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1. Basic properties of Fibonacci numbers.
The Fibonacci sequence {F;,} was introduced by Italian mathematician Leonardo
Fibonacci (1175-1250) in 1202. For integers n, {F,,} is defined by

FO == 0, Fl = 1, Fn_|_1 == Fn + Fn—l (7’1, == O,il,iZ, :|:3, .. )
The first few Fibonacci numbers are shown below:

n: 1 2 3 45 6 7 & 9 10 11 12 13 14 15
F,:1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

The companion of Fibonacci numbers is the Lucas sequence {L,} given by
LOZQ, L1 :1, Ln—‘,—l :Ln+Ln—1 (n:O,j:l,:I:Q,:I:?),)

It is easily seen that

(1.1) F,=D"1'F, L_,=(-1)"L,
and

1
(12) L, = n+1 + Fn—la F, = E(Ln—i—l + Ln—l)-

Using induction one can easily prove the following Binet’s formulas (see [D],[R2]):

)
(1.4 L <1+2¢3> . <1—2\/3)

In 2001 Z.H.Sun[S5] announced a general identity for Lucas sequences. Putting
ay = as = —1, U, = F, and U/ = F,, or L, in the identity (4.2) of [S5] we get the
following two identities, which involve many known results.
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Theorem 1.1. Let k,m,n,s be integers with m > 0. Then

= /m m—j
(1.5) F:%kaJrn:Z( ')( DD pipm—ip.
=0 \J
and
m - m s—1)(m—j | m—j
(1.6) F"Ligmin = Y (j)(—n( D= I I Loy
7=0

Proof. Let # = (1++/5)/2 and y = (1 —+/5)/2. Then x +y = 1, 2y = —1 and
F. = (z" —y")/(x — y). Thus applying the binomial theorem we obtain

m m o— m—i . Jo—
Z(] ) (_1)( R j)Flng—s]Fjs—I—n

k BN J k—s k—s\ M—J is+n is+n
:Z<m)(—1)<s—1><m—j> (4’3 Y ) (i) Ty

r—Y r—Yy r—Yy

= ;m—l—l il (m)(sz+”—yjs+”)(x — yFY (a°y" — 2Pyt

(@ —y)m = \J
1 " (m
_ (x — y)m+1 {xn Z (j ) (:L,k+s _ msyk)J (xsyk _ xkys)mfj
§=0
m

1
— (1, — y)m+1 { k+s xkys)m . yn(xsyk‘ yk+s) }
_ 1 n km n km =Yy " kmtn ykm+"
_(.Qf—y)m-'_l(x €T Yy -y )($ y) r—y T —y

This proves (1.5).
As for (1.6), noting that L, = F,. + 2F,_; and then applying (1.5) we get

Z( ) (S v ])FJFm jL]ern

7=0

Z ( ) (S o J)F]Fm_s Fjstn + 22 (J) 1)(3_1)(m_j)FleI:1_stjs+n—l

=0 7=0
:Fs ka+n+2Fsranm+n—1 :F:LLkm—i—n-
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This completes the proof.

In the special case s = 1 and n = 0, (1.5) is due to H.Siebeck ([D,p.394]), and the
general case s = 1 of (1.5) is due to Z.W.Sun.

Taking m =1 in (1.5) and (1.6) we get
(17) Fst+n = Fan+s - (_1)8Fk—ana Fst—l—n = FkLn—l—s - (_1>8Fk—sLn-
From this we have the following well-known results (see [D],[R1] and [R2]):

(1.8) (Catalan) FisnFyopn = F2 — (-1 "F2,

(1.9) Fon = FyLy, Fony1=F2+ F7y, Lo, = L2 —2(—1)".

Putting n =1 in (1.8) we find Fy_1Fy11 — F2 = (—1)* and so Fj_; is prime to F}.
For m > 1 it follows from (1.5) that

(1.10)  F™Fppin = (—1)E"VmEm pog (—1) DDy g pr 1R, L (mod F2).

So

(1.11) Frmin = F" 1 Fy + mFyF" ' Fyq (mod FP)
and hence

(1.12) Frm = mFRF" 7" (mod FP).

Let (a,b) be the greatest common divisor of a and b. From the above we see that
(ka—i—n? sz) = (F]Z;n_anv Fk) = (Fk; Fn)

From this and Euclid’s algorithm for finding the greatest common divisor of two given
numbers, we have the following beautiful result due to E.Lucas (see [D] and [R1]).

