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Let g(x, n), with x ∈ R+, be a step function for each n. Assuming cer-
tain technical hypotheses, we give a constant α and function f such that
∑∞

n=1 g(x, n) can be written in the form α+
∑

0<r<x f(r), where the summa-
tion is extended over all points in (0, x) at which some g( · , n) is not continuous.

A typical example is
∑∞

n=1 z
bn/xc =

(

1
z

− 1
)
∑ zq

1−zq , with the summation

extending over all pairs p, q of positive integers satisfying 0 < p/q < x and
gcd(p, q) = 1. We then apply such representations to prove identities such as

ζ(z) =
∑∞

n=1
φ(n)
nz

(

ζ(z) − ζ(z, 1 + 1
n
)
)

, the Lambert Series for Euler’s Totient

function, and
∑∞

n=0(−1)n
σz(2n+ 1)

2n+ 1
=

π

4

z

1 + z2
, where ζ(z) and ζ(z, a) are

the Riemann and Hurwitz zeta functions and σz(n) =
∑

d|n dz
d. We also give

a generalization of the Rayleigh-Beatty Theorem, and a new result of a similar
nature for the sequences (b2nαc − bnαc)∞n=1.

Key Words: Beatty Sequences, Generating Functions, Farey Fractions, Lambert

Series, Complementary Sequences, Fraenkel’s Conjecture
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1. INTRODUCTION

For α irrational, sequences of integers such as (bnα + γc)∞n=1, called
the non-homogeneous Beatty Sequence for (α, γ), and such as b2nαc −
bnαc, have many interesting properties and are well-studied. The reader is
referred to Stolarsky & Porta (1990) [15], Brown (1993) [5], and Fraenkel
(1994) [8] for recent bibliographies.

The generating function Kγ(z,
1
α ) :=

∑∞
n=1 t

nzbnα+γc (shown in Figure
(1) with t = 1, z = 7/16, γ = 1/2) was first studied by Böhmer [2] in 1927,
and more recently by Mordell (1965) [11], Newman (1960) [12] and Bow-
man (1988) [4]. Research has been focused on analyzing the irrationality
and transcendence of Kγ(z, x) at particular values, including expressing
Kγ(z, x) as a continued fraction. Borwein & Borwein (1993) [3], outlined
in Section 4.1.5, subsumes many earlier results along these lines.

In this paper we present a technique for expressing generating functions
of sequences of integers defined with a real parameter x (and satisfying some
technical growth conditions depending on the type of generating function)
as a summation extended over certain values of α ∈ (0, x). For example,

K0(z, x) :=

∞
∑

n=1

zbn/xc =
(

1
z − 1

)

∑

p,q

0<
p
q<x

(p,q)=1

zq

1− zq
. (†)

The technique is quite general and applies to
∑

zban/xc−bbn/xc, to
∑

bnx +

1c−z, and to
∑

zbn/x+γc, with interesting corollaries.
For rational x, K0(z, x) is the sum of several geometric series. For exam-

ple, K0(z, 3) =
∑∞

n=1 z
bn/3c = 2z0 +3z1 +3z2 +3z3 + · · · = 2 1

1−z +
z

1−z =
2+z
1−z , and more generally K0(z, x) = x−1+z

1−z whenever x ∈ Z+. When x
is not an integer, it is more difficult to identify precisely which geometric
series are involved. Identifying these is the essential difficulty in applying
our Main Theorem. The reader is invited to recognize the right-hand-side
of Eq. (†) as a sum of geometric series with initial term

(

1
z − 1

)

zq and
ratio zq.

The summands become small as q becomes large, so that one may ap-
proximate K0(z, x) by summing over the nth Farey Series Fn:

K0(z, x) ≈
(

1
z − 1

)

∑

p/q∈Fn

0<p/q<x

zq

1− zq
.

There are φ(n) members in Fn \ Fn−1, all with denominator n. Hence
K0(z, 1) =

(

1
z − 1

)
∑∞

q=2 φ(q)z
q/ (1− zq), and also K0(z, 1) = z/(1 − z)



4 KEVIN O’BRYANT

since 1 is an integer. A little algebraic manipulation gives the Lambert
Series for Euler’s phi-function (set b = 1 in Eq. (††) below). Considering
K(b−1)/b(z

b, x) gives the generalization (valid for |z| < 1):

∞
∑

n=1
(n,b)=1

φ(n)
znM(n)

1− zbn
=

b zb+1

(1− zb)2
+

z

1− zb
(††)

where M(n) satisfies 1 ≤ M(n) ≤ b and M(n) ≡ n−1 (mod b). This same
argument applied to the Dirichlet generating function

∑∞
n=1b

n
x+1c−z yields

the novel zeta function identity (valid for <(z) > 1)

ζ(z) =

∞
∑

q=1

φ(q)

qz

(

ζ(z)− ζ(z, 1 + 1
q )
)

.

The rationals in the interval (0, 1) are symmetric about 1
2 , and together

with Eq. (†) this allows us to prove a generalization of the Rayleigh-Beatty
Theorem: if α and β are irrational and 1

α+
1
β = m ∈ Z+, then each positive

integer occurs in the sequences (bnαc)∞n=1 and (bnβc)∞n=1 a combined total
of exactly m times. This proof of the Rayleigh-Beatty Theorem is new,
and the technique can be applied to prove similar theorems.

