Last revised: 30 December 2003

CONGRUENCES FOR FIBONACCI NUMBERS

Zhi-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, P.R. China
E-mail: hyzhsun@public.hy.js.cn
Homepage: http://www.hytc.cn/xsjl/szh

1. Basic properties of Fibonacci numbers.

The Fibonacci sequence $\left\{F_{n}\right\}$ was introduced by Italian mathematician Leonardo Fibonacci (1175-1250) in 1202. For integers $n,\left\{F_{n}\right\}$ is defined by

$$
F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}(n=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

The first few Fibonacci numbers are shown below:

$$
\begin{array}{lccccccccccccccc}
n: & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
F_{n}: & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610
\end{array}
$$

The companion of Fibonacci numbers is the Lucas sequence $\left\{L_{n}\right\}$ given by

$$
L_{0}=2, L_{1}=1, L_{n+1}=L_{n}+L_{n-1} \quad(n=0, \pm 1, \pm 2, \pm 3, \ldots)
$$

It is easily seen that

$$
\begin{equation*}
F_{-n}=(-1)^{n-1} F_{n}, \quad L_{-n}=(-1)^{n} L_{n} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}=F_{n+1}+F_{n-1}, \quad F_{n}=\frac{1}{5}\left(L_{n+1}+L_{n-1}\right) \tag{1.2}
\end{equation*}
$$

Using induction one can easily prove the following Binet's formulas (see [D],[R2]):

$$
\begin{gather*}
F_{n}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}, \tag{1.3}\\
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} \tag{1.4}
\end{gather*}
$$

In 2001 Z.H.Sun[S5] announced a general identity for Lucas sequences. Putting $a_{1}=a_{2}=-1, U_{n}=F_{n}$ and $U_{n}^{\prime}=F_{n}$ or L_{n} in the identity (4.2) of [S5] we get the following two identities, which involve many known results.

Theorem 1.1. Let k, m, n, s be integers with $m \geq 0$. Then

$$
\begin{equation*}
F_{s}^{m} F_{k m+n}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} F_{j s+n} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{s}^{m} L_{k m+n}=\sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} L_{j s+n} . \tag{1.6}
\end{equation*}
$$

Proof. Let $x=(1+\sqrt{5}) / 2$ and $y=(1-\sqrt{5}) / 2$. Then $x+y=1, x y=-1$ and $F_{r}=\left(x^{r}-y^{r}\right) /(x-y)$. Thus applying the binomial theorem we obtain

$$
\begin{aligned}
& \sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} F_{j s+n} \\
&=\sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)}\left(\frac{x^{k}-y^{k}}{x-y}\right)^{j}\left(\frac{x^{k-s}-y^{k-s}}{x-y}\right)^{m-j} \cdot \frac{x^{j s+n}-y^{j s+n}}{x-y} \\
&=\frac{1}{(x-y)^{m+1}} \sum_{j=0}^{m}\binom{m}{j}\left(x^{j s+n}-y^{j s+n}\right)\left(x^{k}-y^{k}\right)^{j}\left(x^{s} y^{k}-x^{k} y^{s}\right)^{m-j} \\
&=\frac{1}{(x-y)^{m+1}}\left\{x^{n} \sum_{j=0}^{m}\binom{m}{j}\left(x^{k+s}-x^{s} y^{k}\right)^{j}\left(x^{s} y^{k}-x^{k} y^{s}\right)^{m-j}\right. \\
&\left.\quad-y^{n} \sum_{j=0}^{m}\binom{m}{j}\left(x^{k} y^{s}-y^{k+s}\right)^{j}\left(x^{s} y^{k}-x^{k} y^{s}\right)^{m-j}\right\} \\
&=\frac{1}{(x-y)^{m+1}}\left\{x^{n}\left(x^{k+s}-x^{k} y^{s}\right)^{m}-y^{n}\left(x^{s} y^{k}-y^{k+s}\right)^{m}\right\} \\
&=\frac{1}{(x-y)^{m+1}}\left(x^{n} \cdot x^{k m}-y^{n} \cdot y^{k m}\right)\left(x^{s}-y^{s}\right)^{m}=\left(\frac{x^{s}-y^{s}}{x-y}\right)^{m} \cdot \frac{x^{k m+n}-y^{k m+n}}{x-y} \\
&=F_{s}^{m} F_{k m+n} .
\end{aligned}
$$

This proves (1.5).
As for (1.6), noting that $L_{r}=F_{r}+2 F_{r-1}$ and then applying (1.5) we get

$$
\begin{aligned}
& \sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} L_{j s+n} \\
& =\sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} F_{j s+n}+2 \sum_{j=0}^{m}\binom{m}{j}(-1)^{(s-1)(m-j)} F_{k}^{j} F_{k-s}^{m-j} F_{j s+n-1} \\
& =F_{s}^{m} F_{k m+n}+2 F_{s}^{m} F_{k m+n-1}=F_{s}^{m} L_{k m+n} .
\end{aligned}
$$

This completes the proof.
In the special case $s=1$ and $n=0,(1.5)$ is due to H.Siebeck ([D,p.394]), and the general case $s=1$ of (1.5) is due to Z.W.Sun.

