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Abstract

We give several new characterizations of Riordan Arrays� the most important of

which is� if fdn�kgn�k�N is a lower triangular array whose generic element dn�k lin�

early depends on the elements in a well�de�ned though large area of the array� then

fdn�kgn�k�N is Riordan� We also provide some applications of these characterizations

to the lattice path theory�
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� Introduction

In December ����� during the second author�s visit to the �Dipartimento di Sistemi e Infor�
matica	 in Florence 
Italy�� we began to investigate the enumeration of lattice paths having
diagonal steps from the Riordan Array point of view 
see� ��� ���� This problem had been
previously studied by Handa and Mohanty ����� we approached the problem according to
the theory discussed in ��� ���

This theory had previously been developed for lattice paths with �steep	diagonal steps�
as illustrated in Figures �
i� and �
ii�� it is well�known that the arrays determined in this case
are Riordan 
see ���� for example�� But ���� treats lattice paths having �shallow	 diagonal
steps� illustrated in Figures �
iii� and �
iv��

The logical consequence would be to extend the theory of Riordan arrays to the second
type of diagonal steps and this is what we want to do� The counting sequences on the
main diagonal are obviously the same for both shallow and steep steps if their gradients are
reciprocal� This can be veri�ed simply by running the lattice paths backwards 
compare
Figures �
i� and �
iii�� or Figures �
ii� and �
iv��� It is worth noting� however� that whereas
the array in Figure �
iii� is also a Riordan array� the one in Figure �
iv� is not�

By using both algebraic and combinatorial techniques� we were able to prove several
properties for lattice paths having both kinds of diagonal steps 
steep and shallow�� To
our surprise� we realized that many of these properties were so general that they actually
extended the original characterization of Riordan Arrays� The resulting Theorem �� greatly
extends the Riordan Array theory� and shows that a lower triangular array fdn�kgn�k�N is
Riordan whenever its generic element dn���k�� linearly depends on the elements dr�s lying
in a well�de�ned� but large zone of the array 
see Figure �� This is fundamental to the
lattice path theory� 
see last section�� and it is also important in the general Riordan Array
theory� because it provides a remarkable characterization of many lower triangular arrays
of combinatorial importance� 
that is� all the arrays for which a recurrence can be given
involving elements belonging to the relevant zone��

These results seem signi�cant to us and led us to divide our work into two parts� In the
present paper� we give an account of the new developments in the Riordan Array theory� and
use lattice paths as a guiding example� We focus our attention on the new characterizations of
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Figure �� Some arrays illustrating the numeration of lattice paths having diagonal steps�

Riordan Arrays and� in order to maintain the necessary generality� we mainly use an algebraic
approach based on generating functions� In our companion paper �Lattice paths with steep
and shallow steps	 we deal with lattice path problems directly and we use combinatorial
proofs to determine which problems correspond to Riordan Arrays and which do not� Even
though they are limited to non�negative coe�cients� many of these proofs� will constitute
the combinatorial counterpart of proofs given in the present paper�

To be more speci�c� this paper is organized in the following way� in Section � we give
the de�nitions and the above�mentioned characterizations of Riordan Arrays� In Section ��
we develop our algebraic theory by giving a number of results concerning the generating
functions related to the Riordan Arrays� Finally� in Section �� we show how the theory can
be applied to lattice path problems�

We wish to point out that the combinatorial objects we are mainly interested in are
subdiagonal lattice paths in the Cartesian plane� Our paper treats some of the topics studied
by Gessel ��� and Labelle ���� ��� �� but di�ers from these works in its emphasis on paths not
ending on the main diagonal� The simple geometric transformation 
�� ���� 
� � ��� �� � ���
changes underdiagonal paths into paths that never go below the x�axis� This lattice path
notation can be called �French notation	 because it is mainly used by researchers belonging
to the French area 
see Goulden and Jackson �����

For brevity�s� we only outline many of our demonstration and so we refer the reader to
the report ���� for the details of the complete proofs�
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� Riordan arrays

By some abuse of language 
see Shapiro et al� ����� a Riordan array is a pair 
d
t�� h
t��
in which d
t� and h
t� are analytic functions 
or formal power series� such that d
�� �� ��
if h
�� �� �� then the Riordan array is called proper� The pair de�nes an in�nite� lower
triangular array fdn�kgn�k�N� in the sense that�

dn�k � �tn�d
t�
th
t��k�

by de�nition� From this de�nition� it easily follows that d
t�
th
t��k is the generating function
of column k in the array 
in particular� d
t� is the generating function of column ��� The
most common example of a Riordan array is the Pascal triangle� in which we have d
t� �
h
t� � ��
� � t�� Proper Riordan Arrays are known as �recursive matrices	 in the theory
of Umbral Calculus 
see Barnabei� Brini and Nicoletti ����� A non�proper Riordan Array

d
t�� h
t�� can be easily reduced to a proper one� if h
t� has order s � �� i�e�� h
t� � tsv
t��
with v
�� �� �� then 
d
t�� v
t�� is a proper Riordan Array and is obtained from 
d
t�� h
t��
by moving every column k up ks positions� The Riordan Array theory allows us to �nd
properties concerning these matrices� for example� we have�

nX
k��

dn�kfk � �tn�d
t�f
th
t��� 
���

for every sequence fk having f
t� as its generating function� A description of the Riordan
Array theory together with many examples of it� can be found in Shapiro et al� ��� or in
Sprugnoli ����

