
Number Theory. Tutorial 5:
Bertrand’s Postulate

1 Introduction

In this tutorial we are going to prove:

Theorem 1 (Bertrand’s Postulate). For each positive integer n > 1 there
is a prime p such that n < p < 2n.

This theorem was verified for all numbers less than three million for
Joseph Bertrand (1822-1900) and was proved by Pafnutii Chebyshev (1821-
1894).

2 The floor function

Definition 1. Let x be a real number such that n ≤ x < n + 1. Then we
define �x� = n. This is called the floor function. �x� is also called the integer
part of x with x−�x� being called the fractional part of x. If m−1 < x ≤ m,
we define �x� = m. This is called the ceiling function.

In this tutorial we will make use of the floor function. Two useful prop-
erties are listed in the following propositions.

Proposition 1. 2�x� ≤ �2x� ≤ 2�x� + 1.

Proof. Proving such inequalities is easy (and it resembles problems with the
absolute value function). You have to represent x in the form x = �x� + a,
where 0 ≤ a < 1 is the fractional part of x. Then 2x = 2�x�+ 2a and we get
two cases: a < 1/2 and a ≥ 1/2. In the first case we have

2�x� = �2x� < 2�x� + 1

and in the second

2�x� < �2x� = 2�x� + 1.
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Proposition 2. let a, b be positive integers and let us divide a by b with
remainder

a = qb + r 0 ≤ r < b.

Then q = �a/b� and r = a − b�a/b�.

Proof. We simply write

a

b
= q +

r

b

and since q is an integer and 0 ≤ r/b < 1 we see that q is the integer part of
a/b and r/b is the fractional part.

Exercise 1. �x� + �x + 1/2� = �2x�.

3 Prime divisors of factorials and binomial

coefficients

We start with the following

Lemma 1. Let n and b be positive integers. Then the number of integers in
the set {1, 2, 3, . . . , n} that are multiples of b is equal to �n/b�.

Proof. Indeed, by Proposition 2 the integers that are divisible by b will be
b, 2b, . . . , �m/b� · b.

Theorem 2. Let n and p be positive integers and p be prime. Then the
largest exponent s such that ps | n! is

s =
∑
j≥1

⌊
n

pj

⌋
. (1)

Proof. Let mi be the number of multiples of pi in the set {1, 2, 3, . . . , n}. Let

t = m1 + m2 + . . . + mk + . . . (2)

(the sum is finite of course). Suppose that a belongs to {1, 2, 3, . . . , n}, and
such that pj | a but pj+1 � a. Then in the sum (2) a will be counted j times
and will contribute i towards t. This shows that t = s. Now (1) follows from
Lemma 1 since mj = �n/pj�.
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Theorem 3. Let n and p be positive integers and p be prime. Then the
largest exponent s such that ps |

(
2n
n

)
is

s =
∑
j≥1

(⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋)
. (3)

Proof. Follows from Theorem 2.

Note that, due to Proposition 1, in (3) every summand is either 0 or 1.

Corollary 1. Let n ≥ 3 and p be positive integers and p be prime. Let s be
the largest exponent such that ps |

(
2n
n

)
. Then

(a) ps ≤ 2n.

(b) If
√

2n < p, then s ≤ 1.

(c) If 2n/3 < p ≤ n, then s = 0.

Proof. (a) Let t be the largest integer such that pt ≤ 2n. Then for j > t

(⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋)
= 0.

Hence

s =
t∑

j=1

(⌊
2n

pj

⌋
− 2

⌊
n

pj

⌋)
≤ t.

since each summand does not exceed 1 by Proposition 1. Hence ps ≤
2n.

(b) If
√

2n < p, then p2 > 2n and from (a) we know that s ≤ 1.

(c) If 2n/3 < p ≤ n, then p2 > 2n and

s =

(⌊
2n

p

⌋
− 2

⌊
n

p

⌋)

As 1 ≤ n/p < 3/2, we se that s = 2 − 2 · 1 = 0.
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4 Two inequalities involving binomial coeffi-

cients

We all know the Binomial Theorem:

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk. (4)

Let us derive some consequences from it. Substituting a = b = 1 we get:

2n =
n∑

k=0

(
n

k

)
. (5)

Lemma 2. (a) If n is odd, then

(
n

(n + 1)/2

)
≤ 2n−1.