In fact, we obtain a new theorem of this sort by considering the gener-
ating function

∑

zb2n/xc−bn/xc. If α, β are positive irrationals satisfying
1
α + 1

β −
1
α/2 = 1, then

(b2nαc − bnαc)∞n=1

⋃

(b2nβc − bnβc)∞n=1 = Z+

and

(b2nαc − bnαc)∞n=1

⋂

(b2nβc − bnβc)∞n=1 = (b2nα2 c − bn
α
2 c)

∞
n=1.

The rationals are periodic modulo 1, and so Eq. (†) indicates that
K0(z, x) has some periodic behavior in x. In fact, we will show that for
irrational x, K0(z, x) can be written as the sum of a drift term and an
infinite sum of sines. For x = 1

4 , this expression for K0(z, x) will simplify
to

∞
∑

n=0

(−1)n
σz(2n+ 1)

2n+ 1
=
π

4

z

1 + z2
,

where σz(n) :=
∑

d|n dz
d. Note that σ1 is the usual sum-of-divisors func-

tion, but that our expressions for K0(z, x) are valid only for |z| < 1.
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FIG. 1.
∑∞

n=1(7/16)
bn/x+1/2c

2. CONNECTIONS IN THE LITERATURE

The function Kγ(z, x) :=
∑∞

n=1 z
bn/x+γc has several exotic properties.

It is a strictly increasing function of x, and, if γ = 0, is a rational function
of z if and only if x is rational (this is elaborated upon in Newman (1960)
[12]). Further, a simple ε-δ argument shows that Kγ(z, x) is continuous
only at irrational x. The image of (0,∞) under Kγ(z, · ) has measure zero
both as a subset of the complex plane and—if z is real—as a subset of the
reals.

This is not the first time a strictly increasing function which is continu-
ous exactly on the irrationals has appeared in the literature. In the 1982
Monthly article “A Naturally Occurring Function Continuous Only at Ir-
rationals” [1] one was encountered in the analysis of random binary search
trees.

Erdős & Faudree & Győri (1995) [6] may have encountered another one
while counting the number of “books” in a graph with large minimum
degree. A book of k pages is defined to be k triangles all sharing a common
edge. For each c ∈ [0, 1] define b(c) to be the minimum value b such that
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every graph with n vertices and minimum degree cn+o(n) contains a book
of bn pages. Their bound suggests that b(c) may be monotonic on ( 1

2 , 1)
and discontinuous at every rational.

If a(n) > 0 with
∑∞

n=1 a(n) <∞, and n(r) is a bijection from the posi-
tive rationals onto the positive integers, then

∑

0<r<x
r∈Q

a(n(r)) is a strictly

increasing function of x which is continuous exactly on the irrationals. The-
orem 4.1 below shows that Ka/b(z, x) has such a decomposition provided
that we restrict x to a bounded domain. What is remarkable here is that
a(n(r)) is easily expressible and depends only on the denominator of r and
on γ = a/b.

The presence of such a decomposition is surprising even given the in-
formation that Kγ(z, x) is increasing and continuous only on the irra-
tionals; Kγ(z, x) + x does not have such a decomposition, after all, nor
does Kγ(z, x)+C(x), where C(x) is Cantor’s Ternary Function, which has
0 derivative a.e.

Borwein & Borwein (1993) [3] present
∑∞

n=1 t
nzbn/x+γc as an infinite

series in terms of the convergents to x and certain integers involved in
the one-sided approximation of γ, provided that n

x + γ is not an integer
for any n. From this, they derive a continued fraction representation for
(

1
z − 1

)
∑∞

n=1 z
bn/xc. Their work rests heavily on a functional equation for

this sum, and from this equation they give a simple proof of a theorem of
Fraenkel (1969) [7]: If 1 < α 6∈ Q, γ ∈ [0, 1), and nα + γ is never integral,
then

(bnα+ γc)∞n=1 and (bnα′+ γ′c)∞n=1

partition the positive integers iff 1
α+ 1

α′ = 1, and γ
α+

γ′
α′ = 0. As mentioned

in the Introduction, our technique yields simple proofs of several theorems
of this sort. To date, however, Fraenkel’s Theorem has eluded the present
techniques.

3. MAIN THEOREM

Let VI(g) be the variation of g on the interval I, i.e.,

V(0,x)(g) = sup
n

0<a1<···<an<x

n−1
∑

i=1

|g(ai+1)− g(ai)|.

By a simple step function, we mean a step function defined on (0,∞) whose
discontinuities contain no limit point in (0,∞). We use the notation

[[Q]] =

{

1 Q is True;

0 Q is False,
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extensively, and write f(x→ r) for limx→r f(x).

Theorem 3.1 (Main Theorem). Let g(x, n) : R+×Z+ → C, with each
g( · , n) a simple step function, and

∑∞
n=1V(0,x)(g( · , n)) < ∞ for each x.

Let D be any set containing {r : g( · , n) is not continuous at r for some n}.
Suppose that α :=

∑∞
n=1 g(r → 0, n) is finite. Then for x 6∈ D,

∞
∑

n=1

g(x, n) = α+
∑

0<r<x
r∈D

f(r), (1)

where f(r) :=
∑∞

n=1 (g(x→ r+, n)− g(x→ r−, n)). If each g( · , n) is con-
tinuous from the left, then Eq. (1) holds for all x ∈ R+.

The reader may wish to keep the example g(x, n) = 2−bn/xc in mind.
For this example, we have D = Q, α = 0, and f( pq ) = 1

2q−1 . The Main
Theorem implies, in this example, that

∞
∑

n=1

(

1
2

)bn/xc
=

∑

0<
p
q<x

(p,q)=1

1

2q − 1
.