Theorem 1.2 (Lucas’ theorem). Let m and n be positive integers. Then

(FmaFn) = F(m,n)

Corollary 1.1. If m and n are positive integers with m # 2, then
Fo | F, < m|n.
Proof. From Lucas’ theorem we derive that

m|n < (mn)=m <= Fun =Fn < (Fn, F,) =Fn < Fy | F,.



2. Congruences for F}, and F,;; modulo p.
Let ( ) be the Legendre symbol of a and p. For p # 2,5, using quadratic reciprocity

law we see that
(5)_(p)_ 1 if p=41 (mod 5),
p’ 5 | =1 ifp==+2 (mod5).
From [D] and [R1] we have the following well-known congruences.

Theorem 2.1(Legendre,Lagrange). Let p be an odd prime. Then
L,=1 (mod p) and F,= (g) (mod p).

Proof. Since

(Z)k!:p(p—l)“'(P—kJ“l)EO(mOdp>’

we see thatp](z) for k=1,2,... ,p— 1. From this and (1.4) we see that
1+v5\"  (1-v5\"
bp=1{"3 2
1 & P k
:272<k)< (_‘/5)>
k=0
5— L (mod
= 5 12 = —— =1 (mod p).
BT

Y

Similarly, by using (1.3) and Euler’s criterion we get

Fp:%{(uf)p_ (1_;5);0}

k=0
P\ kea p=1 Y

:2p_12 L) =60 5(5):(3)(modp)
i

This proves the theorem.

Theorem 2.2(Legendre,Lagrange). Let p be an odd prime. Then

P2l ® L+ (®)
2

(mod p) and Fpyi =

(mod p).
Proof. From (1.2) we see that
L,=Fpp1+Fy_y=Fy+2F, 1 =2F,,, — F,.
Thus

Ly —Fp _ L+ B

F,_1 = and Fpy1 = 5

This together with Theorem 2.1 yields the result.
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Corollary 2.1. Let p be a prime. Then p | F, (2.
Corollary 2.2. Let p > 3 be a prime, and let g be a prime divisor of F,,. Then

q= <g> (mod p) and ¢q=1 (mod 4).

Proof. From Corollary 2.1 we know that q | Ff,_(g). Thus ¢ | (F,_(2), F},). Applying

Lucas’ theorem we get ¢ | F{;, ,(2)). Hence (p,q —(2)) =pandsop|q— (1)

Since p > 3 is a prime, by Corollary 1.1 we have F3 { F}, and hence F}, and ¢ are odd.
By (1.9) we have F2,, + F2, = F, = 0 (mod ¢). Observing that (Fps1, Fp-1) =1
we get ¢ 1 Fpi1 Fp1. Hence (Fpii /Fp1)? = —1 (mod ¢) and so ¢ = 1 (mod 4). This
finishes the proof.

3. Lucas’ law of repetition.
For any integer k, using (1.3) and (1.4) one can easily prove the following well-known
identity:
(3.1) L — 5FF = 4(—1)k.
From (3.1) we see that (Ly, F) =1 or 2.
Let k,n € Z with k # 0. Putting s = —k in (1.7) and then applying (1.1) we find
(—V)" ' FyFryp = FiFyg — (—1)F Py F,.
Since Fy, = Fi L and Fy # 0 we see that
(3.2) Frpn = LpFy + (1) E, .
This identity is due to E.Lucas ([D]).

Using (3.2) we can prove

Theorem 3.1. Let k and n be integers with k # 0. Then
Frn { (=)™ (2m + 1) (mod 5F?) ifn=2m+1,
Fr, | (~=D)*Fm=YmL, (mod 5FZ) ifn =2m.

Proof. By (1.1) we have F_j, = (—1)*"~1F},. From this we see that it suffices
to prove the result for n > 0. Clearly the result is true for n = 0,1. Now suppose
n > 2 and the result is true for all positive integers less than n. From (3.2) we see that
Frp = LiFin_1y, + (—1)* 71 F,_o). Since L} = 5F2 + 4(—1)* = 4(—1)* (mod 5F7?) by
(3.1), using the inductive hypothesis we obtain

Fpi: _ LkF(Enk N (_1)k—1F(7}Tk2)k
Lig - (~1)Mm=Dm Ly 4 (—1)F=L - (—1)km=D) (2m — 1)

= (=1)k™(2m + 1) (mod 5F2) if n=2m+1,
Ly - (=1)Fm=Y(2m — 1) + (=1)FL . (=1)k™(m — 1)Ly,

= (=1)*m=YmL; (mod 5F2)  if n = 2m.
This shows that the result is true for n. So the theorem is proved by induction.

