An Identity for A103314(n)

T. D. Noe

June 2, 2005

For a given $n>1$, let U_{n} be the set containing the $n n$-th roots of unity. Using the multiplication operation in \mathbb{C}, this set is a group. Let $s(n)$ be the squarefree kernel of n; that is, if the prime factorization of n is $p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}$, then $s(n)=p_{1} p_{2} \ldots p_{r}$.

Consider the 2^{n} sums formed by the subsets of U_{n}. At least 2 of these sums are zero because both U_{n} and the empty set sum to zero. In fact, when n is prime, these two are the only subsets that sum to zero. Let K_{n} denote the number of subsets that sum to zero. Our goal is to show that

$$
K_{n}=K_{s(n)}^{n / s(n)}
$$

If n is squarefree, then $s(n)=n$ and the formula is merely

$$
K_{n}=K_{n} .
$$

Hence, we assume that n is not squarefree; that is, $s(n)<n$. To simplify the notation, let $g=n / s(n)$ and $m=s(n)$. Clearly, because n is not squarefree, $g>1$.

Let H be the unique subgroup of U_{n} of size m. It is well-known that there are $n / m=g$ disjoint cosets of H in U_{n}. There are K_{m} subsets of H that sum to zero. Hence, for each one of the g cosets, we can find K_{m} subsets that sum to zero. Because these subsets are independent of each other, we can construct K_{m}^{g} subsets of U_{n} that sum to zero.

Is there another subset of U_{n} whose members sum to zero, but not one of the K_{m}^{g} subsets we constructed above? Suppose x is such a subset of U_{n}. We may assume that x contains no subset that sums to zero; that is x is primitive (or minimal). However, by Lemma 1 in [1], we find that (after a possible rotation) x must be a subset the subgroup H. This is the same as saying that x is a subset of one of the g cosets of H. However, this contradicts the assumption that x is not one of the K_{m}^{g} subsets. Hence, no x exists.
[1] Bjorn Poonen and Michael Rubinstein, The number of intersection points made by the diagonals of a regular polygon, published electronically at www.arXiv.org/math/9508209