(b) If n is even, then

(
n

n/2

)
≥ 2n

n
.

Proof. (a) From (5), deleting all terms except the two middle ones, we get

(
n

(n − 1)/2

)
+

(
n

(n + 1)/2

)
≤ 2n.

The two binomial coefficients on the left are equal and we get (a).

(b) If n is even, then it is pretty easy to prove that the middle binomial
coefficient is the largest one. In (5) we have n + 1 summand but we
group the two ones together and we get n summands among which the
middle binomial coefficient is the largest. Hence

n

(
n

n/2

)
≥

n∑
k=0

(
n

k

)
= 2n,

which proves (b).

4



5 Proof of Bertrand’s Postulate

Finally we can pay attention to primes.

Theorem 4. Let n ≥ 2 be an integer, then

∏
p≤n

p < 4n,

where the product on the left has one factor for each prime p ≤ n.

Proof. The proof is by induction over n. For n = 2 we have 2 < 42, which
is true. This provides a basis for the induction. Let us assume that the
statement is proved for all integers smaller than n. If n is even, then it is not
prime, hence by induction hypothesis

∏
p≤n

p =
∏

p≤n−1

p < 4n−1 < 4n,

so the induction step is trivial in this case. Suppose n = 2s + 1 is odd, i.e
s = (n − 1)/2. Since

∏
s+1<p≤n p is a divisor of

(
n

s+1

)
, we obtain

∏
p≤n

p =
∏

p≤s+1

p ·
∏

s+1<p≤n

p < 4s+1 ·
(

n

s + 1

)
< 4s+12n−1

using the induction hypothesis for n = s + 1 and Lemma 2(a). Now the
right-hand-side can be presented as

4s+12n−1 = 22s+22n−1 = 24s+2 = 42s+1 = 4n.

This proves the induction step and, hence, the theorem.

Proof of Bertrand’s Postulate. We will assume that there are no primes be-
tween n and 2n and obtain a contradiction. We will obtain that, under this
assumption, the binomial coefficient

(
2n
n

)
is smaller than it should be. Indeed,

in this case we have the following prime factorisation for it:

(
2n

n

)
=

∏
p≤n

psp ,
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where sp is the exponent of the prime p in this factorisation. No primes
greater than n can be found in this prime factorisation. In fact, due to
Corollary 1(c) we can even write

(
2n

n

)
=

∏
p≤2n/3

psp .

Let us recap now that due to Corollary 1 psp ≤ 2n and that sp = 1 for
p >

√
2n. Hence

(
2n

n

)
≤

∏
p≤

√
2n

psp ·
∏

p≤2n/3

p.

We will estimate now these product using the inequality psp ≤ 2n for the first
product and Theorem 4 for the second one. We have no more that

√
2n/2−1

factors in the first product (as 1 and even numbers are not primes), hence

(
2n

n

)
< (2n)

√
2n/2−1 · 42n/3. (6)

On the other hand, by Lemma 2(b)

(
2n

n

)
≥ 22n

2n
=

4n

2n
. (7)

Combining (6) and (7) we get

4n/3 < (2n)
√

n/2.

Applying logs on both sides, we get

2n

3
ln 2 <

√
n

2
ln(2n)

or

√
8n ln 2 − 3 ln(2n) < 0. (8)

Let us substitute n = 22k−3 for some k. Then we get 2k ln 2−3(2k−2) ln 2 < 0
or 2k < 3(2k − 2) which is true only for k ≤ 4 (you can prove that by
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inducton). Hence (8) is not true for n = 27 = 128. Let us consider the
function f(x) =

√
8x ln 2 − 3 ln(2x) defined for x > 0. Its derivative is

f(x) =

√
2x · ln 2 − 3

x
.

let us note that for x ≥ 8 this derivative is positive. Thus (8) is not true for
all n ≥ 128. We proved Bertrand’s postulate for n ≥ 128. For smaller n it
can be proved by inspection. I leave this to the reader.
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