Clearly Theorem 3.1 is much better than (1.12).
5



Corollary 3.1. Let k # 0 be an integer, and let p be an odd prime divisor of Fy.. Then

F)
F_k: = p (mod 5p?).

Proof. Since p | Fy, we see that 5p? | 5F72. So, by Theorem 3.1 we get
—r = (—1)pT_lkp (mod 5p?).

Since L = 5F2 + 4(—=1)% = 4(=1)* (mod p) we see that 2 | k if p = 3 (mod 4). So
%k =0 (mod 2) and hence Fy,/F) = p (mod 5p?).

For prime p and integer n # 0 let ord,n be the order of n at p. That is, prdem |
but p°rde™+1 4 n. From Corollary 3.1 we have

Theorem 3.2 (Lucas’ law of repetition ([D],[R2])). Let k and m be nonzero
integers. If p is an odd prime divisor of F},, then

ordy, Fi, = ord, F} + ord,m.

Proof. Write m = p®mg with p { mg. Then ord,m = a. Since p | F}, we have p { Ly,
by (3.1). Thus using Theorem 3.1 we see that F,,/Fr Z 0 (mod p). Observing that

«

ka . kao . Fpsmok
Fy F. LR

and ordy, (Fpsmok/Fps—1mqk) = p by Corollary 3.1, we then get ord, (Fyy,/F)) = . This
yields the result.

Definition 3.1. For positive integer m let r(m) denote the least positive integer n such
that m | F,,. We call r(m) the rank of appearance of m in the Fibonacci sequence.

From Theorem 1.2 we have the following well-known result (see [D],[R1],[R2]).
Lemma 3.1. Let m and n be positive integers. Then m | Fy, if and only if r(m) | n.

Proof. From Theorem 1.2 and the definition of r(m) we see that

m | Fy <= m | (Fy, Fom)) <= m| Furm))
— (n’r(m)) :’]"(m) P T(m) | n.

This proves the lemma.
If p # 2,5 is a prime, p” | F,(p) and pftl t Fy(p), then clearly r(p®) = r(p) for a < f3.
When o > 3, from Theorem 3.2 and Lemma 3.1 we see that 7(p®) = p®~Pr(p). This is
the original form of Lucas’ law of repetition given by Lucas ([D]).
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Theorem 3.3. Let m be a positive integer. If p # 2,5 is a prime such that p | Fy,,
then ord, F, = ordpr,(g) + ord,m.

Proof. Since p | F,_(2) by Corollary 2.1, using Lemma 3.1 we see that r(p) | p—(§)
and r(p) | m. From Theorem 3.2 we know that

p—(%)
7(p)

Since p{p — (£) and so p { r(p) we obtain the desired result.

ordpr_(g) = ord, Fy.(,) +ord, ( ) and ord,F,, = ord,F, () + ord, <£> .

r(p)

Corollary 3.2. Let m be a positive integer. If p # 2,5 is a prime such that p | L,
then ordy,L,, = ordpr_(g) + ord,m.

Proof. Since Fy,, = F,,, Ly, and (Fy,, Lyy,) | 2 we see that p t Fy,, and p | Fy,,. Thus
applying Theorem 3.3 we have

ord, Ly, = ordyFyy, = ordpF),_(2) + ord,(2m) = ord, Fj,_(z) + ord,m.

This is the result.

Theorem 3.4. Let {S,} be given by S; = 3 and Sp11 = S2—2(n > 1). If p is a prime
divisor of Sy, then p* | S, if and only if p® | Fp(z).

Proof. Clearly 21 S, and 51 .5,,. Thus p # 2,5. From (1.9) we see that S,, = Lan.
Thus by Corollary 3.2 we have

ord,S, = ord,Lon = ordpr_(%) + ord,2" = ordpr_(g).

This yields the result.
We note that if p is a prime divisor of Sy, then p = (£) (mod 2"*1). This is because

r(p) = 2"t and 7(p) [ p — (¥).

