BII Journal Club (27 December 2002)

The Saga of Fermat's Last Theorem

Presented by:
Sandeep Somani

What is it about?

- A brief history of (pure) mathematics ...
... through the story of Fermat's Last Theorem ...
... the most baffling, tantalizing, intriguing problem of mathematics
- Based on the book Fermat's Last Theorem by Simon Singh

Why this book?

- "This is probably the best porular account of a scientific topic I have ever read"
- "To read it is to realte that there is a world of beauty and intellectual challenge that is denied to 99.9 per cent of us who are not high-level mathematicians" - THE TIMES
 classic ingredients thath Frallyyphed would recognise" - DAILY MAIL

What's the problem ?!

- Question Time!!
- $x+y=z$
infinite integer solutions

$$
\{(x, y, z)\}=\{(1,2,3) ;(10,40,50) \ldots\}
$$

- $x^{2}+y^{2}=z^{2}$
infinite integer solutions

$$
\{(x, y, z)\}=\{(3,4,5) ;(5,12,13) \ldots\}
$$

- $x^{3}+y^{3}=z^{3}$

NO integer solutions

NO integer solutions for all $n>2$

.... the problem

.... the problem

Figure 5. Is it possible to add the building blocks from one cube to another cube, to form a third, larger, cube? In this case a $6 \times 6 \times 6$ cube added to an $8 \times 8 \times 8$ cube does not have quite enough building blocks to form a $9 \times 9 \times 9$ cube. There are $216\left(6^{3}\right)$ building blocks in the first cube, and $512\left(8^{3}\right)$ in the second. The total is 728 building blocks, which is 1 short of 9^{3}.

Who was Fermat ?!

- Pierre de Fermat was born on 20 Aug 1601 in S/W France to a wealthyleon merchant
- Due to pressure froparnuyoined Civil Service
- "Prince of Amateur Mathematicians"
- Notorious!
"Braggart" - Rene Decaites
"That damned Frenchman" - JohnMallis (Englishman)
To Blaise Pascal - Whatever of my Mork is judged worthy of publication do net want my name to appear there $=12$

What did he do ?!

- Developed Probability Theory with Pascal
- Calculus
- Biggest Contribution was Number Theory
- proved 26 is the only number sandwiched between a square and cube
- Friendly Numbers ... discovered second pair $(17296,18416)$ after Pythagoras $(220,284)$

Origin of the problem (some history) ..

600 BC

332 BC

Pythagorean Brotherhood Proof, counting numbers

Alexandria Library Euclid Elements (second best seller after bible!) Irrational numbers, reducio ad absurdum

250 AD Diophantus wrote Arithmetica (13 vols)
First blow to Alexandrian library by Christian rulers
642 AD Second and final blow by Moslem ruler Omar Caliph
~ 600 AD
Zero was discovered by Indians and Indo-Arabic notation became prevalent ie 155/601 instead of CLV/DCI !!

1601 AD \downarrow Fermat was born

Origin of the problem

Bachet did a Latin translation of Arithmatica titled
"Problems plaisans et delectables qui se font par les nombres" Having 100 problems in number theory with detailed solutions

...Fermat commented it !

DIOPHANTI

 ALEXANDRINI ARITHMETICORVM LIBRISEX=ET DE NVMERIS MVLTANCVLIS

Ascenit Dinequimat Annal (urescollectumu Ca Farijs eindcrem

 st De xxx

. and the monster is created!

Cubem autem in duos cubos, aut Quadratoquadratum in duos quadraToquadratos, et generaliter nullam in Infinitum ultra quadratum potestatem in duos eiusdem nominis fas est dividere!!

Cuius rei demonstrationem mirabilem sane Detexi hanc marginis exiguitas non caparet
i.e.

I have a truly marvelous demonstration of this proposition which this margin is too narrow to contain!!

Why is it called the 'Last Theorem'?

There were many such 'propositions' by Fermat
For eg:
All primes can be written as $4 p+1$ or $4 p-1$
Type 1 ie $4 p+1=x^{2}+y^{2}$ but not $4 p-1$
Euler proved this in 1749 after 7 years of work!
BUT
The "last" theorem could not be proved

... and the ordeal begins ...

1665 Death of Fermat
Euler proved for $\mathrm{n}=3$ based of Fermat's hint for $n=4$ case using method of infinite descent and imaginary numbers

... and the ordeal continues

1665
1753

1776

Death of Fermat
Euler proved for n=3 based of Fermat's hint for $n=4$ case using method of infinite descent

Birth of Sophie Germain (aka Monsieur Le Blanc) Considered the most /lliant French woman ever Story time!
Germain Primes, (1794) Ecole Polytechnique,,(1806) Gauss, Lagrand Pg 112
1825

Gustav Lejune Dirichlet \&
Adrien-Marie Legendre
Independently showed $n=5$

Note: Only Prime n need to be considered

... the ordeal continues ...