This example is looked at in substantially greater generality in Section 4.1.

Proof. LetD(n) be the set of discontinuities of g( · , n), so that ∪∞n=1D(n) ⊆
D. Define f(r, n) := g(x→ r+, n)− g(x→ r−, n), so that

∑∞
n=1 f(r, n) =

f(r). Since g( · , n) is a simple step function, we have for x 6∈ D(n)

g(x, n) = g(r → 0, n) +
∑

0<r<x
r∈D(n)

f(r, n), (2)

and the summation is over a finite set. Eq. (2) holds for x ∈ D(n) also if
g( · , n) is left continuous at x. If x 6∈ D ⊇ ∪∞n=1D(n) (or if each g( · , n) is
left continuous), then we may sum Eq. (2) over n ∈ Z+, to get

∞
∑

n=1

g(x, n) =
∞
∑

n=1

g(r → 0, n) +
∞
∑

n=1

∑

0<r<x
r∈D(n)

f(r, n)

= α+

∞
∑

n=1

∑

0<r<x
r∈D

f(r, n) (3)
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since if r 6∈ D(n) then f(r, n) = 0. We use the hypothesis on the variation of
g to justify rearranging this sum. To wit, we may rearrange terms because

∞ >

∞
∑

n=1

V(0,x)(g( · , n)) =

∞
∑

n=1

∑

0<r<x
r∈D(n)

|f(r, n)|

and we arrive at

∞
∑

n=1

∑

0<r<x
r∈D

f(r, n) =
∑

0<r<x
r∈D

∞
∑

n=1

f(r, n) =
∑

0<r<x
r∈D

f(r),

whence Eq. (3) reads

∞
∑

n=1

g(x, n) = α+
∑

0<r<x
r∈D

f(r).

4. SPECIAL SEQUENCES

In this section we conduct a more detailed analysis of several examples
to which we may apply the Main Theorem. We will collect corollaries along
the way. We provide full details for the first example only.

4.1. Beatty Sequences

Set g(x, n) := tnzbn/x+a/bc, with a ∈ Z, b ∈ Z+, (a, b) = 1, 0 < |z| < 1,
and |t| ≤ 1

|z| .

The function Ka/b(z, x) :=
∑∞

n=1 t
nzbn/x+a/bc (pictured in Figure 1 with

a/b = 1/2, z = 7/16, t = 1) has several exotic properties. If t, z > 0,
then Ka/b(z, x) is strictly increasing. With t = 1, Ka/b(z, x) is a rational
function of z if and only if x ∈ Q (for more along these lines, see Mordell
(1965) [11] and Newman (1960) [12]). A simple ε-δ argument shows that
Ka/b(z, x) is continuous only at irrational x. If t, z ∈ R, the image of (0,∞)
has measure zero.

To apply the Main Theorem, we must bound the sum of the variations of
g(x, n) and identify the set of discontinuities of g( · , n). After doing so, we
will compute α := g(r → 0, n) and f(r) :=

∑∞
n=1 f(r, n) :=

∑∞
n=1 g(x →

r+, n)− g(x→ r−, n). We combine the calculations in Theorem 4.1 below.
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We first bound the sum of the variations of the g(x, n) := tnzbn/x+a/bc.
We have

V(0,x)(g( · , n)) ≤
∞
∑

i=bn/x+a/bc
|t|n

∣

∣zi+1 − zi
∣

∣

= |t|n|z − 1|

∞
∑

i=bn/x+a/bc
|z|i

= |t|n
|1− z|

1− |z|
|z|bn/x+a/bc,

and so

∞
∑

n=1

V(0,x)(g( · , n)) ≤

∞
∑

n=1

|t|n
|1− z|

1− |z|
|z|bn/x+a/bc

≤
|1− z|

1− |z|

∞
∑

n=1

|t|n|z|n/x+a/b

=
|1− z|

1− |z|
|z|a/b

|t| · |z|1/x

1− |t| · |z|1/x
<∞.

Clearly g(x, n) is not continuous at x = r iff n
r+

a
b ∈ Z. This requires that

r be rational; we take D := Q. Not that for each n, g( · , n) is continuous
from the left. Thus the Main Theorem implies that

∞
∑

n=1

tnzbn/x+a/bc = α+
∑

0<r<x
r∈D

f(r)

for all x ∈ R+.
We first show that α = 0, and then turn to finding a simple expression

for f(r). Since bnx + a
b c → ∞ as x → 0, we see that g(r → 0, n) =

limk→∞ tnzk = 0, since |z| < 1. Thus

α :=

∞
∑

n=1

g(r → 0, n) = 0.

Set, as in the proof of the Main Theorem, f(r, n) := g(x → r+, n) −
g(x → r−, n). We need only concern ourselves with r ∈ D = Q, say
r = p

q with (p, q) = 1. The function g(x, n) is continuous at r unless
qn
p + a

b = qnb+ap
bp ∈ Z. From this we see that b|p. Replace p with bp, so
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that our condition is now qnb+abp
bbp = qn+ap

bp ∈ Z. We see now that p|n, so

replace n with pj to make the condition qpj+ap
bp = qj+a

b ∈ Z. This gives

f( bpq , pj) := g

(

x→
(

bp
q

)+

, pj

)

− g

(

x→
(

bp
q

)−
, pj

)

= [[b|qj + a]]tpj
(

z(pj/(bp/q))+a/b−1 − zpj/(bp/q)+a/b
)

= [[b|qj + a]]
(

1
z − 1

)

za/b
(

tpzq/b
)j

.

