resulting outputs are and what the new state is. This way the whole
process can be implemented by look-up tables. We have not actually used this
refinement in our computations, however.

Even without the last refinement, in a typical case with bounded partial
quotients, we can find a million or so partial quotients in just a few seconds.

There are three additional properties of algebraic elements with bounded
partial quotients that simplify our investigation.
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Theorem 1 Suppose that

u =
Qu2 + R

Su2 + T

and that deg(Su2) > deg(T ) and deg(u) ≥ 0. If u has a partial quotient, other
than the first, with degree > ht(u), then u has unbounded partial quotients.

Proof: Our argument is essentially from [4]. We introduce the usual non-
archimedean absolute value on the field of Laurent series in which |x| is set to
an arbitrary real number > 1 and |u| = |x|deg(u) for any Laurent series u.

If the convergent cn of u is an/bn with an and bn relatively prime, then it is
known [1] that

|u − an/bn| =
1

|pn+1||bn|2
,

and that, conversely, if a and b are relatively prime polynomials with

|u − a/b| =
1

|x|k|b|2

for some positive integer k, then there is a non-negative integer n with a/b = cn

and k = deg(pn+1). We call k the accuracy of the convergent a/b.
In particular since we assume that u has degree ≥ 0, every convergent a/b

of u has |a/b| = |u|.
Now suppose that c = a/b is a convergent of u of accuracy k > ht(u). Since

|a/b| = |u|, we have |Sa2/b2| = |Su2| > |T | so |Sa2| > |Tb2| and |Sa2 + Tb2| =
|Sa2| = |Sb2u2| = |Sb2u2 + Tb2| 6= 0. It follows that

∣

∣

∣

∣

u −
Qa2 + Rb2

Sa2 + Tb2

∣

∣

∣

∣

=

∣

∣

∣

∣

Qu2 + R

Su2 + T
−

Qc2 + R

Sc2 + T

∣

∣

∣

∣

=

∣

∣

∣

∣

(QT − RS)(u − c)2

(Su2 + T )(Sc2 + T )

∣

∣

∣

∣

=
1

|x|2k

∣

∣

∣

∣

(QT − RS)

(Sb2u2 + Tb2)(Sa2 + Tb2)

∣

∣

∣

∣

=
1

|x|2k

∣

∣

∣

∣

(QT − RS)

(Sa2 + Tb2)2

∣

∣

∣

∣

.

This shows that
(

Qa2 + Rb2
)

/
(

Sa2 + Tb2
)

is a convergent of accuracy ≥ 2k −
ht(u) > k. It follows that there are convergents of arbitrarily large accuracy
and therefore unbounded partial quotients.

Lemma 1 If in the course of our algorithm for computing the continued fraction
expansion of the cubic Laurent series u, we find the partial quotient pi when
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i ≥ j > 0, then the complete quotient ui satisfies an equation of the form

ui =
Qu2

i + R

Su2
i + T

with deg(Su2
i ) > deg(T ).

Indeed since by hypothesis we can compute pi, ui is related to u2
j by a

fractional linear transformation with matrix
[

Q R
S T

]

in which deg(Su2
j) > deg(T ) and deg(S2u2

j) > ht(u). We will only be concerned
with the first condition.

If j = i we are done. However, if j < i, we can depart from the usual
computation and perform a sequence of steps in which we successivley consume
the partial quotients pj, pj+1, . . . , pi.

In the first such step we replace S with S′ = Sp2
j + T , and replace T with

T ′ = S, and replace uj by uj+1. Then we have

deg(S′u2
j+1) = deg(S) + 2 deg(pj) + 2 deg(pj+1) > deg(S) = deg(T ′).

The same argument shows that subsequent steps preserve this relationship be-
tween S and T . So when pi is finally consumed, we will have ui related to u2

i

by a matrix with the desired property.

Corollary 1 Suppose that, in the course of our calculation of the continued
fraction expansion of the cubic Laurent series u, we find a partial quotient pi

when i ≥ j > 0, and that we find a partial quotient pk, with k > i of degree
exceeding ht(u). Then u has unbounded partial quotients.

In practice Corollary 1 can be applied quite efficiently. For most algebraic
power series, the conditions of the corollary are met for rather small i, j and k,
proving that the partial quotient sequence is unbounded.

We believe that series that cannot be ruled out this way have bounded partial
quotients although it is still difficult in any individual case to prove that this is
the case.

Here is another useful principle, for which a proof is given in the original
Baum–Sweet paper [1].