1665
1753
1776
1825
1839
1847

Death of Fermat
Euler proved for $n=3$ based of Fermat's hint for $n=4$
Birth of Sophie Germain
Dirichlet \& Adrien-Marie Legendre $(\mathrm{n}=5)$
Another French Gabriel Lame did $\mathrm{n}=7$
Cauchy vs Lame

Story time!

German Ernst Kummer ... Unique factorization (by Euclid) irregular primes $(37,59,67)$ were the problem A BIG BLOW (pg 128)!

Fast Forward >>

- Andrew Wiles, was born on 11 April, 1953 at Cambridge, UK
- Stumbled upon Fermat's Last Theorem when he was 10 and tried to prove it then
- Studied Euler, Germain, Cauchy, Lame', Kummer and hit the same wall as Kummer
- Phd in Elliptic Equations
$y^{2}=x^{3}+a x^{2}+b x+c$
$a=0, b=0, c=-2$ case was solved by Fermat
- Migrated to Princeton in 1980s
- In 1993 (almost) presented the solution to Fermat's Equation at Newton Institute,
 Cambridge

Back to our story ...

1847 Cauchy vs Lame and Kummer's Wall
A long gap of indifference

Paul Wolfskehl, A German Industrialist rejevunated the quest

Story Time!!

Love, Suicide, Award, Landau (1909-34)..
Univ of Gottingen (Pg 144)

the story continues ...

1847
1908
~1900
Cauchy vs Lame and Kummer's Wall Paul Wolfskehl, A German Industrialist rejevuna

Hilbert Program was started by the Mathematic Logicians
Proving laws like Law of Trichotomy
and defining things like 'threeness' (pg 150)

Defn of Logic \qquad
Bertrand Russel's paradox (pg 154)

1931
Kurt Godel, a Czech mathematician gave his Theorem's of Indecidability ! something like: "I am a liar"
"This statement does not have anv Proc,
IMPLICATION: Certain theorems might be true but there may not be any way of proving them and Fermat's Last Theorem might be one of them !

The quest continues

1847

Cauchy vs Lame and Kummer's Wall Paul Wolfskehl, A German Industrialist rejevunated the quest Kurt Godel, a Czech mathematician gave his

After Second world war computers were used to implement Brute Force Method
Alan Turing was involved in it
Demonstrated for $n<10000$
~1980 At Univ of Illinois $n<25000$
more recently $n<4$ million !!

Interesting facts:
$\cdot 31,331,3331, \ldots, 33333331$ are all primes BUT 333333331 = 17×19607843 !!

- Euler Conjecture

$$
x^{4}+y^{4}+z^{4}=w^{4} \text { has no integer solution }
$$

BUT in 1988 Naom Elkies at Harward found one (pg 178) !!

The quest continues ...

1847
1908
1931
~1950

1955

1984

Cauchy vs Lame and Kummer's Wall Paul Wolfskehl, A German Industrialist rejevunated the quest Kurt Godel, a Czech mathematician gave his Brute Force Method

Taniyama-Shimura Conjecture
stated the Equivalence of Modular forms and Elliptic curves (whatever that means!)

This was a mammoth idea (pg 211)
Grand Unification Scheme by Langlands
Gerhard Frey claimed:
"Proof of T-S will immediately prove Fermat's Last theorem"
Also
"If Fermat's theorem is wrong so is T-S and that would be disastrous"

The most important problem in mathematics of $17^{\text {th }}$ century got linked to most important problem of $20^{\text {th }}$ century!

Finally ... the quest concludes !

1931
~1950
1955
1984

1986

1995

Kurt Godel, a Czech mathematician gave his Brute Force Method
Taniyama-Shimura Conjecture Gerhard Frey

Andrew Wiles started working to prove T-S conjecture
pg 223
Ken Ribet, Barry Mazur, Evariste Galois

Andrew Wiles presented the proof of T-S conjecture ... Almost!!

Andrew Wiles completed the proof of T-S conjecture ... Conclusively

"I think I will stop here"

- 3 Lectures 21-23 June 1993 at the Newton Institute
- The Lecture of the Century
- 180 page proof in the Annals of Mathematics (May 1995)

My Comments !

"I think l'll stop here" ;)

Wish You a Happy New Year !

Questions ?!