We now give f(r) :=
∑∞

n=1 f(r, n). DefineM(q) to be the unique integer
satisfying 1 ≤ M(q) ≤ b and M(q) ≡ −q−1a (mod b), provided such an
integer exists at all. Thus b|qj + a iff j =M(q) + bi for some i ≥ 0.

f( bpq ) :=

∞
∑

n=1

f( bpq , n)

=

∞
∑

j=1

[[b|qj + a]]
(

1
z − 1

)

za/b
(

tpzq/b
)j

= za/b
(

1
z − 1

)

∞
∑

i=0

(

tpzq/b
)M(q)+bi

= za/b
(

1
z − 1

)

(

tpzq/b
)M(q) 1

1− tbpzq
.

If r does not have the form bp
q , then f(r) = 0. Thus we only need M(q) to

be defined when r = bp
q , with (bp, q) = 1. In this case, (b, q) = 1, and so the

defining characteristic of M(q), “M(q) ≡ −q−1a (mod b),” is satisfiable.
We have demonstrated Theorem 4.1.

Theorem 4.1. For all x > 0, a ∈ Z, b ∈ Z+, (a, b) = 1, 0 < |z| < 1,
|t| ≤ 1

|z|

∞
∑

n=1

tnzbn/x+a/bc = za/b
(

1
z − 1

)

∑

0<
bp
q <x

(bp,q)=1

(

tpzq/b
)M(q)

1− tbpzq
.

where M(q) satisfies 1 ≤M(q) ≤ b and M(q) ≡ −q−1a (mod b).

We now explore some of applications of Theorem 4.1.

4.1.1. The Lambert Series for Euler’s Totient Function
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Corollary 4.1 generalizes Theorem 309 of Hardy & Wright [10].

Corollary 4.1. If |z| < 1 and b ∈ Z+, then

∞
∑

n=1
(n,b)=1

φ(n)
znM(n)

1− zbn
=

b zb+1

(1− zb)2
+

z

1− zb
=
z − (b− 1)zb+1

(1− zb)2
,

where M(n) satisfies 1 ≤M(n) ≤ b and M(n) ≡ n−1 (mod b).

To get Hardy & Wright’s Theorem 309 (
∑∞

n=1 φ(n)
zn

1−zn = z
(1−z)2 , the

Lambert Series for Euler’s Totient Function), set b = 1, and note that then

M(n) = 1 for all n.

Proof. Applying Theorem 4.1 with x = b, t = 1, a = b − 1, we may

write

∞
∑

n=1

zb(n+b−1)/bc = z(b−1)/b
(

1
z − 1

)

∑

0<
bp
q <b

(bp,q)=1

(

zq/b
)M(q)

1− zq
. (4)

Since kb < n ≤ (k + 1)b implies that bn+b−1
b c = k + 1, the left-hand-side

of Eq. (4) becomes

∞
∑

n=1

zb(n+b−1)/bc = b
z

1− z
.

For q ≥ 2 the number of p with 0 < bp
q < b and (bp, q) = 1 is φ(q)[[(b, q) =

1]]. The right-hand-side of Eq. (4) becomes

z(b−1)/b
(

1
z − 1

)

∑

0<
bp
q <b

(bp,q)=1

(

zq/b
)M(q)

1− zq
= z−1/b(1−z)

∞
∑

q=2

φ(q)[[(b, q) = 1]]

(

zq/b
)M(q)

1− zq

Now replace z with zb, and solve for the summation to get

∞
∑

q=2

φ(q)[[(b, q) = 1]]
zqM(q)

1− zbq
=

b zb+1

(1− zb)2
.

Include the q = 1 term to finish the proof of Corollary 4.1.

4.1.2. The Rayleigh-Beatty Theorem
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The m = 1 case of the following Theorem 4.2 is usually known as

“Beatty’s Theorem”, but was known to Lord Rayleigh earlier (see [13],

Section 92). The essential fact of this proof is that the rationals in (0,m)

are centrally symmetric, and that this symmetry preserves denominators.

Theorem 4.2. Let α, β be positive reals. Then each positive integer

occurs exactly m ∈ Z+ times (altogether) in the sequences (bnαc)∞n=1,

(bnβc)∞n=1 iff α 6∈ Q and 1
α + 1

β = m.

Proof. Density considerations imply the “only if” direction.

The conclusion of the “if” direction is equivalent to

∞
∑

n=1

zbnαc +
∞
∑

n=1

zbnβc = m
z

1− z
.

Set x := 1
α and y := 1

β , so that x+ y = m, and both x and y are irrational.