Taking $m=1$ in (1.5) and (1.6) we get

$$
\begin{equation*}
F_{s} F_{k+n}=F_{k} F_{n+s}-(-1)^{s} F_{k-s} F_{n}, \quad F_{s} L_{k+n}=F_{k} L_{n+s}-(-1)^{s} F_{k-s} L_{n} . \tag{1.7}
\end{equation*}
$$

From this we have the following well-known results (see [D],[R1] and [R2]):

$$
(\text { Catalan }) \quad F_{k+n} F_{k-n}=F_{k}^{2}-(-1)^{k-n} F_{n}^{2}
$$

$$
\begin{equation*}
F_{2 n}=F_{n} L_{n}, F_{2 n+1}=F_{n}^{2}+F_{n+1}^{2}, L_{2 n}=L_{n}^{2}-2(-1)^{n} . \tag{1.9}
\end{equation*}
$$

Putting $n=1$ in (1.8) we find $F_{k-1} F_{k+1}-F_{k}^{2}=(-1)^{k}$ and so F_{k-1} is prime to F_{k}.
For $m \geq 1$ it follows from (1.5) that

$$
\begin{equation*}
F_{s}^{m} F_{k m+n} \equiv(-1)^{(s-1) m} F_{k-s}^{m} F_{n}+(-1)^{(s-1)(m-1)} m F_{k} F_{k-s}^{m-1} F_{n+s}\left(\bmod F_{k}^{2}\right) \tag{1.10}
\end{equation*}
$$

So

$$
\begin{equation*}
F_{k m+n} \equiv F_{k-1}^{m} F_{n}+m F_{k} F_{k-1}^{m-1} F_{n+1}\left(\bmod F_{k}^{2}\right) \tag{1.11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
F_{k m} \equiv m F_{k} F_{k-1}^{m-1}\left(\bmod F_{k}^{2}\right) \tag{1.12}
\end{equation*}
$$

Let (a, b) be the greatest common divisor of a and b. From the above we see that

$$
\left(F_{k m+n}, F_{k}\right)=\left(F_{k-1}^{m} F_{n}, F_{k}\right)=\left(F_{k}, F_{n}\right)
$$

From this and Euclid's algorithm for finding the greatest common divisor of two given numbers, we have the following beautiful result due to E.Lucas (see [D] and [R1]).

Theorem 1.2 (Lucas' theorem). Let m and n be positive integers. Then

$$
\left(F_{m}, F_{n}\right)=F_{(m, n)} .
$$

Corollary 1.1. If m and n are positive integers with $m \neq 2$, then

$$
F_{m}\left|F_{n} \Longleftrightarrow m\right| n
$$

Proof. From Lucas' theorem we derive that

$$
m\left|n \Longleftrightarrow(m, n)=m \Longleftrightarrow F_{(m, n)}=F_{m} \Longleftrightarrow\left(F_{m}, F_{n}\right)=F_{m} \Longleftrightarrow F_{m}\right| F_{n}
$$

2. Congruences for F_{p} and $F_{p \pm 1}$ modulo p.

Let $\left(\frac{a}{p}\right)$ be the Legendre symbol of a and p. For $p \neq 2,5$, using quadratic reciprocity law we see that

$$
\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)= \begin{cases}1 & \text { if } p \equiv \pm 1(\bmod 5) \\ -1 & \text { if } p \equiv \pm 2(\bmod 5)\end{cases}
$$

From [D] and [R1] we have the following well-known congruences.
Theorem 2.1(Legendre,Lagrange). Let p be an odd prime. Then

$$
L_{p} \equiv 1(\bmod p) \quad \text { and } \quad F_{p} \equiv\left(\frac{p}{5}\right) \quad(\bmod p)
$$

Proof. Since

$$
\binom{p}{k} k!=p(p-1) \cdots(p-k+1) \equiv 0(\bmod p)
$$

we see that $p \left\lvert\,\binom{ p}{k}\right.$ for $k=1,2, \ldots, p-1$. From this and (1.4) we see that

$$
\begin{aligned}
L_{p} & =\left(\frac{1+\sqrt{5}}{2}\right)^{p}+\left(\frac{1-\sqrt{5}}{2}\right)^{p} \\
& =\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k}\left((\sqrt{5})^{k}+(-\sqrt{5})^{k}\right) \\
& =\frac{1}{2^{p-1}} \sum_{\substack{k=0 \\
2 \mid k}}^{p}\binom{p}{k} 5^{\frac{k}{2}} \equiv \frac{1}{2^{p-1}} \equiv 1(\bmod p) .
\end{aligned}
$$

Similarly, by using (1.3) and Euler's criterion we get

$$
\begin{aligned}
F_{p} & =\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{p}-\left(\frac{1-\sqrt{5}}{2}\right)^{p}\right\} \\
& =\frac{1}{\sqrt{5} \cdot 2^{p}} \sum_{k=0}^{p}\binom{p}{k}\left((\sqrt{5})^{k}-(-\sqrt{5})^{k}\right) \\
& =\frac{1}{2^{p-1}} \sum_{\substack{k=0 \\
2 \nmid k}}^{p}\binom{p}{k} 5^{\frac{k-1}{2}} \equiv 5^{\frac{p-1}{2}} \equiv\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)(\bmod p) .
\end{aligned}
$$

This proves the theorem.
Theorem 2.2(Legendre,Lagrange). Let p be an odd prime. Then

$$
F_{p-1} \equiv \frac{1-\left(\frac{p}{5}\right)}{2}(\bmod p) \quad \text { and } \quad F_{p+1} \equiv \frac{1+\left(\frac{p}{5}\right)}{2}(\bmod p)
$$

Proof. From (1.2) we see that

$$
L_{p}=F_{p+1}+F_{p-1}=F_{p}+2 F_{p-1}=2 F_{p+1}-F_{p}
$$

Thus

$$
F_{p-1}=\frac{L_{p}-F_{p}}{2} \quad \text { and } \quad F_{p+1}=\frac{L_{p}+F_{p}}{2} .
$$

This together with Theorem 2.1 yields the result.

Corollary 2.1. Let p be a prime. Then $p \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$.
Corollary 2.2. Let $p>3$ be a prime, and let q be a prime divisor of F_{p}. Then

$$
q \equiv\left(\frac{q}{5}\right) \quad(\bmod p) \quad \text { and } \quad q \equiv 1(\bmod 4)
$$

Proof. From Corollary 2.1 we know that $q \left\lvert\, F_{q-\left(\frac{q}{5}\right)}\right.$. Thus $q \left\lvert\,\left(F_{q-\left(\frac{q}{5}\right)}, F_{p}\right)\right.$. Applying Lucas' theorem we get $q \left\lvert\, F_{\left(p, q-\left(\frac{q}{5}\right)\right)}\right.$. Hence $\left(p, q-\left(\frac{q}{5}\right)\right)=p$ and so $p \left\lvert\, q-\left(\frac{q}{5}\right)\right.$.