Theorem 2 If u and v are irrational Laurent series and u and v are related
by a fractional linear transformation (of non-zero determinant) with coefficients
that are polynomials, then u has bounded partial quotients if and only if v does.

Corollary 2 If the Laurent series u satisfies an irreducible cubic equation, with
coefficients polynomial in x, and u has bounded partial quotients then every
irrational element of the field generated by u over the field of rational functions
of x has bounded partial quotients.

8



Indeed if v is in the (cubic) field generated by u, then 1, u, v and uv must
satisfy a linear relation with polynomial coefficients. We can then solve to find
v as a fractional linear transformation of u.

We will apply the preceding theorem only to 1/u and 1 + u.
Finally we have the simple principle, observed in [1].

Theorem 3 If u is an algebraic Laurent series with bounded partial quotients,
and if, in the continued fraction for u, we replace x by any polynomial p(x) of
positive degree in x, then we obtain another algebraic continued fraction with
bounded partial quotients.

We will only be interested in substituting x + 1 for x.

3 Results

Here we investigate solutions of (1) when each of the polynomials ai(x) has
coeffecients in GF(2). We concentrate mainly on the case that the degrees of the
ai’s are all ≤ 1. (We have also used our computational methods to investigate
what happens when the ai have larger degree and make a few observations
below concerning this more general situation.) There are 256 such equations.
However, we are interested only in polynomials which are irreducible over the
algebraic closure of GF(2). This leaves 96 equations.

We test each of the 96 equations for Laurent series solutions with bounded
partial quotients. In most cases we can use Corollary 1 above to eliminate
the solution from contention rather quickly. Any series for which we find 106

partial quotients without triggering the condition of Corollary 1 we declare to
have “probable bounded partial quotients”.

There are 36 polynomials in our collection that have at least one Laurent
series root with probable bounded partial quotients. However, from the remarks
above, there is a group of twelve substitutions generated by the substitutions

x → x + 1 ;
y → y + 1 ;
y → 1/y ,

which preserve degrees and the property of having bounded partial quotients.
None of the 36 polynomials is fixed under any of these substitutions, so there
are just three orbits. Here we give a representative of each of the three orbits.

case A : x + y + xy3 = 0 ;
case B : x + xy + (1 + x)y3 = 0 ;
case C : x + (1 + x)y + xy3 = 0 .

We give some empirical information about the partial quotient sequences of the
solutions in each of the three cases. Each of the equations has three Laurent
series solution. We shall see that in each case the three solutions have closely
related continued fraction expansions. However, there are large qualititive dif-
ferences between the three cases.
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3.1 Case A

Case A is the previously studied Baum–Sweet cubic. However, previous studies
considered only the solution that has coefficients in GF(2). The Case A equation
has two other Laurent series solutions with coefficients in GF(4). These do not
seem to have been studied. These two roots are equivalent in that one is mapped
to the other by the Frobenius automorphism of GF(4). They appear also to have
bounded partial quotients.

What follows is a description of one of the solutions in GF(4). The reader
should bear in mind that we have not proved that this description is correct
although it does seem likely that the method of [4] could be used to construct
a proof.

A reasonable measure of the complexity of such a proof is the complexity
of the automaton. We measure this by the number of distinct pairs that occur
each consisting of an input polynomial and a state. For this polynomial the
number seems to be 36. By contrast the GF(2) solution is simpler and only
leads to 12 pairs.

We represent GF(4) as the extension of GF(2) generated by an element t
satisfying t2 = t + 1 and we describe the solution u to the Case A equation
whose leading term is the constant t. There are nine different polynomials that
occur as partial quotients. We label these in order of appearance with the letters
a, . . . , i as follows.

a = t
b = tx
c = t + x
d = (1 + t) + x2

e = x
f = x2

g = 1 + t + tx
h = (1 + t)x2

i = t + (1 + t)x2

Next we define some strings of polynomials. For each non-negative integer n we
define

xn to be the list of length (8 · 4n − 5)/3 alternating h’s and b’s of the form
hbh . . . hbh.

yn to be the list of length (16 · 4n − 7)/3 of the form efe . . . efe.
un to be the list of length (8 · 4n − 5)/3 of the form fef . . . fef .
vn to be the list of length (16 · 4n − 7)/3 of the form bhb . . . bhb.
Now here is what the partial quotient sequence looks like. The first two

partial quotients of u are a, b. This is followed by an infinite sequence of finite
sequences A0, A1, A2, . . . , with Ai palindromic for all i > 0. The A’s will be
defined by a somewhat complicated recursion. We have the initial conditions

A0 = cdefcb, A2 = ghg, A4 = gibhbig

and, for n odd, explicit formulas: if n = 1 mod 4, then

An = eg x(n−1)/4 ge

10



and if n = 3 mod 4, then

An = cd y(n−3)/4 dc.