4. Congruences for the Fibonacci quotient Fp_(g)/p (mod p).

From now on let [z] be the greatest integer not exceeding z and g,(a) = (a?~1 —1)/p.
For prime p > 5, it follows from Corollary 2.1 that F,_(»)/p € Z. So the next natural
problem is to determine the so-called Fibonacci quotient F,_(r)/p (mod p).

Theorem 4.1. Let p be a prime greater than 5. Then
F 5
(2)

- p—l
(1) (Z.H.Sun and Z.W.Sun[SS],1992) pT =-2 > + (mod p).
—1

k
k=2p(mod 5)
F

p—(5)

(2) (H.C.Williams[W2], 1991)

=2 + (mod p).

F 5
(3) (Z.H.Sun[$2],1995) 2" = 2 . (mod p).




F

(5 _
(4) (H.C.Williams[W1], 1982) ) = 2 CD™ (mod p).
1<k<?
F
(5) (Z.H.Sun[S2],1995) P =2 (-1 (mod p) .
, : : - p
E<k<t
F 5 p—1 _1 p—1 1
6) (Z.H.Sun[S2],1995) ——2 = ¢ (G V" (mod p) .
p k k
kE4p](cn:1<%d 15) kESp?n?c%d 15)
(7) (ZHSm[S2],1095) =B = ~4 5 12 S L (modyp)
H.Sun[S2], =3 3 r = & + (mod p) .

k=1 P <3P
k=2p,3p(mod 10) 10 <F<To

(8) (Z.H.Sun[S1],1992) If r € {1,2,3,4} and r = 3p (mod 5), then

p—5—2r

F 5 10 5k-4r
p—(3) _ 2 (—1)
= —gp(2)+ 2 Z ———— (mod p).
P 5 — S5k +r

Fp(s) _
(9) (Z.H.Sun[S2],1995) ——== = £ ((=1)P/PL(P"2) — 1) /p — g,(5) (mod p).

F s (p=1)/2
(10) (Z.H.Sun[S4],2001) 22 = g,,(5) — 2g,(2) — 3 ke (mod p)

=1

pr 5 (p—1)/2

(11) (Z.H.Sun[S$4],2001) ——=* = —1(2¢,(2) + D 5 (mod p).

We remark that Theorem 4.1(11) can also be deduced from P.Bruckman’s result ([B]).

Theorem 4.2 (A.Granville,Z.W.Sun[GS],1996). Let{B,(x)} be the Bernoulli poly-
nomaals. If p is a prime greater than 5, then

Bra(3) = By = 20s5) + 30 (mod p),
Byr() = Byt = 2a5) ~ 207 (mod ),
Bys(o) = Byt = 20,(5) + 20,2 + 22 =) (mod ),
Bys() = Byt = 20,09+ 20,2) - )= (mod ).

5. Wall-Sun-Sun prime.

Using Theorem 4.1(1) and H.S.Vandiver’s result in 1914, Z.H.Sun and Z.W.Sun|SS]
revealed the connection between Fibonacci numbers and Fermat’s last theorem.

Theorem 5.1(Z.H.Sun, Z.W.Sun[SS],1992). Let p > 5 be a prime. If there are
integers x,vy, z such that P + yP = 2P and p{ xyz, then p* | F, (2.

On the basis of this result, mathematicians introduced the so-called Wall-Sun-Sun
primes ([CDP]).
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Definition 5.1. If p is a prime such that p* | F] —(2); then p s called a Wall-Sun-Sun
prime.

Up to now, no Wall-Sun-Sun primes are known. R. McIntosh showed that any Wall-
Sun-Sun prime should be greater than 10'*. See the web pages:

hitp : / /primes.utm.edu/glossary/page.php?sort = WallSunSunPrime,

hitp : | /en2.wikipedia.org/wiki/Wall — Sun — Sun_prime.

Theorem 5.2. Let p > 5 be a prime. Then p is a Wall-Sun-Sun prime if and only if
Ly 2y =2(%) (mod ).
Proof. From (1.2), Theorems 2.1 and 2.2 we see that

(5.1) Ly -z =2F— (£) Fpp) =2(%) (mod p)

and so that L, (z) # —2 (£) (mod p). Since L2 —5F? = 1)™ by (3.1), we have

(=
2) 54(modp)

) (e +2(2)

P E = P Fg < L

b
< p4 | <Lp_(%) -2 (5
p
= p'| Ly_(z)—2 (3) :
This is the result.
From Theorem 3.3 we have

Theorem 5.3. Let m be a positive integer. If p # 2,5 is a prime such that p | Fy,,
then p is a Wall-Sun-Sun prime if and only if ord, F,, > ord,m + 2.