Since $p>3$ is a prime, by Corollary 1.1 we have $F_{3} \nmid F_{p}$ and hence F_{p} and q are odd. By (1.9) we have $F_{\frac{p+1}{2}}^{2}+F_{\frac{p-1}{2}}^{2}=F_{p} \equiv 0(\bmod q)$. Observing that $\left(F_{\frac{p+1}{2}}, F_{\frac{p-1}{2}}\right)=1$ we get $q \nmid F_{\frac{p+1}{2}} F_{\frac{p-1}{2}}$. Hence $\left(F_{\frac{p+1}{2}} / F_{\frac{p-1}{2}}\right)^{2} \equiv-1(\bmod q)$ and so $q \equiv 1(\bmod 4)$. This finishes the proof.

3. Lucas' law of repetition.

For any integer k, using (1.3) and (1.4) one can easily prove the following well-known identity:

$$
\begin{equation*}
L_{k}^{2}-5 F_{k}^{2}=4(-1)^{k} \tag{3.1}
\end{equation*}
$$

From (3.1) we see that $\left(L_{k}, F_{k}\right)=1$ or 2 .
Let $k, n \in \mathbb{Z}$ with $k \neq 0$. Putting $s=-k$ in (1.7) and then applying (1.1) we find

$$
(-1)^{k-1} F_{k} F_{k+n}=F_{k} F_{n-k}-(-1)^{k} F_{2 k} F_{n} .
$$

Since $F_{2 k}=F_{k} L_{k}$ and $F_{k} \neq 0$ we see that

$$
\begin{equation*}
F_{k+n}=L_{k} F_{n}+(-1)^{k-1} F_{n-k} \tag{3.2}
\end{equation*}
$$

This identity is due to E.Lucas ([D]).
Using (3.2) we can prove
Theorem 3.1. Let k and n be integers with $k \neq 0$. Then

$$
\frac{F_{k n}}{F_{k}} \equiv \begin{cases}(-1)^{k m}(2 m+1)\left(\bmod 5 F_{k}^{2}\right) & \text { if } n=2 m+1 \\ (-1)^{k(m-1)} m L_{k}\left(\bmod 5 F_{k}^{2}\right) & \text { if } n=2 m\end{cases}
$$

Proof. By (1.1) we have $F_{-k n}=(-1)^{k n-1} F_{k n}$. From this we see that it suffices to prove the result for $n \geq 0$. Clearly the result is true for $n=0,1$. Now suppose $n \geq 2$ and the result is true for all positive integers less than n. From (3.2) we see that $F_{k n}=L_{k} F_{(n-1) k}+(-1)^{k-1} F_{(n-2) k}$. Since $L_{k}^{2}=5 F_{k}^{2}+4(-1)^{k} \equiv 4(-1)^{k}\left(\bmod 5 F_{k}^{2}\right)$ by (3.1), using the inductive hypothesis we obtain

$$
\begin{aligned}
\frac{F_{k n}}{F_{k}} & =L_{k} \frac{F_{(n-1) k}}{F_{k}}+(-1)^{k-1} \frac{F_{(n-2) k}}{F_{k}} \\
& \equiv\left\{\begin{array}{cc}
L_{k} \cdot(-1)^{k(m-1)} m L_{k}+(-1)^{k-1} \cdot(-1)^{k(m-1)}(2 m-1) \\
\equiv(-1)^{k m}(2 m+1)\left(\bmod 5 F_{k}^{2}\right) & \text { if } n=2 m+1 \\
L_{k} \cdot(-1)^{k(m-1)}(2 m-1)+(-1)^{k-1} \cdot(-1)^{k m}(m-1) L_{k} \\
=(-1)^{k(m-1)} m L_{k}\left(\bmod 5 F_{k}^{2}\right) & \text { if } n=2 m
\end{array}\right.
\end{aligned}
$$

This shows that the result is true for n. So the theorem is proved by induction.
Clearly Theorem 3.1 is much better than (1.12).

Corollary 3.1. Let $k \neq 0$ be an integer, and let p be an odd prime divisor of F_{k}. Then

$$
\frac{F_{k p}}{F_{k}} \equiv p\left(\bmod 5 p^{2}\right)
$$

Proof. Since $p \mid F_{k}$ we see that $5 p^{2} \mid 5 F_{k}^{2}$. So, by Theorem 3.1 we get

$$
\frac{F_{k p}}{F_{k}} \equiv(-1)^{\frac{p-1}{2} k} p\left(\bmod 5 p^{2}\right)
$$

Since $L_{k}^{2}=5 F_{k}^{2}+4(-1)^{k} \equiv 4(-1)^{k}(\bmod p)$ we see that $2 \mid k$ if $p \equiv 3(\bmod 4)$. So $\frac{p-1}{2} k \equiv 0(\bmod 2)$ and hence $F_{k p} / F_{k} \equiv p\left(\bmod 5 p^{2}\right)$.

For prime p and integer $n \neq 0$ let $\operatorname{ord}_{p} n$ be the order of n at p. That is, $p^{\operatorname{ord}_{p} n} \mid n$ but $p^{\operatorname{ord}_{p} n+1} \nmid n$. From Corollary 3.1 we have

Theorem 3.2 (Lucas' law of repetition ([D],[R2])). Let k and m be nonzero integers. If p is an odd prime divisor of F_{k}, then

$$
\operatorname{ord}_{p} F_{k m}=\operatorname{ord}_{p} F_{k}+\operatorname{ord}_{p} m
$$

Proof. Write $m=p^{\alpha} m_{0}$ with $p \nmid m_{0}$. Then $\operatorname{ord}_{p} m=\alpha$. Since $p \mid F_{k}$ we have $p \nmid L_{k}$ by (3.1). Thus using Theorem 3.1 we see that $F_{k m_{0}} / F_{k} \not \equiv 0(\bmod p)$. Observing that

$$
\frac{F_{k m}}{F_{k}}=\frac{F_{k m_{0}}}{F_{k}} \cdot \prod_{s=1}^{\alpha} \frac{F_{p^{s} m_{0} k}}{F_{p^{s-1} m_{0} k}}
$$

and $\operatorname{ord}_{p}\left(F_{p^{s} m_{0} k} / F_{p^{s-1} m_{0} k}\right)=p$ by Corollary 3.1, we then get $\operatorname{ord}_{p}\left(F_{k m} / F_{k}\right)=\alpha$. This yields the result.