Then

∞
∑

n=1

zbnαc +
∞
∑

n=1

zbnβc =
∞
∑

n=1

zbn/xc +
∞
∑

n=1

zbn/yc

=
(

1
z − 1

)

∑

0<
p
q<x

(p,q)=1

zq

1− zq
+
(

1
z − 1

)

∑

0<
p
q<y

(p,q)=1

zq

1− zq

=
(

1
z − 1

)













∑

0<
p
q<x

(p,q)=1

+
∑

0<
p
q<y

(p,q)=1













(

zq

1− zq

)

Using the map p
q 7→ m − p

q = mq−p
q , the summation operator, as applied

to the summand zq

1−zq , satisfies

∑

0<
p
q<y

(p,q)=1

=
∑

m−y<mq−p
q <m

(p,q)=1

=
∑

x<
p
q<m

(p,q)=1
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since zq

1−zq depends only on q. We have used the equalities (mq − p, q) =

(p, q) and m− y = x. Since x is irrational,

∑

0<
p
q<x

(p,q)=1

+
∑

0<
p
q<y

(p,q)=1

=
∑

0<
p
q<x

(p,q)=1

+
∑

x<
p
q<m

(p,q)=1

=
∑

0<
p
q<m

(p,q)=1

and so

∞
∑

n=1

zbnαc +
∞
∑

n=1

zbnβc =
(

1
z − 1

)













∑

0<
p
q<x

(p,q)=1

+
∑

0<
p
q<y

(p,q)=1













(

zq

1− zq

)

=
(

1
z − 1

)

∑

0<
p
q<m

(p,q)=1

zq

1− zq

=

∞
∑

n=1

zbn/mc = m
z

1− z
.

4.1.3. Fourier Expansion

Set t = 1, and consider

Ka/b(z, x) :=

∞
∑

n=1

zbn/x+a/bc = za/b
(

1
z − 1

)

∑

0<
bp
q <x

(bp,q)=1

(

zq/b
)M(q)

1− zq/b

as a function of x. If 0 < bp
q < x with (bp, q) = 1, then b < b + bp

q =
b(q+p)

q < b+ x and (b(q + p), q) = 1. Thus

∑

0<
bp
q <x

(bp,q)=1

(

zq/b
)M(q)

1− zq/b
=

∑

b<
bp
q <b+x

(bp,q)=1

(

zq/b
)M(q)

1− zq/b
.
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This means that for 0 < x 6∈ Q

Ka/b(z, x+ b)−Ka/b(z, x) = za/b
(

1
z − 1

)

∑

x<
bp
q <b+x

(bp,q)=1

(

zq/b
)M(q)

1− zq/b

= za/b
(

1
z − 1

)

∑

0<
bp
q <b

(bp,q)=1

(

zq/b
)M(q)

1− zq/b

which is independent of x!

Hence for x > b,Ka/b(z, x)−Ka/b(z, bb
x
b c) is a periodic function of x with

period b, and we can compute a Fourier Series expression for Ka/b(z, x).

While we can compute the Fourier Series of K(x) for general a and b,

the algebra is substantial and the final expression is quite involved. For

a = 0, b = 1, both the computation and result are more elegant.

For the remainder of this section, we will work with γ = 0 and z will

not vary. When this is the case, we drop them from our notation. The

discontinuities of

K(x) := K0(z, x) =

∞
∑

n=1

zbn/xc =
(

1
z − 1

)

∑

0<
p
q<x

(p,q)=1

zq

1− zq

are a set of measure zero (the rationals), and so are not relevant to com-

puting the Fourier Series. Assume in what follows, therefore, that x is

irrational.

The periodic part of K(x) is

K({x}) =
(

1
z − 1

)

∑

0<
p
q<{x}

(p,q)=1

zq

1− zq
=
(

1
z − 1

)

∑

bxc<p
q<x

(p,q)=1

zq

1− zq
.
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We first compute the drift term K(x) −K({x}). If x < 1, then obviously

K(x)−K({x}) = bxc 1
1−z . If x ≥ 1, then

K(x)−K({x}) =
(

1
z − 1

)

∑

0<
p
q<x

(p,q)=1

zq

1− zq
−
(

1
z − 1

)

∑

bxc<p
q<x

(p,q)=1

zq

1− zq

=
(

1
z − 1

)

∑

0<
p
q≤bxc

(p,q)=1

zq

1− zq

=
(

1
z − 1

)

z1

1−z1 +
(

1
z − 1

)

∑

0<
p
q<bxc

(p,q)=1

zq

1− zq

= 1 +K(bxc)

= 1 +

∞
∑

n=1

zbn/bxcc

= 1 +

∞
∑

k=0

#{n ≥ 1 : k ≤
n

bxc
< k + 1}zk

= 1 +

∞
∑

k=0

(bxc − [[k = 0]]) zk

= bxc 1
1−z

We now need to computeK({x}) as a Fourier Series. We writeK({x}) =
∑∞

j=−∞ aje(jx), where e(x) = e2π
√
−1x as usual.

Define dn(x) to be the number of positive multiples of 1
x in the interval

[n, n + 1), so that K(x) =
∑∞

n=0 dn(x)z
n. We observe that d0({x}) = 0,

and that more generally dn({x}) =
∑n

k=1 χ(k/(n+1),k/n]({x}), a sum of

characteristic functions of the intervals ( k
n+1 ,

k
n ].

We have

a−j =

∫ 1

0

K(x)e(j x) dx =

∫ 1

0

∞
∑

n=1

dn(x)z
ne(j x) dx

=

∞
∑

n=1

zn
∫ 1

0

dn(x)e(j x) dx =

∞
∑

n=1

zn
n
∑

k=1

∫ k/n

k/(n+1)

e(j x) dx
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From this point we need a separate analysis for j = 0.

a0 =
∞
∑

n=1

zn
n
∑

k=1

∫ k/n

k/(n+1)

1 dx =
∞
∑

n=1

zn
(

1

n
−

1

n+ 1

) n
∑

k=1

k

=
∞
∑

n=1

1
2z

n =
z

2(1− z)

For j 6= 0 we will need to evaluate the geometric sums
∑n

k=1 e(
j k
n ) = n [[n|j]]

and
∑n

k=1 e(
j k
n+1 ) = (n+ 1) [[n+ 1|j]]− 1.

