Number Theory. Tutorial 5:
Bertrand’s Postulate

1 Introduction

In this tutorial we are going to prove:

Theorem 1 (Bertrand’s Postulate). For each positive integer n > 1 there
15 a prime p such that n < p < 2n.

This theorem was verified for all numbers less than three million for
Joseph Bertrand (1822-1900) and was proved by Pafnutii Chebyshev (1821-
1894).

2 The floor function

Definition 1. Let x be a real number such that n < x < n+ 1. Then we
define | x| = n. This is called the floor function. |x| is also called the integer
part of x with x — | x| being called the fractional part of x. If m—1 <z < m,
we define [x| = m. This is called the ceiling function.

In this tutorial we will make use of the floor function. Two useful prop-
erties are listed in the following propositions.

Proposition 1. 2|z| < [2z] < 2[z] + 1.

Proof. Proving such inequalities is easy (and it resembles problems with the
absolute value function). You have to represent z in the form = = |z| + a,
where 0 < a < 1 is the fractional part of . Then 2z = 2|x] + 2a and we get
two cases: a < 1/2 and a > 1/2. In the first case we have

2|x] = [22) <2|z] +1
and in the second

2|x] < |2x] =2|x] + 1.



Proposition 2. let a,b be positive integers and let us divide a by b with
remainder

a=qb+r 0<r<hb.
Then q = |a/b] and r = a —bla/b].

Proof. We simply write

a N r
b 1T

and since ¢ is an integer and 0 < r/b < 1 we see that ¢ is the integer part of

a/b and r/b is the fractional part. O

Exercise 1. |z] + |2+ 1/2] = |2z].

3 Prime divisors of factorials and binomial
coefficients

We start with the following

Lemma 1. Let n and b be positive integers. Then the number of integers in
the set {1,2,3,...,n} that are multiples of b is equal to |n/b|.

Proof. Indeed, by Proposition 2 the integers that are divisible by b will be
b,2b,...,|m/b] -b. m

Theorem 2. Let n and p be positive integers and p be prime. Then the
largest exponent s such that p* | n! is

n
s=) {—J : (1)

=1 LY
Proof. Let m; be the number of multiples of p’ in the set {1,2,3,... ,n}. Let
t=mi+mo+...+mp+... (2)

(the sum is finite of course). Suppose that a belongs to {1,2,3,... ,n}, and
such that p’ | @ but p™! { a. Then in the sum (2) a will be counted j times
and will contribute i towards ¢. This shows that t = s. Now (1) follows from
Lemma 1 since m; = [n/p’]. O



Theorem 3. Let n and p be positive integers and p be prime. Then the

largest exponent s such that p® | (27’:) is

E(ESRE)

Proof. Follows from Theorem 2. H
Note that, due to Proposition 1, in (3) every summand is either 0 or 1.

Corollary 1. Let n > 3 and p be positive integers and p be prime. Let s be
the largest exponent such that p® | (2:) Then

(a) p° < 2n.
(b) If V2n < p, then s < 1.
(¢) If 2n/3 < p < n, then s = 0.

Proof.  (a) Let t be the largest integer such that p' < 2n. Then for j > ¢

[ERE
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since each summand does not exceed 1 by Proposition 1. Hence p* <
2n.

Hence

(b) If v2n < p, then p* > 2n and from (a) we know that s < 1.

(c) If 2n/3 < p < n, then p? > 2n and

(L)

As1<n/p<3/2, wesethat s=2—-2-1=0.



4 Two inequalities involving binomial coeffi-
cients

We all know the Binomial Theorem:

’:O (Z) a" Rk, (4)

Let us derive some consequences from it. Substituting a = b =1 we get:

o — zn: (Z) (5)

Lemma 2. (a) Ifn is odd, then

(0 sy) 527

(1) = 5

Proof.  (a) From (5), deleting all terms except the two middle ones, we get

((n —nl)/z) + ((n +”1)/2> <o,

The two binomial coefficients on the left are equal and we get (a).

(a+b)"

(b) If n is even, then

(b) If n is even, then it is pretty easy to prove that the middle binomial
coefficient is the largest one. In (5) we have n + 1 summand but we
group the two ones together and we get n summands among which the
middle binomial coefficient is the largest. Hence

) 22 ()=

which proves (b).



5 Proof of Bertrand’s Postulate

Finally we can pay attention to primes.

Theorem 4. Let n > 2 be an integer, then

[[r<4

p<n
where the product on the left has one factor for each prime p < n.

Proof. The proof is by induction over n. For n = 2 we have 2 < 42, which
is true. This provides a basis for the induction. Let us assume that the
statement is proved for all integers smaller than n. If n is even, then it is not
prime, hence by induction hypothesis

Hp: H p <4l <4
p<n p<n—1

so the induction step is trivial in this case. Suppose n = 2s + 1 is odd, i.e
s=(n—1)/2. Since [] p is a divisor of (,7,), we obtain

s+1<p<n s+1
n
Hp: H D H p<4s+1 . ( 1) <4s+12n—1
p<n p<s+1 s+1<p<n s+

using the induction hypothesis for n = s + 1 and Lemma 2(a). Now the
right-hand-side can be presented as

4S+12n71 — 22S+22n71 — 24S+2 — 428+1 — 471

This proves the induction step and, hence, the theorem. l

Proof of Bertrand’s Postulate. We will assume that there are no primes be-
tween n and 2n and obtain a contradiction. We will obtain that, under this
assumption, the binomial coefficient (27;‘) is smaller than it should be. Indeed,
in this case we have the following prime factorisation for it:

01

p<n



where s, is the exponent of the prime p in this factorisation. No primes
greater than n can be found in this prime factorisation. In fact, due to
Corollary 1(c) we can even write

2n
()= I
n

p<2n/3

Let us recap now that due to Corollary 1 p** < 2n and that s, = 1 for
p > v/2n. Hence

()= L T
p<v2n p<2n/3

We will estimate now these product using the inequality p®» < 2n for the first
product and Theorem 4 for the second one. We have no more that v/2n/2—1
factors in the first product (as 1 and even numbers are not primes), hence

2
( n) < (2”)\/%/2_1 . 4271/3. (6)
n

On the other hand, by Lemma 2(b)
2 22n 4n
< ”> >Z = (7)

n)= 2n  2n
Combining (6) and (7) we get
43 < (2n) V2,

Applying logs on both sides, we get
2
?n In2 < \/gln(Qn)

V8nIn2 — 31n(2n) < 0. (8)

or

Let us substitute n = 22*73 for some k. Then we get 2% In2—3(2k—2)In2 < 0
or 28 < 3(2k — 2) which is true only for & < 4 (you can prove that by

6



inducton). Hence (8) is not true for n = 27 = 128. Let us consider the
function f(z) = v8xIn2 — 31In(2z) defined for = > 0. Its derivative is

B V2x-In2 —3

T

f(x)

let us note that for x > 8 this derivative is positive. Thus (8) is not true for
all n > 128. We proved Bertrand’s postulate for n > 128. For smaller n it
can be proved by inspection. I leave this to the reader. ]
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