Definition 3.1. For positive integer m let $r(m)$ denote the least positive integer n such that $m \mid F_{n}$. We call $r(m)$ the rank of appearance of m in the Fibonacci sequence.

From Theorem 1.2 we have the following well-known result (see [D],[R1],[R2]).
Lemma 3.1. Let m and n be positive integers. Then $m \mid F_{n}$ if and only if $r(m) \mid n$.
Proof. From Theorem 1.2 and the definition of $r(m)$ we see that

$$
\begin{aligned}
m \mid F_{n} & \Longleftrightarrow m\left|\left(F_{n}, F_{r(m)}\right) \Longleftrightarrow m\right| F_{(n, r(m))} \\
& \Longleftrightarrow(n, r(m))=r(m) \Longleftrightarrow r(m) \mid n .
\end{aligned}
$$

This proves the lemma.
If $p \neq 2,5$ is a prime, $p^{\beta} \mid F_{r(p)}$ and $p^{\beta+1} \nmid F_{r(p)}$, then clearly $r\left(p^{\alpha}\right)=r(p)$ for $\alpha \leq \beta$. When $\alpha>\beta$, from Theorem 3.2 and Lemma 3.1 we see that $r\left(p^{\alpha}\right)=p^{\alpha-\beta} r(p)$. This is the original form of Lucas' law of repetition given by Lucas ([D]).

Theorem 3.3. Let m be a positive integer. If $p \neq 2,5$ is a prime such that $p \mid F_{m}$, then $\operatorname{ord}_{p} F_{m}=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}+\operatorname{ord}_{p} m$.

Proof. Since $p \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$ by Corollary 2.1, using Lemma 3.1 we see that $r(p) \left\lvert\, p-\left(\frac{p}{5}\right)\right.$ and $r(p) \mid m$. From Theorem 3.2 we know that
$\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}=\operatorname{ord}_{p} F_{r(p)}+\operatorname{ord}_{p}\left(\frac{p-\left(\frac{p}{5}\right)}{r(p)}\right) \quad$ and $\quad \operatorname{ord}_{p} F_{m}=\operatorname{ord}_{p} F_{r(p)}+\operatorname{ord}_{p}\left(\frac{m}{r(p)}\right)$.
Since $p \nmid p-\left(\frac{p}{5}\right)$ and so $p \nmid r(p)$ we obtain the desired result.
Corollary 3.2. Let m be a positive integer. If $p \neq 2,5$ is a prime such that $p \mid L_{m}$, then $\operatorname{ord}_{p} L_{m}=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}+\operatorname{ord}_{p} m$.

Proof. Since $F_{2 m}=F_{m} L_{m}$ and $\left(F_{m}, L_{m}\right) \mid 2$ we see that $p \nmid F_{m}$ and $p \mid F_{2 m}$. Thus applying Theorem 3.3 we have

$$
\operatorname{ord}_{p} L_{m}=\operatorname{ord}_{p} F_{2 m}=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}+\operatorname{ord}_{p}(2 m)=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}+\operatorname{ord}_{p} m
$$

This is the result.
Theorem 3.4. Let $\left\{S_{n}\right\}$ be given by $S_{1}=3$ and $S_{n+1}=S_{n}^{2}-2(n \geq 1)$. If p is a prime divisor of S_{n}, then $p^{\alpha} \mid S_{n}$ if and only if $p^{\alpha} \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$.

Proof. Clearly $2 \nmid S_{n}$ and $5 \nmid S_{n}$. Thus $p \neq 2,5$. From (1.9) we see that $S_{n}=L_{2^{n}}$. Thus by Corollary 3.2 we have

$$
\operatorname{ord}_{p} S_{n}=\operatorname{ord}_{p} L_{2^{n}}=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}+\operatorname{ord}_{p} 2^{n}=\operatorname{ord}_{p} F_{p-\left(\frac{p}{5}\right)}
$$

This yields the result.
We note that if p is a prime divisor of S_{n}, then $p \equiv\left(\frac{p}{5}\right)\left(\bmod 2^{n+1}\right)$. This is because $r(p)=2^{n+1}$ and $r(p) \left\lvert\, p-\left(\frac{p}{5}\right)\right.$.
4. Congruences for the Fibonacci quotient $F_{p-\left(\frac{p}{5}\right)} / p(\bmod p)$.

From now on let $[x]$ be the greatest integer not exceeding x and $q_{p}(a)=\left(a^{p-1}-1\right) / p$. For prime $p>5$, it follows from Corollary 2.1 that $F_{p-\left(\frac{p}{5}\right)} / p \in \mathbb{Z}$. So the next natural problem is to determine the so-called Fibonacci quotient $F_{p-\left(\frac{p}{5}\right)} / p(\bmod p)$.
Theorem 4.1. Let p be a prime greater than 5. Then
(1) (Z.H.Sun and Z.W.Sun[SS],1992) $\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv-2 \sum_{\substack{k=1 \\ k \equiv 2 p(\bmod 5)}}^{p-1} \frac{1}{k}(\bmod p)$.
(2) (H.C.Williams[W2], 1991) $\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv \frac{2}{5} \sum_{\frac{p}{5}<k<\frac{2 p}{5}} \frac{1}{k}(\bmod p)$.
(3) (Z.H.Sun $[\mathrm{S} 2], 1995) \frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv \frac{2}{5} \sum_{1 \leq k<\frac{2 p}{5}} \frac{(-1)^{k-1}}{k}(\bmod p)$.
(4) (H.C.Williams[W1], 1982) $\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv-\frac{2}{5} \sum_{1 \leq k<\frac{4 p}{5}} \frac{(-1)^{k-1}}{k}(\bmod p)$.
(5) (Z.H.Sun $[\mathrm{S} 2], 1995) \frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv \frac{2}{5} \sum_{\frac{p}{5}<k<\frac{p}{3}} \frac{(-1)^{k}}{k}(\bmod p)$.
(6) (Z.H.Sun[S2],1995) $\frac{F_{p-\left(\frac{5}{p}\right)}^{p}}{p} 6 \sum_{\substack{k=1 \\ k \equiv 4 p(\bmod 15)}}^{p-1} \frac{(-1)^{k-1}}{k}-6 \sum_{\substack{k=1 \\ k \equiv 5 p(\bmod 15)}}^{p-1} \frac{(-1)^{k-1}}{k}(\bmod p)$.
(7) (Z.H.Sun[S2],1995) $\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv-\frac{4}{3} \sum_{\substack{k=1 \\ k \equiv 2 p, 3 p(\bmod 10)}}^{p-1} \frac{1}{k} \equiv \frac{2}{15} \sum_{\frac{p}{10}<k<\frac{3 p}{10}} \frac{1}{k}(\bmod p)$.
(8) (Z.H.Sun[S1],1992) If $r \in\{1,2,3,4\}$ and $r \equiv 3 p(\bmod 5)$, then