Now, writing σz(j) :=
∑

n|j nz
n

a−j =
∞
∑

n=1

zn
n
∑

k=1

1

2πij

(

e( j kn )− e( j k
n+1 )

)

=
−i

2πj

∞
∑

n=1

zn (n[[n|j]]− (n+ 1) [[n+ 1|j]] + 1)

=
−i

2πj

(

σz(j)−

(

1

z
σz(j)− 1

)

+
z

1− z

)

=
−i

2πj

(

1

1− z
−

(

1− z

z

)

σz(j)

)

.

Since

aj e(j x) + a−j e(−j x) =
−1

πj

(

1

1− z
−

(

1− z

z

)

σz(j)

)

sin(2πjx)

and 1
π

∑∞
j=1

1
j sin(2πjx) =

1
2 − {x} we have

K({x}) =
z

2(1− z)
−

1

π

∞
∑

j=1

1

j

(

1

1− z
−

(

1− z

z

)

σz(j)

)

sin(2πj x)

=
{x}

1− z
−

1

2
+

1

π

1− z

z

∞
∑

j=1

σz(j)

j
sin(2πjx).

The Fourier Series converges where K(x) :=
∑∞

n=1 z
bn/xc is continuous,

i.e., at irrational x, and averages the left and right limits where K(x) is

not continuous. We have shown

Theorem 4.3. K(x) :=
∑∞

n=1 z
bn/xc with 0 6= |z| < 1 satisfies

1

2

(

K(y → x−) +K(y → x+)
)

=
x

1− z
−

1

2
+

1

π

1− z

z

∞
∑

j=1

σz(j)

j
sin(2πjx).
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This theorem can be used to gain information about the arithmetic func-

tion σz(n).

Corollary 4.2. If |z| < 1 then

∞
∑

n=0

(−1)n
σz(2n+ 1)

2n+ 1
=
π

4

z

1 + z2
.

Proof. We can use the definition of K(x) to compute the left and

right limits: K(y →
(

1
4

)−
) =

∑∞
n=1 z

4n = z4

1−z4 and K(y →
(

1
4

)+
) =

∑∞
n=1 z

4n−1 = z3

1−z4 . The left-hand-side of Theorem 4.3 is 1
2
z4+z3

1−z4 .

Since sin(2πn 1
4 ) = 0 if n is even, 1 if n ≡ 1 mod 4, and −1 if n ≡ 3 mod 4,

the summation
∑∞

n=1(σz(n)/n) sin(2πnx) simplifies to
∑∞

n=0(−1)
nσz(2n+

1)/(2n+ 1).

Theorem 4.3 is now

1

2

z4 + z3

1− z4
=

1

1− z
−

1

2
+

1

π

1− z

z

∞
∑

n=0

(−1)n
σz(2n+ 1)

2n+ 1
,

which can be rearranged to give the corollary.

Corollary 4.2 can be used to compute rational approximations to π, al-

though it is exceptionally poor for such purposes. Using the first 5 terms of

the sum and taking z → 1
2 (the optimal choice), we get π ≈ 57983

16128 ≈ 3.60.

The first 10000 terms give only π ≈ 3.1413.

4.1.4. Integrals

In computing the Fourier Series of K(x) :=
∑∞

n=1 z
bn/xc, we computed

the integral
∫ 1

0
K(x)e2πijx dx for each integer j. There are other integrals

involving K(x) which we can compute.

Consider the integral A :=
∫ 1

0
K(x) dx. If we use the transformation

x → 1 − x, we see that A =
∫ 1

0
K(1 − x) dx. Adding these gives 2A =

∫ 1

0
(K(x) +K(1− x)) dx =

∫ 1

0
K(1) dx = z

1−z , as
1
x and 1

1−x satisfy the

hypotheses of Beatty’s Theorem (at least on the irrationals, a set of full

measure). Thus
∫ 1

0
K(x) dx = z

2(1−z) .

The above integral can also be computed by substitutingK(x) =
∑∞

n=0 dn(x)z
n

and juggling the summations and integrals as was done in the computation
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of the Fourier coefficients. In fact, we can also compute:

∫ 1

0

x2K(x) dx =
1 + 2z

12(1− z)
+

1− z

12z
ln(1− z)

∫ 1

0

xK(x) dx =
1 + 3z

12(1− z)
+

1− z

12z
ln(1− z)

∫ 1

0

K(x) dx =
1

2

z

1− z
∫ 1

0

K(x)

x
dx =

∞
∑

n=1

zn ln
(

(1 + 1
n )

n
)

∫ 1

0

K(x)

x2
dx =

ln(1− z)

z − 1

With z = 1
2 , we get

∫ 1

0

K(x)

x3
dx = 6 ln 2−

3

2
(ln 2)2 +

π2

4
.

4.1.5. Expansions of Borwein & Borwein

In (1993) [3], “On the Generating Function of the Integer Part: [nα+γ],”

the generating functions

Gα,γ(t, z) :=
∞
∑

n=1

tnzbnα+γc; Fα,γ(t, z) :=
∞
∑

n=1

tn
bnα+γc
∑

m=1

zm

are analyzed. Assuming that nα+ γ is never an integer and that all sums

converge absolutely, they show (for pn/qn a convergent to α, and particular

integers sn, rn)

Gα,γ(t, z) =
t

1− t
+

1− z

z

∞
∑

n=0

(−1)n+1trnzsn

(1− tqnzpn)(1− tqn+1zpn+1)

Fα,γ(t, z) =

∞
∑

n=0

(−1)n+1trnzsn

(1− tqnzpn)(1− tqn+1zpn+1)
.