From Theorem 3.4 we have
Theorem 5.4. Let {S,} be given by S; = 3 and Sp11 = S2—2(n > 1). If p is a prime
divisor of Sp, then p? | Sy, if and only if p is a Wall-Sun-Sun prime.

According to Theorem 5.4 and R. McIntosh’s search result we see that any square
prime factor of S,, should be greater than 10'4.
6. Congruences for Fp 1 and Fp+1 modulo p.

For prime p > 5, it looks very dlfﬁcult to determine Fp 1 and Fp+1 (mod p). Anyway,
the congruences were established by Z.H.Sun and Z.W. Sun[SS] in 1992, They deduced

the desired congruences from the following interesting formulas.

Lemma 6.1 (Z.H.Sun and Z.W.Sun[SS],1992). Let p > 0 be odd, and r € Z.
(1) If p=1 (mod 4), then

( 5(2P 4+ Lypyq -I—BPTHFpTl) ifr = pg—l (mod 10),
¢ P 1_10(2p_Lp—1+5pT+3FP%1) if r = 251 +2 (mod 10),
e T(mg 10) (k) - 16(2° = Lp—1 — 5pT3FPT—1) if r = 251 4+ 4 (mod 10),
| 527+ Lp1 =57 Fos) if r =234 46 (mod 10),



(2) If p=3 (mod 4), then

rlio(2p+Lp+1+5iLT1) ifrng—l(modl()),

4 p B Loy +5" Los) v =251 42 (mod 10),
,Er(% 10) (k) 15(2° = Lyt =5 Loa) if r =231 +4 (mod 10),
\ 1—10(2”+Lp+1—5pT1Lp L) ifr =251 46 (mod 10).

(3) If r = u + 8 (mod 10), then

Lemma 6.1 was rediscovered by F.T.Howard and R.Witt[HW] in 1998.

If p is an odd prime, then p | (i) fork=1,2,... ,p—1. So, using Lemma 6.1 we can
determine Fp—1 and Fp+1 (mod p).
2 2

Theorem 6.1(Z.H.Sun,Z.W.Sun[SS],1992). Let p # 2,5 be a prime. Then

P _ | 0 (mod p) if p=1(mod 4),
8T 2(-1)E(2)55 (mod p)  if p = 3(mod 4)
and
p = [ COEI B mod ) ifp = 1(mod 4)
2T (-DIEI55 (mod p)  if p = 3(mod 4).

In 2003, Z.H.Sun ([S6]) gave another proof of Theorem 6.1. Since L,, = 2F,,;1 —F,, =
2F, 1+ F,, by Theorem 6.1 one may deduce the congruences for L ptL (mod p).

Theorem 6.2(Z.H.Sun, 6 Jan. 1989). Let p = 3,7 (mod 20) be a prime and hence
2p = 2% + by? for some positive integers x,y. Then

z—y

Lpos = (=1) 2 — (mod p).

< |8

7. Congruences for F(, (z))/3 (mod p).
Let p > 5 be a prime. It is clear that

_ _ )(p)_{l if p=1,2,4,8 (mod 15),
p ' “p’pl 3757 | -1 ifp=7,11,13,14 (mod 15).

Using the theory of cubic residues, Z.H.Sun[S3| proved the following result.
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Theorem 7.1 (Z.H.Sun[S3],1998). Let p be an odd prime.
(1) If p= 1,4 (mod 15) and so p = 2% + 15y for some integers z,y. Then

P 0 (mod p) if y =0 (mod 3),
i ¥z, (mod p) ify =+ (mod 3)
and
[ { 2 (mod p)  if y=0 (mod 3),
"5 = | =1 (mod p) ifyZ0 (mod 3).
(2) If p= 2,8 (mod 15) and so p = 5x% + 3y? for some integers x,y. Then
0 (mod p) if y =0 (mod 3),
Fp 1 = .
{ +% (mod p) if y = £z (mod 3).
and
Lo = { —2 (mod p) ify =0 (mod 3),
=l (mod p) if y # 0 (mod 3).
Theorem 7.2. Let p be an odd prime such that p = 7,11,13,14 (mod 15). Then
T = F(p_(%))/g (mod p) is the unique solution of the cubic congruence 5x® + 3z — 1 =

0 (mod p), and x = Lp—(2y)3 (mod p) is the unique solution of the cubic congruence
2 — 3z +3(%) =0 (mod p).