$$
\frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv \frac{2}{5} q_{p}(2)+2 \sum_{k=0}^{\frac{p-5-2 r}{10}} \frac{(-1)^{5 k+r}}{5 k+r}(\bmod p)
$$

(9) (Z.H.Sun $[$ S2 $], 1995) \frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv \frac{4}{5}\left((-1)^{[p / 5]}\binom{p-1}{[p / 5]}-1\right) / p-q_{p}(5)(\bmod p)$.

$$
\begin{equation*}
(\mathrm{Z} . \mathrm{H} . \operatorname{Sun}[\mathrm{S} 4], 2001) \frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv q_{p}(5)-2 q_{p}(2)-\sum_{k=1}^{(p-1) / 2} \frac{1}{k \cdot 5^{k}}(\bmod p) . \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{Z} . \mathrm{H} . \operatorname{Sun}[\mathrm{S} 4], 2001) \frac{F_{p-\left(\frac{5}{p}\right)}}{p} \equiv-\frac{1}{5}\left(2 q_{p}(2)+\sum_{k=1}^{(p-1) / 2} \frac{5^{k}}{k}\right)(\bmod p) \tag{11}
\end{equation*}
$$

We remark that Theorem 4.1(11) can also be deduced from P.Bruckman's result ([B]).
Theorem 4.2 (A.Granville,Z.W.Sun[GS],1996). Let $\left\{B_{n}(x)\right\}$ be the Bernoulli polynomials. If p is a prime greater than 5 , then

$$
\begin{aligned}
& B_{p-1}\left(\frac{1}{5}\right)-B_{p-1} \equiv \frac{5}{4} q_{p}(5)+\frac{5}{4}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}}{p}(\bmod p), \\
& B_{p-1}\left(\frac{2}{5}\right)-B_{p-1} \equiv \frac{5}{4} q_{p}(5)-\frac{5}{4}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}^{p}(\bmod p),}{p} \\
& B_{p-1}\left(\frac{1}{10}\right)-B_{p-1} \equiv \frac{5}{4} q_{p}(5)+2 q_{p}(2)+\frac{15}{4}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}}{p}(\bmod p), \\
& B_{p-1}\left(\frac{3}{10}\right)-B_{p-1} \equiv \frac{5}{4} q_{p}(5)+2 q_{p}(2)-\frac{15}{4}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}}{p}(\bmod p) .
\end{aligned}
$$

5. Wall-Sun-Sun prime.

Using Theorem 4.1(1) and H.S.Vandiver's result in 1914, Z.H.Sun and Z.W.Sun[SS] revealed the connection between Fibonacci numbers and Fermat's last theorem.

Theorem 5.1(Z.H.Sun, Z.W.Sun[SS],1992). Let $p>5$ be a prime. If there are integers x, y, z such that $x^{p}+y^{p}=z^{p}$ and $p \nmid x y z$, then $p^{2} \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$.

On the basis of this result, mathematicians introduced the so-called Wall-Sun-Sun primes ([CDP]).

Definition 5.1. If p is a prime such that $p^{2} \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right.$, then p is called a Wall-Sun-Sun prime.

Up to now, no Wall-Sun-Sun primes are known. R. McIntosh showed that any Wall-Sun-Sun prime should be greater than 10^{14}. See the web pages:
http : //primes.utm.edu/glossary/page.php?sort = WallSunSunPrime,
http : //en2.wikipedia.org/wiki/Wall - Sun - Sun_prime.
Theorem 5.2. Let $p>5$ be a prime. Then p is a Wall-Sun-Sun prime if and only if $L_{p-\left(\frac{p}{5}\right)} \equiv 2\left(\frac{p}{5}\right)\left(\bmod p^{4}\right)$.

Proof. From (1.2), Theorems 2.1 and 2.2 we see that

$$
\begin{equation*}
L_{p-\left(\frac{p}{5}\right)}=2 F_{p}-\left(\frac{p}{5}\right) F_{p-\left(\frac{p}{5}\right)} \equiv 2\left(\frac{p}{5}\right)(\bmod p) \tag{5.1}
\end{equation*}
$$

and so that $L_{p-\left(\frac{p}{5}\right)} \not \equiv-2\left(\frac{p}{5}\right)(\bmod p)$. Since $L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}$ by (3.1), we have

$$
\begin{aligned}
p^{2} \left\lvert\, F_{p-\left(\frac{p}{5}\right)}\right. & \Longleftrightarrow p^{4} \left\lvert\, F_{p-\left(\frac{p}{5}\right)}^{2} \Longleftrightarrow L_{p-\left(\frac{p}{5}\right)}^{2} \equiv 4\left(\bmod p^{4}\right)\right. \\
& \Longleftrightarrow p^{4} \left\lvert\,\left(L_{p-\left(\frac{p}{5}\right)}-2\left(\frac{p}{5}\right)\right)\left(L_{p-\left(\frac{p}{5}\right)}+2\left(\frac{p}{5}\right)\right)\right. \\
& \Longleftrightarrow p^{4} \left\lvert\, L_{p-\left(\frac{p}{5}\right)}-2\left(\frac{p}{5}\right) .\right.
\end{aligned}
$$

This is the result.
From Theorem 3.3 we have
Theorem 5.3. Let m be a positive integer. If $p \neq 2,5$ is a prime such that $p \mid F_{m}$, then p is a Wall-Sun-Sun prime if and only if $\operatorname{ord}_{p} F_{m} \geq \operatorname{ord}_{p} m+2$.