These are used to demonstrate that

(

1− z

z

) ∞
∑

n=1

tnzbnαc =
1

T0 +
1

T1+
1

T2+...

,
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where

T0 :=

(

z

1− z

)(

1

tza0
− 1

)

and

Tn :=
1

tqn−2zpn−2

b(tqn−1zpn−1)−anc − 1

b(tqn−1zpn−1)−1c − 1

with an the partial quotients and pn/qn the convergents to α.

To these expansions, our Main Theorem adds

Gα,a/b(t, z) = za/b
(

1
z − 1

)

∑

0<
bp
q <

1
α

(bp,q)=1

(

tpzq/b
)M(q)

1− tbpzq

Fα,a/b(t, z) =
tz

(1− t)(1− z)
− za/b

∑

0<
bp
q <

1
α

(bp,q)=1

(

tpzq/b
)M(q)

1− tbpzq

where M(q) satisfies 1 ≤M(q) ≤ b and M ≡ −q−1a (mod b).

This forces the duality relation

z

1− z
Gα,γ(t, z) + Fα,γ(t, z) =

tz

(1− t)(1− z)
,

which [3] leans upon heavily, to our attention. This duality relation and

the functional equation

Fα,γ(t, z) + Fα−1,−γα−1(z, t) =
tz

(1− t)(1− z)

are combined to give a new proof of a theorem of Fraenkel: for α > 0

irrational, the sequences (bnα + γc)∞n=1 and (bnα′ + γ′c)∞n=1 partition the

positive integers if and only if 1
α + 1

α′ = 1, γ ∈ [0, 1), and γ
α + γ′

α′ = 0.

The techniques in this paper do not seem to yield the functional equation

(which is proved directly in [3] by noting that either 1 ≤ m ≤ bnα+ γc or

1 ≤ n ≤ b(m− γ)/αc and not both), or results such as Fraenkel’s Theorem

that depend on the functional equation, because one of γ,−γα−1 must be

irrational. Our Main Theorem still applies, but the set D and the function

f(r) are too complicated to be very useful.
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4.2. Dirichlet Series

Let ζ(z, a) :=
∑∞

n=0(n + a)−z be the Hurwitz Zeta Function. The Rie-

mann zeta function is given by ζ(z) := ζ(z, 1). Our Main Theorem applied

to g(x, n) := bnx + kc−z, with k ∈ Z+ gives

Theorem 4.4. Let z have real part <(z) > 1, 0 < x ∈ R, and k ∈ Z+.

Then

∞
∑

n=1

bnx + kc−z =
∑

0<
p
q<x

(p,q)=1

q−z
(

ζ(z, 1 + k−1
q )− ζ(z, 1 + k

q )
)

.

This theorem serves as well as Theorem 4.1 in our proof of the Rayleigh-

Beatty Theorem, where the requirements is only that summand depends

on q and not p.

Setting x = k = 1 and including the q = 1 term gives the novel equation

Corollary 4.3. If <(z) > 1 then

1 =

∞
∑

q=1

φ(q)

qz

ζ(z)− ζ(z, 1 + 1
q )

ζ(z)
.

Note that the left-hand-side does not depend on z.

4.3. Difference Beatty Sequences

We can also use our Main Theorem to study sequences such as (banαc−

bbnαc)∞n=1 (with a, b ∈ Z and a > b > 0).

Theorem 4.5. Suppose that |z| < 1, x > 0 irrational, and a > b > 0

are integers. Then

∞
∑

n=1

zban/xc−bbn/xc =
(

1
z − 1

)

∑

0<
p
q<x

(p,q)=1

R(a, b, p, q)

1− z(a−b)q ,

where R(a, b, p, q) is defined by

R(a, b, p, q) :=

(p,a)−1
∑

j=1

z
b q(a−b)j(p,a) c

− z

(p,b)−1
∑

j=1

z
b q(a−b)j(p,b) c

.
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Note that R(a, b, p, q) is a polynomial in z, and in particular that if

(p, a) = (p, b) = 1, then R(a, b, p, q) = 0.

In deriving Theorem 4.5 from the Main Theorem, one sets g(x, n) =

zban/xc−bbn/xc. If g( · , n) is not continuous at r, then either an
r ∈ Z or

bn
r ∈ Z. The reader is reminded that D need only be a superset of the set

of discontinuities of the g( · , n); we may take D := Q. As g( · , n) may be

left-continuous at some points and right-continuous at others (and possibly

neither), we must restrict our attention to x 6∈ D, i.e., to irrational x.

We find—as in earlier examples—that α = 0. Finding

f(r) =
(

1
z − 1

) R(a, b, p, q)

1− z(a−b)q

is more involved than in the earlier examples, but still involves only routine

manipulations.

4.3.1. A New Beatty-Type Theorem

Theorem 4.6. Let S(x) = (b2nxc − bnxc)
∞
n=1, and suppose that α > 0.

Then, as multisets,

S(α) ∪ S(β) = S(1) ∪ S(α2 ) ⇔ α 6∈ Q and 1
α + 1

β = 1 + 1
α/2 .