Here is what happens if n is even and ≥ 6. If n = 0 mod 4,

An = hn gi v(n−8)/4 ig r(hn);

for n = 2 mod 4,
An = hn bc u(n−6)/4 cb r(hn),

where r is the operator that reverses the terms in a sequence and hn is defined
below.

For n > 0 define the palindrome pn by

pn = A0 . . . A2n−2A2n−1A2n−2 . . . r(A0).

Also set p0 = A3 = cdefedc and p−1 = cfc.
We have

h6 = gibhge

If n ≥ 8, then, for n = 0 mod 4,

hn = hn−2 bc u(n−8)/4 cb p(n−10)/2

and, for n = 2 mod 4,

hn = hn−2 gi v(n−10)/4 ig p(n−10)/2.

This completes the recursive description of the pattern of partial quotients.
This pattern has been verified to continue for one million partial quotients.

The continued fraction expansion of the solution to Case A with coefficients
in GF(2) is described in [4]. There it is proved that the partial quotients follow
a pattern somewhat similar to the one given here. But the connection between
the patterns is actually much more striking. We have observed empirically that
we obtain the partial quotient sequence for the GF(2) solution by replacing
every non-zero coefficient of every partial quotient of the GF(4) solution with a
1. We have not found an explanation for this phenomenon.

This phenomenon does not appear to be restricted to the Baum–Sweet cubic.
We have observed several other cases of equations of the form of (1) that have
two roots with bounded partial quotients in GF(4) and a root in GF(2). In
these examples we allowed the degrees of the ai(x) to exceed 1. In each case
the root in GF(2) also had bounded partial quotients and was related to the
GF(4) roots, but we have not been able to give a precise description of what
that relationship is.

11



3.2 Case B

It appears that neither Case B nor Case C has been previously studied. They
both have three solutions with coefficients in GF(8). In each case all three are
equivalent under the Frobenius automorphism of GF(8).

Case B is unusual in that all its partial quotients (except the first, which is
constant) have degree 1. It also has the unusual property that, in the finite au-
tomaton, after the first few inputs, every input produces precisely two outputs.
In a sense this example is much more complicated than Case A since there are
737 distinct input-state pairs that occur. On the other hand inspection of the
list of pairs shows that there are a great many symmetries and much structure
to the list so the complication may not be quite so great.

We can conjecture a recursion for the sequence of partial quotients. We
represent GF(8) as the field generated over GF(2) by a solution t to 1+t+t3 = 0.
For brevity we will identify elements of GF(8) with the integers from 0 to 7,
according to their binary expansions. Thus we will denote 0, 1, t, 1 + t, t2,
1 + t2, t + t2, 1 + t + t2 respectively by 0, 1, 2, 3, 4, 5, 6, 7.

Also, for brevity, we will denote a polynomial a+bx+cx2+· · · by the sequence
of digits abc . . . . So for example 13 stands for the polynomial 1 + (1 + t)x.

Using this notation we find that the first 4 partial quotients, p0, p1, p2, p3 are

2, 13, 13, 01.

Thereafter, if we group the remaining partial quotients in quadruples,

(p4, p5, p6, p7), (p8, p9, p10, p11), . . . ,

there are precisely 63 quadruples that occur.
Also the 12 partial quotients (p4, . . . , p15) are

33, 11, 73, 04, 53, 23, 41, 07, 11, 77, 21, 05 .

Thereafter, if we group the remaining partial quotients in 16-tuples,

(p16, p17, . . . , p31), (p32, . . . , p47), . . . ,

there are precisely 63 16-tuples that occur.
Finally there is a bijection between the set of quadruples and the set of

16-tuples such that, after applying the bijection the sequence of quadruples be-
ginning with (p4, p5, p6, p7) becomes the sequence of 16-tuples, beginning with
(p16, . . . , p31). The list of 63 quadruples, together with their bijectively asso-
ciated 16-tuples, is given in Table 1 below. One can use this table, together
with the initial conditions above, to generate the sequence of partial quotients.
For example, since we have (p4, p5, p6, p7) = (33, 11, 73, 04), we can deduce that
(p16, . . . , p31) is the associated 16-tuple (61, 03, . . . , 54, 02).