From Theorem 3.4 we have
Theorem 5.4. Let $\left\{S_{n}\right\}$ be given by $S_{1}=3$ and $S_{n+1}=S_{n}^{2}-2(n \geq 1)$. If p is a prime divisor of S_{n}, then $p^{2} \mid S_{n}$ if and only if p is a Wall-Sun-Sun prime.

According to Theorem 5.4 and R. McIntosh's search result we see that any square prime factor of S_{n} should be greater than 10^{14}.

6. Congruences for $F_{\frac{p-1}{2}}$ and $F_{\frac{p+1}{2}}$ modulo p.

For prime $p>5$, it looks very difficult to determine $F_{\frac{p-1}{2}}$ and $F_{\frac{p+1}{2}}(\bmod p)$. Anyway, the congruences were established by Z.H.Sun and Z.W.Sun[SS] in 1992. They deduced the desired congruences from the following interesting formulas.
Lemma 6.1 (Z.H.Sun and Z.W.Sun[SS],1992). Let $p>0$ be odd, and $r \in \mathbb{Z}$. (1) If $p \equiv 1(\bmod 4)$, then

$$
\sum_{k=0}^{p}\binom{p}{k}=\left\{\begin{array}{cl}
\frac{1}{10}\left(2^{p}+L_{p+1}+5^{\frac{p+3}{4}} F_{\frac{p+1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}(\bmod 10) \\
\frac{1}{10}\left(2^{p}-L_{p-1}+5^{\frac{p+3}{4}} F_{\frac{p-1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}+2(\bmod 10) \\
\frac{1}{10}\left(2^{p}-L_{p-1}-5^{\frac{p+3}{4}} F_{\frac{p-1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}+4(\bmod 10) \\
\frac{1}{10}\left(2^{p}+L_{p+1}-5^{\frac{p+3}{4}} F_{\frac{p+1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}+6(\bmod 10) \\
9 &
\end{array}\right.
$$

(2) If $p \equiv 3(\bmod 4)$, then

$$
\sum_{k \equiv r(\bmod 10)}^{p}\binom{p}{k}= \begin{cases}\frac{1}{10}\left(2^{p}+L_{p+1}+5^{\frac{p+1}{4}} L_{\frac{p+1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}(\bmod 10) \\ \frac{1}{10}\left(2^{p}-L_{p-1}+5^{\frac{p+1}{4}} L_{\frac{p-1}{2}}\right) & r \equiv \frac{p-1}{2}+2(\bmod 10) \\ \frac{1}{10}\left(2^{p}-L_{p-1}-5^{\frac{p+1}{4}} L_{\frac{p-1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}+4(\bmod 10) \\ \frac{1}{10}\left(2^{p}+L_{p+1}-5^{\frac{p+1}{4}} L_{\frac{p+1}{2}}\right) & \text { if } r \equiv \frac{p-1}{2}+6(\bmod 10)\end{cases}
$$

(3) If $r \equiv \frac{p-1}{2}+8(\bmod 10)$, then

$$
\sum_{\substack{k=0 \\ k \equiv r(\bmod 10)}}^{p}\binom{p}{k}=\frac{1}{10}\left(2^{p}-2 L_{p}\right)
$$

Lemma 6.1 was rediscovered by F.T.Howard and R.Witt[HW] in 1998.
If p is an odd prime, then $p \left\lvert\,\binom{ p}{k}\right.$ for $k=1,2, \ldots, p-1$. So, using Lemma 6.1 we can determine $F_{\frac{p-1}{2}}$ and $F_{\frac{p+1}{2}}(\bmod p)$.

Theorem 6.1(Z.H.Sun,Z.W.Sun[SS],1992). Let $p \neq 2,5$ be a prime. Then

$$
F_{\frac{p-\left(\frac{p}{5}\right)}{2}} \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 1(\bmod 4) \\ 2(-1)^{\left[\frac{p+5}{10}\right]}\left(\frac{p}{5}\right) 5^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and

$$
F_{\frac{p+\left(\frac{p}{5}\right)}{2}} \equiv \begin{cases}(-1)^{\left[\frac{p+5}{10}\right]}\left(\frac{p}{5}\right) 5^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv 1(\bmod 4) \\ (-1)^{\left[\frac{p+5}{10}\right]} 5^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

In 2003, Z.H.Sun ([S6]) gave another proof of Theorem 6.1. Since $L_{n}=2 F_{n+1}-F_{n}=$ $2 F_{n-1}+F_{n}$, by Theorem 6.1 one may deduce the congruences for $L_{\frac{p \pm 1}{2}}(\bmod p)$.
Theorem 6.2(Z.H.Sun, 6 Jan. 1989). Let $p \equiv 3,7(\bmod 20)$ be a prime and hence $2 p=x^{2}+5 y^{2}$ for some positive integers x, y. Then

$$
L_{\frac{p-1}{2}} \equiv(-1)^{\frac{x-y}{2}} \frac{x}{y}(\bmod p)
$$

7. Congruences for $F_{\left(p-\left(\frac{p}{3}\right)\right) / 3}(\bmod p)$.

Let $p>5$ be a prime. It is clear that

$$
\left(\frac{-15}{p}\right)=\left(\frac{-3}{p}\right)\left(\frac{5}{p}\right)=\left(\frac{p}{3}\right)\left(\frac{p}{5}\right)= \begin{cases}1 & \text { if } p \equiv 1,2,4,8(\bmod 15) \\ -1 & \text { if } p \equiv 7,11,13,14(\bmod 15)\end{cases}
$$

Using the theory of cubic residues, Z.H.Sun[S3] proved the following result.