We attack Theorem 4.6 much as we attacked Theorem 4.2. Density

considerations give the “⇒” implication. On the other hand, S(α)∪S(β) =

S(1) ∪ S(α2 ) only if

∑

zb2nαc−bnαc +
∑

zb2nβc−bnβc =
∑

zb2nc−bnc +
∑

zb2nα/2c−bnα/2c.

If suffices, by Theorem 4.5, to prove that

∑

r∈D∩(0,1/α)

f(r) +
∑

r∈D∩(0,1/β)

f(r) =
∑

r∈D∩(0,1)

f(r) +
∑

r∈D∩(0,1/(α/2))

f(r),

where f(r) = 0 unless r = 2p
q with (2p, q) = 1, and f( 2p

q ) does not depend

on p. At this point we see that Theorem 4.6 hinges on counting the ra-

tionals with even numerator and odd denominator in the intervals (0, 1
α ),

(0, 1
β ), (0, 1), and (0, 1

α/2 ). In the proof of Theorem 4.2 this counting was

handled by a simple bijection. Since the intervals concerned here are more

complicated, we must be content with a more involved counting argument.
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Proof. Set x := 1
α and y := 1

β . Density considerations demand that, if

S(α) ∪ S(β) = S(1) ∪ S(α2 ), then x + y = 1
α + 1

β = 1 + 1
α/2 = 1 + x

2 . We

assume in what follows that x+ y = 1 + x
2 , i.e., y = 1− x

2 .

First, observe that for any v ∈ R and k ∈ Z,

b2vc − bvc = −b 1
2 − vc = k − bk + 1

2 − vc.

Replace v 7→ x
4 q and k 7→ q−1

2 = b 1
2qc to get

bx2 qc − b
x
4 qc = b

1
2qc − b

q−1
2 + 1

2 −
x
4 qc = b

1
2qc − b

(

1
2 −

x
4

)

qc.

Since x is irrational, we may write this as

bx2 qc − d
x
4 qe+ 1 = b q2c − d

(

1
2 −

x
4

)

qe+ 1 (5)

Eq. (5) gives us the middle equality in

|{p ∈ Z : x2 <
2p
q < x}| = |{p ∈ Z : x4 q < p < x

2 q}|

= |{p ∈ Z :
(

1
2 −

x
4

)

q < p < 1
2q}|

= |{p ∈ Z :
(

1− x
2

)

< 2p
q < 1}|.

(6)

Set

Aq = {p ∈ Z : x2 <
2p
q < x, (2p, q) = 1}

and

Bq = {p ∈ Z : 1− x
2 <

2p
q < 1, (2p, q) = 1}.

Since (2p, 1) = 1, Eq. 6 above shows that |A1| = |B1|. We now proceed by

induction to show for q odd that |Aq| = |Bq|. Note that the cardinalities

of Aq and Bq are the same as those of

A∗q =
{

2p
q : x2 <

2p
q < x, (2p, q) = 1

}

and

B∗q =
{

2p
q : 1− x

2 <
2p
q < x, (2p, q) = 1

}

.

Moreover, if s and t are distinct odd numbers, then A∗s and A∗t are disjoint,

and so are B∗s and B∗t . Now we have

|Ad| = |A
∗
d| = |Bd| = |B

∗
d |
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for d < q, d odd, by the induction hypothesis. Hence

∣

∣

∣

{

2p
q : x2 <

2p
q < x

}∣

∣

∣
=

∣

∣

∣

∣

∣

∣

⋃

d|q
A∗d

∣

∣

∣

∣

∣

∣

=
∑

d|q
|A∗d| =

∑

d|q
|Ad|

= |Aq| − |Bq|+
∑

d|q
|Bd| = |Aq| − |Bq|+

∣

∣∪d|qB
∗
d

∣

∣

= |Aq| − |Bq|+
∣

∣

∣

{

2p
q : 1− x

2 <
2p
q < x

}∣

∣

∣ (7)

Combining Eq. 6 with Eq. 7, we find |Aq| = |Bq|, completing the induction.

Thus, defining f(q) =
(

1
z − 1

)

R(2, 1, 2p, q)/ (1− zq) = 1
z

1−z
1−zq z

bq/2c, we
have

∑

x
2<

2p
q <x

(2p,q)=1

f(q) =

∞
∑

q=1
q odd

|A∗q |f(q) =
∞
∑

q=1
q odd

|B∗q |f(q) =
∑

1−x
2<

2p
q <1

(2p,q)=1

f(q). (8)

Since x is irrational, (x2 , x)∩Q =
(

(0, x) \ (0, x2 )
)

∩Q and (1− x
2 , 1)∩Q =

(

(0, 1) \ (0, 1− x
2 )
)

∩Q. Thus Eq. 8 implies

∑

0<
2p
q <x

(2p,q)=1

f(q)−
∑

0<
2p
q <

x
2

(2p,q)=1

f(q) =
∑

0<
2p
q <1

(2p,q)=1

f(q)−
∑

0<
2p
q <1−x

2
(2p,q)=1

f(q). (9)

Now, Theorem 4.5 reads, with a = 2, b = 1:

G(x) :=

∞
∑

n=1

zb2n/xc−bn/xc =
∑

0<
2p
q <x

(2p,q)=1

f(q).

Since y = 1− x
2 , Eq. (9) can be written as G(x)−G(x2 ) = G(1)−G(y),

whence S(α) ∪ S(β) = S( 1
x ) ∪ S(

1
y ) = S(1) ∪ S( 1

x/2 ) = S(1) ∪ S(α2 ).
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