It is not hard to find algebraic relationships in Table 1, particularly if we
group the rows according to the positions of zeroes in each row. However these
algebraic relations have not yielded additional insight and we omit them.
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Table 1: Case B: quadruples and 16-tuples

11 33 41 07 54 02 64 03 44 33 34 06 14 12 76 04 66 44 26 05

11 55 61 03 57 02 47 07 77 77 17 01 27 52 64 03 44 33 34 06

11 77 21 05 56 02 76 04 66 44 26 05 36 62 47 07 77 77 17 01

12 16 54 02 55 11 35 06 55 66 25 05 45 71 73 04 33 44 63 03

13 01 73 04 53 23 41 07 11 77 21 05 71 43 34 06 44 66 54 02

14 12 76 04 55 55 15 01 55 11 35 06 75 45 61 03 11 33 41 07

15 01 35 06 51 27 72 04 22 44 32 06 62 37 17 01 77 11 57 02

16 14 32 06 55 66 25 05 55 55 15 01 65 36 42 07 22 77 72 04

17 01 57 02 52 24 63 03 33 33 13 01 43 74 26 05 66 55 56 02

21 05 61 03 36 62 47 07 77 77 17 01 27 52 64 03 44 33 34 06

22 44 32 06 35 06 25 05 55 55 15 01 65 36 42 07 22 77 72 04

22 66 42 07 32 06 42 07 22 77 72 04 12 16 54 02 44 22 64 03

22 77 72 04 34 06 54 02 44 22 64 03 74 46 25 05 55 55 15 01

23 51 57 02 33 44 63 03 33 33 13 01 43 74 26 05 66 55 56 02

24 53 13 01 33 33 13 01 33 11 73 04 53 23 41 07 11 77 21 05

25 05 15 01 37 67 21 05 11 55 61 03 51 27 72 04 22 44 32 06

26 05 56 02 31 65 56 02 66 22 76 04 46 75 15 01 55 11 35 06

27 52 64 03 33 11 73 04 33 44 63 03 23 51 57 02 77 22 47 07

31 65 56 02 66 55 56 02 66 22 76 04 46 75 15 01 55 11 35 06

32 06 42 07 65 36 42 07 22 77 72 04 12 16 54 02 44 22 64 03

33 11 73 04 61 03 41 07 11 77 21 05 71 43 34 06 44 66 54 02

33 33 13 01 63 03 13 01 33 11 73 04 53 23 41 07 11 77 21 05

33 44 63 03 64 03 34 06 44 66 54 02 24 53 13 01 33 11 73 04

34 06 54 02 67 31 35 06 55 66 25 05 45 71 73 04 33 44 63 03

35 06 25 05 62 37 17 01 77 11 57 02 37 67 21 05 11 55 61 03

36 62 47 07 66 44 26 05 66 55 56 02 16 14 32 06 22 66 42 07

37 67 21 05 66 22 76 04 66 44 26 05 36 62 47 07 77 77 17 01

41 07 21 05 14 12 76 04 66 44 26 05 36 62 47 07 77 77 17 01

42 07 72 04 12 16 54 02 44 22 64 03 74 46 25 05 55 55 15 01

43 74 26 05 11 55 61 03 11 33 41 07 31 65 56 02 66 22 76 04

44 22 64 03 13 01 73 04 33 44 63 03 23 51 57 02 77 22 47 07

44 33 34 06 17 01 57 02 77 22 47 07 67 31 35 06 55 66 25 05

44 66 54 02 15 01 35 06 55 66 25 05 45 71 73 04 33 44 63 03

45 71 73 04 11 33 41 07 11 77 21 05 71 43 34 06 44 66 54 02

46 75 15 01 11 77 21 05 11 55 61 03 51 27 72 04 22 44 32 06

47 07 17 01 16 14 32 06 22 66 42 07 52 24 63 03 33 33 13 01

51 27 72 04 44 66 54 02 44 22 64 03 74 46 25 05 55 55 15 01

52 24 63 03 44 33 34 06 44 66 54 02 24 53 13 01 33 11 73 04

53 23 41 07 44 22 64 03 44 33 34 06 14 12 76 04 66 44 26 05

54 02 64 03 45 71 73 04 33 44 63 03 23 51 57 02 77 22 47 07

55 11 35 06 42 07 72 04 22 44 32 06 62 37 17 01 77 11 57 02