Theorem 7.1 (Z.H.Sun[S3],1998). Let p be an odd prime.
(1) If $p \equiv 1,4(\bmod 15)$ and so $p=x^{2}+15 y^{2}$ for some integers x, y. Then

$$
F_{\frac{p-1}{3}} \equiv \begin{cases}0(\bmod p) & \text { if } y \equiv 0(\bmod 3) \\ \mp \frac{x}{5 y}(\bmod p) & \text { if } y \equiv \pm x(\bmod 3)\end{cases}
$$

and

$$
L_{\frac{p-1}{3}} \equiv \begin{cases}2(\bmod p) & \text { if } y \equiv 0(\bmod 3) \\ -1(\bmod p) & \text { if } y \not \equiv 0(\bmod 3)\end{cases}
$$

(2) If $p \equiv 2,8(\bmod 15)$ and so $p=5 x^{2}+3 y^{2}$ for some integers x, y. Then

$$
F_{\frac{p+1}{3}} \equiv \begin{cases}0(\bmod p) & \text { if } y \equiv 0(\bmod 3) \\ \pm \frac{x}{y}(\bmod p) & \text { if } y \equiv \pm x(\bmod 3)\end{cases}
$$

and

$$
L_{\frac{p+1}{3}} \equiv \begin{cases}-2(\bmod p) & \text { if } y \equiv 0(\bmod 3) \\ 1(\bmod p) & \text { if } y \not \equiv 0(\bmod 3)\end{cases}
$$

Theorem 7.2. Let p be an odd prime such that $p \equiv 7,11,13,14(\bmod 15)$. Then $x \equiv F_{\left(p-\left(\frac{p}{3}\right)\right) / 3}(\bmod p)$ is the unique solution of the cubic congruence $5 x^{3}+3 x-1 \equiv$ $0(\bmod p)$, and $x \equiv L_{\left(p-\left(\frac{p}{3}\right)\right) / 3}(\bmod p)$ is the unique solution of the cubic congruence $x^{3}-3 x+3\left(\frac{p}{3}\right) \equiv 0(\bmod p)$.

Proof. Since $\left(\frac{-15}{p}\right)=1$ and $(-1)^{\left(p-\left(\frac{p}{3}\right)\right) / 6}=\left(\frac{3}{p}\right)$, by taking $a=-1$ and $b=1$ in [S7, Corollary 2.1] we find

$$
F_{\left(p-\left(\frac{p}{3}\right)\right) / 3} \equiv-\frac{t}{5}(\bmod p) \quad \text { and } \quad L_{\left(p-\left(\frac{p}{3}\right)\right) / 3} \equiv-\left(\frac{p}{3}\right) y(\bmod p)
$$

where t is the unique solution of the congruence $t^{3}+15 t+25 \equiv 0(\bmod p)$, and y is the unique solution of the congruence $y^{3}-3 y-3 \equiv 0(\bmod p)$. Now setting $t=-5 x$ and $y=-\left(\frac{p}{3}\right) x$ yields the result.

Using Theorem 7.1 Z.H.Sun proved
Theorem 7.3 (Z.H.Sun[S3],1998). Let $p>5$ be a prime.
(1) If $p \equiv 1(\bmod 3)$, then

$$
\begin{aligned}
& p \left\lvert\, F_{\frac{p-1}{3}} \Longleftrightarrow p=x^{2}+135 y^{2}(x, y \in \mathbb{Z})\right. \\
& p \left\lvert\, F_{\frac{p-1}{6}} \Longleftrightarrow p=x^{2}+540 y^{2}(x, y \in \mathbb{Z})\right.
\end{aligned}
$$

(2) If $p \equiv 2(\bmod 3)$,

$$
\begin{aligned}
& p \left\lvert\, F_{\frac{p+1}{3}} \Longleftrightarrow p=5 x^{2}+27 y^{2}(x, y \in \mathbb{Z})\right. \\
& p \left\lvert\, F_{\frac{p+1}{6}} \Longleftrightarrow p=5 x^{2}+108 y^{2}(x, y \in \mathbb{Z})\right.
\end{aligned}
$$

In 1974, using cyclotomic numbers E.Lehmer[L2] proved that if $p \equiv 1(\bmod 12)$ is a prime, then $p \left\lvert\, F_{\frac{p-1}{3}}\right.$ if and only if p is represented by $x^{2}+135 y^{2}$.

8. Congruences for $F_{\left(p-\left(\frac{-1}{p}\right)\right) / 4}$ modulo p.

Theorem 8.1 (E.Lehmer $[\mathbf{L} 1], \mathbf{1 9 6 6})$. Let $p \equiv 1,9(\bmod 20)$ be a prime, and $p=$ $a^{2}+b^{2}$ with $a, b \in \mathbb{Z}$ and $2 \mid b$.
(i) If $p \equiv 1,29(\bmod 40)$, then $p\left|F_{\frac{p-1}{4}} \Longleftrightarrow 5\right| b$;
(ii) If $p \equiv 9,21(\bmod 40)$, then $p\left|F_{\frac{p-1}{4}}^{{ }^{4}} \Longleftrightarrow 5\right| a$.