Proof. Since (_715) =1 and (—1)P=(5)/6 = (%) , by taking a = —1 and b =1 in [S7,
Corollary 2.1] we find

t P
F(p_(%))/:), = —— (mod p) and L(p—(%))/?: = —(—)y (mod p),

5 3
where ¢ is the unique solution of the congruence 3 + 15t + 25 = 0 (mod p), and y is the
unique solution of the congruence y® — 3y — 3 = 0 (mod p). Now setting t = —5x and

y = —(&)z yields the result.
Using Theorem 7.1 Z.H.Sun proved

Theorem 7.3 (Z.H.Sun[S3],1998). Let p > 5 be a prime.
(1) If p=1 (mod 3), then

plFoa < p =22 +135y%(x,y € 7),

D | Fpa < p = 2% + 540y (2, y € 7).
(2) If p=2 (mod 3),

p|FL§1 = p=>5z>+27y*(z,y € Z),

Pl Fon = p =522 + 108y>(z,y € Z).

In 1974, using cyclotomic numbers E.Lehmer[L2]| proved that if p =1 (mod 12) is a
prime, then p | Fp—1 if and only if p is represented by x2 + 1352
3
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8. Congruences for F(p_(_?l))/4 modulo p.

Theorem 8.1 (E.Lehmer[L1],1966). Let p = 1,9 (mod 20) be a prime, and p =
a® + b with a,b € Z and 2 | b.
(i) If p=1,29 (mod 40), then p | Fpoa <=5 | b;
(ii) If p=9,21 (mod 40), then p | Fpa <5 | a.
Theorem 8.2. Let p be a prime greater than 5.
(i) (E.Lehmer[L2],1974) If p =1 (mod 8), then
D FpT_1 — p=2a>+80y* (z,y€Z).
(i) (Z.H.Sun,Z.W.Sun[SS],1992) If p =5 (mod 8), then
P | Fp4;1 — p=162>+5y> (z,y € 7).
In 1994, by computing some quartic Jacobi symbols Z.H.Sun established the following
unpublished result.

Theorem 8.3 (Z.H.Sun, 1994). Letp = 1,9 (mod 20) be a prime with p = a® +b*> =
2% + 5y%(a,b,z,y € Z) and a = (_1);%1 (mod 4). If4 | zy, then

. 9 (a—52b)4 <2ay+2y+aa:) (mod p) if p=1 (mod 8),
p—1 =
I _%b <2a5+b)4 <2ay+zy+ax> (IIlOd p) ifp —5 (mod 8)

If 41 zy, then

i (2a5+b)4 <2ay+}b?y+am> 2??! (mod p) if p=1 (mod 8),
p—1 =
I (2z2), (2ay+by+aw> 2% (mod p) if p=>5 (mod 8),

p ax

where (%)4 =1 or —1 according as m =1 (mod 5) or not.

In the end we point out two interesting conjectures.

Conjecture 8.1 (Z.H.Sun[S6], 12 Feb.2003). Let p = 3,7 (mod 20) be a prime,
and hence 2p = 22 + 5y? for some integers x and y. Then

- 2(-)I*5]-10"F (mod p)  ify = +E5 (mod 8),
pr1 = o o
—2(-1)%51 . 10"T (mod p) if y £ +E5* (mod 8).

Since F pt1 L phl = F Pl from Theorem 6.1 we see that Conjecture 7.1 is equivalent
to

(81) LLH = {

4

(—2)"F (mod p)  ify = +25L (mod 8),
—(~2)"% (mod p) if y # +251 (mod 8).
Z.H.Sun has checked (8.1) for all primes p < 3000.

Conjecture 8.2 (E.Lehmer[L2],1974). Let p = 1 (mod 16) be a prime, and p =
22 + 80y? = a?® + 16b? for some integers x,y,a,b. Then

4

p\F% < y =0 (mod 2).
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