55 55 15 01 41 07 21 05 11 55 61 03 51 27 72 04 22 44 32 06

55 66 25 05 47 07 17 01 77 11 57 02 37 67 21 05 11 55 61 03

56 02 76 04 46 75 15 01 55 11 35 06 75 45 61 03 11 33 41 07

57 02 47 07 43 74 26 05 66 55 56 02 16 14 32 06 22 66 42 07

61 03 41 07 27 52 64 03 44 33 34 06 14 12 76 04 66 44 26 05

62 37 17 01 22 44 32 06 22 66 42 07 52 24 63 03 33 33 13 01

63 03 13 01 24 53 13 01 33 11 73 04 53 23 41 07 11 77 21 05

64 03 34 06 23 51 57 02 77 22 47 07 67 31 35 06 55 66 25 05

65 36 42 07 22 66 42 07 22 77 72 04 12 16 54 02 44 22 64 03

66 22 76 04 25 05 15 01 55 11 35 06 75 45 61 03 11 33 41 07

66 44 26 05 21 05 61 03 11 33 41 07 31 65 56 02 66 22 76 04

66 55 56 02 26 05 56 02 66 22 76 04 46 75 15 01 55 11 35 06

67 31 35 06 22 77 72 04 22 44 32 06 62 37 17 01 77 11 57 02

71 43 34 06 77 11 57 02 77 22 47 07 67 31 35 06 55 66 25 05

72 04 32 06 74 46 25 05 55 55 15 01 65 36 42 07 22 77 72 04

73 04 63 03 71 43 34 06 44 66 54 02 24 53 13 01 33 11 73 04

74 46 25 05 77 77 17 01 77 11 57 02 37 67 21 05 11 55 61 03

75 45 61 03 77 22 47 07 77 77 17 01 27 52 64 03 44 33 34 06

76 04 26 05 75 45 61 03 11 33 41 07 31 65 56 02 66 22 76 04

77 11 57 02 73 04 63 03 33 33 13 01 43 74 26 05 66 55 56 02

77 22 47 07 76 04 26 05 66 55 56 02 16 14 32 06 22 66 42 07

77 77 17 01 72 04 32 06 22 66 42 07 52 24 63 03 33 33 13 01
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3.3 Case C

Case C appears to have bounded partial quotients but we have not been able to
identify the pattern of partial quotients. Other than the first partial quotient
which is a constant, the polynomials that occur as partial quotients comprise
exactly the set of all polynomials of degree 1 together with the squares of all
polynomials of degree 1. Thus, ignoring the first partial quotient, there are 112
possible partial quotients.

This case seems to be of much greater complexity than the others. Over
17000 input-state pairs occur during the generation of the first four million
partial quotients and it seems as if one would have to compute many more before
all possible pairs would occur. This casts some doubt on the boundedness of
the partial quotients.

Even though we cannot give a simple description of the partial quotient se-
quence, the sequence itself is far from random looking. For example, it contains
very long subsequences which alternate between a multiple of x and a multiple of
x2. These subsequences are the centers of even larger palindromic subsequences.
The lengths of these palindromic subsequences appear to be unbounded.

In Table 2, we have listed the first 1000 partial quotients for the solution
whose constant term is t in the same notation as we used for Case B. (The
first row of the table contains the first 20 partial quotients, the second row the
second twenty, etc.)