Theorem 8.2. Let p be a prime greater than 5 .
(i) $($ E.Lehmer $[\mathrm{L} 2], 1974)$ If $p \equiv 1(\bmod 8)$, then

$$
p \left\lvert\, F_{\frac{p-1}{4}} \Longleftrightarrow p=x^{2}+80 y^{2} \quad(x, y \in \mathbb{Z})\right.
$$

(ii) (Z.H.Sun,Z.W.Sun[SS], 1992) If $p \equiv 5(\bmod 8)$, then

$$
p \left\lvert\, F_{\frac{p-1}{4}} \Longleftrightarrow p=16 x^{2}+5 y^{2} \quad(x, y \in \mathbb{Z})\right.
$$

In 1994, by computing some quartic Jacobi symbols Z.H.Sun established the following unpublished result.
Theorem 8.3 (Z.H.Sun, 1994). Let $p \equiv 1,9(\bmod 20)$ be a prime with $p=a^{2}+b^{2}=$ $x^{2}+5 y^{2}(a, b, x, y \in \mathbb{Z})$ and $a \equiv(-1)^{\frac{p-1}{4}}(\bmod 4)$. If $4 \mid x y$, then

$$
L_{\frac{p-1}{4}} \equiv \begin{cases}2\left(\frac{a-2 b}{5}\right)_{4}\left(\frac{2 a y+b y+a x}{p}\right)(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\ -\frac{2 b}{a}\left(\frac{2 a+b}{5}\right)_{4}\left(\frac{2 a y+b y+a x}{p}\right)(\bmod p) & \text { if } p \equiv 5(\bmod 8) .\end{cases}
$$

If $4 \nmid x y$, then

$$
F_{\frac{p-1}{4}} \equiv \begin{cases}\left(\frac{2 a+b}{5}\right)_{4}\left(\frac{2 a y+b y+a x}{p}\right) \frac{2 y}{x}(\bmod p) & \text { if } p \equiv 1(\bmod 8) \\ \left(\frac{2 b-a}{5}\right)_{4}\left(\frac{2 a y+b y+a x}{p}\right) \frac{2 b y}{a x}(\bmod p) & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

where $\left(\frac{m}{5}\right)_{4}=1$ or -1 according as $m \equiv 1(\bmod 5)$ or not.
In the end we point out two interesting conjectures.
Conjecture 8.1 (Z.H.Sun[S6], 12 Feb.2003). Let $p \equiv 3,7(\bmod 20)$ be a prime, and hence $2 p=x^{2}+5 y^{2}$ for some integers x and y. Then

$$
F_{\frac{p+1}{4}} \equiv \begin{cases}2(-1)^{\left[\frac{p-5}{10}\right]} \cdot 10^{\frac{p-3}{4}}(\bmod p) & \text { if } y \equiv \pm \frac{p-1}{2}(\bmod 8) \\ -2(-1)^{\left[\frac{p-5}{10}\right]} \cdot 10^{\frac{p-3}{4}}(\bmod p) & \text { if } y \not \equiv \pm \frac{p-1}{2}(\bmod 8)\end{cases}
$$

Since $F_{\frac{p+1}{4}} L_{\frac{p+1}{4}}=F_{\frac{p+1}{2}}$, from Theorem 6.1 we see that Conjecture 7.1 is equivalent to

$$
L_{\frac{p+1}{4}} \equiv \begin{cases}(-2)^{\frac{p+1}{4}}(\bmod p) & \text { if } y \equiv \pm \frac{p-1}{2}(\bmod 8) \tag{8.1}\\ -(-2)^{\frac{p+1}{4}}(\bmod p) & \text { if } y \not \equiv \pm \frac{p-1}{2}(\bmod 8)\end{cases}
$$

Z.H.Sun has checked (8.1) for all primes $p<3000$.

Conjecture 8.2 (E.Lehmer $[\mathbf{L 2} \mathbf{2}, \mathbf{1 9 7 4})$. Let $p \equiv 1(\bmod 16)$ be a prime, and $p=$ $x^{2}+80 y^{2}=a^{2}+16 b^{2}$ for some integers x, y, a, b. Then

$$
p \left\lvert\, F_{\frac{p-1}{8}} \Longleftrightarrow y \equiv b(\bmod 2)\right.
$$

References

[B] P. Bruckman, Equivalent conditions for Fibonacci and Lucas pseudoprimes to contain a square factor, Pi Mu Epsilon Journal 10 (1998), 634-642.
[CDP] R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), 433-449, MR 97c:11004.
[D] L.E. Dickson, History of the Theory of Numbers, Vol.I, Chelsea, New York, 1952, pp. 393-407.
[GS] A.Granville and Z.W.Sun, Values of Bernoulli polynomials, Pacific J. Math. 172 (1996), 117137.
[HW] F.T.Howard and R.Witt, Lacunary sums of binomial coefficients, Applications of Fibonacci Numbers (Vol 7) (1998), Kluwer Academic Publishers, 185-195.
[L1] E.Lehmer, On the quadratic character of the Fibonacci root, Fibonacci Quart. 4 (1966), 135-138, MR39\#160.
[L2] E.Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[Le] D.H. Lehmer, An extended theory of Lucas' functions, Ann. Math. 31 (1930), 419-448.
[R1] P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, Berlin, 1989, pp. 44-50.
[R2] P. Ribenboim, My numbers, my friends, Springer-Verlag New York, Inc., New York, Berlin, London, 2000, pp. 1-41.
[S1] Z.H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}\binom{n}{k}$ and its applications in number theory I, J. Nanjing Univ. Math. Biquarterly 9 (1992), 227-240, MR94a:11026.
[S2] __ Combinatorial sum $\sum_{k \equiv r(\bmod m)}\binom{n}{k}$ and its applications in number theory III, J. Nanjing Univ. Math. Biquarterly 12 (1995), 90-102, MR96g:11017.
[S3] __, On the theory of cubic residues and nonresidues, Acta Arith. 84 (1998), 291-335, MR99c: 11005.
[S4] __, Five congruences for primes, Fibonacci Quart. 40 (2001), 345-351.
[S5] __ Linear recursive sequences and powers of matrices, Fibonacci Quart. 39 (2001), 339-351.
[S6] _, Values of Lucas sequences modulo primes, Rocky Mountain J. Math. 33 (2003), 1123$\overline{1145}$.
[S7] , Cubic and quartic congruences modulo a prime, J. Number Theory 102 (2003), 41-89.
[SS] Z.H. Sun and Z.W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), 371-388, MR93e:11025.
[W1] H.C.Williams, A note on the Fibonacci quotient $F_{p-\varepsilon} / p$, Canad. Math. Bull. 25 (1982), 366-370.
[W2] \qquad , Some formulas concerning the fundamental unit of a real quadratic field, Discrete Math. 92 (1991), 431-440.