14



Table 2: Case C: first 1000 partial quotients

2 17 52 35 77 32 36 31 73 206 13 73 74 47 05 67 21 001 01 201

41 03 31 66 64 43 62 74 24 53 76 46 25 002 25 46 46 25 002 05

702 15 15 102 75 23 04 53 76 26 57 05 47 74 73 13 306 33 36 35

15 702 05 002 05 702 15 35 36 13 02 43 34 007 34 43 12 76 003 06

703 26 44 14 007 04 307 74 15 62 16 63 77 61 23 67 62 52 36 31

53 12 56 44 74 02 64 507 04 007 14 44 76 55 73 36 05 16 51 57

004 07 004 07 004 07 004 07 004 57 51 16 05 36 73 55 76 64 53 16

32 47 604 07 004 07 604 47 32 16 73 05 53 13 006 13 53 45 61 001

01 201 41 53 12 66 16 003 16 66 22 31 001 01 501 71 66 64 53 76

66 72 14 75 61 201 21 47 67 34 05 74 207 54 56 62 35 07 15 13

57 74 03 14 51 501 21 57 504 07 004 17 37 23 41 001 41 23 47 76

61 71 05 51 62 305 22 35 07 05 47 74 73 13 506 03 006 03 006 03

006 03 006 03 006 03 006 03 006 03 006 03 006 03 506 13 73 74 47 05

07 35 22 305 62 51 05 71 61 16 05 26 22 21 31 07 71 74 26 003

06 003 06 003 06 003 06 003 26 74 71 07 31 21 22 26 15 71 71 15

56 603 06 003 06 603 56 15 71 21 02 71 73 006 73 71 52 64 007 04

407 34 43 62 04 62 23 306 03 006 03 306 23 62 04 52 51 55 37 004

37 55 11 46 003 06 503 36 37 01 27 34 55 35 46 36 54 507 34 13

51 21 02 71 73 006 03 506 13 03 43 77 61 23 67 12 71 33 75 002

05 402 25 06 45 77 32 36 31 53 12 46 27 12 71 13 44 15 62 16

63 27 104 07 004 37 55 61 401 01 001 21 67 75 15 002 15 75 07 35

12 54 63 206 03 006 03 206 63 54 12 65 21 53 12 56 44 54 37 52

35 37 204 07 004 57 51 66 64 43 62 74 24 43 62 54 33 57 74 03

14 31 35 002 05 002 05 002 05 002 05 002 05 002 05 002 05 002 05 002

05 002 05 002 05 002 05 002 05 002 05 002 05 002 05 002 05 002 05 002

05 002 05 002 35 31 14 03 74 57 33 54 62 43 24 74 62 43 64 66

51 57 004 07 204 37 35 52 37 54 44 56 12 53 51 41 64 67 07 27

65 302 55 32 02 02 32 65 21 73 706 03 006 03 006 03 006 03 006 03

006 03 006 03 006 03 006 03 006 03 706 73 21 65 32 02 02 32 55 302

65 27 07 67 64 71 07 41 55 47 14 06 24 65 56 003 06 003 06 003

06 003 06 003 56 65 24 06 14 47 55 41 47 67 24 72 76 103 06 003

06 103 76 72 24 47 05 67 21 001 21 67 75 15 002 05 302 35 41 27

54 04 04 54 27 41 55 37 004 07 004 07 004 07 004 07 004 37 55 41

27 54 04 04 54 67 47 01 37 36 503 06 003 06 503 36 37 01 67 45

66 67 004 67 66 55 43 006 03 406 53 57 74 53 76 66 72 14 75 61

201 21 47 67 34 05 14 32 005 02 205 72 07 12 11 47 37 43 43 37

67 64 31 35 002 35 31 74 26 003 06 603 56 25 502 65 27 07 67 64

21 56 06 76 43 61 57 404 27 23 41 001 41 23 37 17 004 07 504 57

21 501 51 14 03 74 57 13 15 07 35 62 56 54 207 74 05 34 67 47

21 201 61 75 14 72 66 76 53 64 66 71 501 01 001 31 22 66 16 003

16 66 12 53 41 201 01 001 61 45 53 13 006 13 53 05 73 16 32 47

604 07 004 07 604 47 32 16 53 64 76 55 73 36 05 16 51 57 004 07

004 07 004 07 004 07 004 57 51 16 05 36 73 55 76 14 47 05 47 74

73 13 206 73 31 36 32 77 35 52 57 77 36 503 06 003 46 11 55 37

004 37 55 61 701 51 14 03 74 57 13 15 07 35 62 56 54 307 24 41

51 03 31 46 703 66 73 05 03 25 52 57 17 304 07 004 07 004 07 004

07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004

07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004

07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004

07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 004 07 304 17 57
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3.4 Equations with Three GF(2) Solutions with Bounded
Partial Quotients

It is quite possible for an equation of the form (1) to have three Laurent series
roots with coefficients in GF(2) each with probable bounded partial quotients.
One of the simplest examples is the equation

1 + x2u + (1 + x2)u2 + xu3 = 0.

In all cases like this that we have examined, the continued fractions for the
three roots seem to be roughly related to each other. For example, it appears
that the set of partial quotients that occur infinitely often is the same for all
three roots.

It is also possible that an equation have three Laurent series solutions in
GF(2), just one of which has probable bounded partial quotients, although such
polynomials seem to be more rare than those with all three roots having bounded
partial quotients. We have seen no examples with three Laurent series roots in
GF(2), precisely two of which have probable bounded partial quotients.
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