Rogers ���� has proved the following� fundamental characterization of proper Riordan
Arrays�

Theorem ��� An array fdn�kgn�k�N is a proper Riordan Array if and only if there exists a
sequence A � faigi�N with a� �� � such that every element dn���k�� �not lying in column �
or row �� can be expressed as a linear combination with coe�cients in A of the elements in
the preceding row� starting from the preceding column on� i�e��

dn���k�� � a�dn�k � a�dn�k�� � a�dn�k�� � � � � 
��

Proof� See Rogers �����

The sum in 
�� is actually �nite because dn�k � �� �k � n� Sequence A� called the A�
sequence of the Riordan array� is characteristic in the sense that it determines 
and is de�
termined by� function h
t�� If A
t� is the generating function of the A�sequence� it can be
proven 
see Sprugnoli ���� that h
t� is the solution of the functional equation�

h
t� � A
th
t��� 
���

Conversely� A
y� can be determined by the relation�

A
y� �
h
h
t�

���t � yh
t���
i
�
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where this notation means that A
y� is obtained by substituting the solution of the functional
equation t � yh
t��� having t
�� � � for t in h
t�� For example� this last relation in the
Pascal triangle gives�

A
y� �
�

�

� � t

���� t � y
�� t�
�
�

�
�

� � t

���� t � y

� � y

�
� � � y�

Therefore� the A�sequence for the Pascal triangle is f�� �� �� �� � � �g and 
�� becomes��
n� �

k � �

�
�

�
n

k

�
�

�
n

k � �

�
�

the well�known basic recurrence for binomial coe�cients�
Let us now come to the latest developments in the Riordan Array theory� First of all�

as previously mentioned� the A�sequence does not completely characterize a proper Riordan
array 
d
t�� h
t�� because the function d
t� is independent of A
t�� We therefore prove the
following�

Theorem ��� Let fdn�kgn�k�N be any in	nite lower triangular array with dn�n �� ���n � N

�in particular� let it be a proper Riordan array�
 then a unique sequence Z � fz�� z�� z�� � � �g
exists such that every element in column � can be expressed as a linear combination of all
the elements in the preceding row� i�e��

dn���� � z�dn�� � z�dn�� � z�dn�� � � � � 
���

Proof� Let z� � d����d���� Now we can uniquely determine the value of z� by expressing
d��� in terms of the elements in row �� i�e�

d��� � z�d��� � z�d��� or z� �
d���d��� � d����

d���d���
�

In the same way� we can determine z� by expressing d��� in terms of the elements in row �
and by substituting the values just obtained for z� and z�� By proceeding in this way� we
determine the Z�sequence in a unique way�

The Z�sequence characterizes column �� while the A�sequence characterizes all the other
columns� The triple 
d�� Z
t�� A
t�� characterizes a proper Riordan array�

Theorem ��� Let 
d
t�� h
t�� be a proper Riordan array and let Z
t� be the generating
function of the array�s Z�sequence� Therefore we obtain�

d
t� �
d�

� � tZ
th
t��
�

Proof� By the preceding theorem� the Z�sequence exists and is unique� Therefore� equation

��� is valid for every n � N� and we can go on to the generating functions� Since d
t�
th
t��k

is the generating function for column k� we have�

d
t�� d�
t

� z�d
t� � z�d
t�th
t� � z�d
t�t
�h
t�� � � � � �
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� d
t�
z� � z�th
t� � z�t
�h
t�� � � � �� � d
t�Z
th
t���

By solving this equation in d
t�� we immediately �nd the relation desired�

The relation can be inverted and this gives us a formula for the Z�sequence�

Z
y� �

�
d
t�� d�
td
t�

����� t � yh
t���
�
�

The reader can easily apply these formulas to the Pascal triangle� which we can apply the
following theorem to�

Theorem ��� Let d� � h� �� �� Then d
t� � h
t� if and only if A
y� � d� � yZ
y��

Proof� Let us assume that A
y� � d� � yZ
y� or Z
y� � 
A
y�� d���y� By Theorem ���
we have�

d
t� �
d�

� � tZ
th
t��
�

d�
�� 
tA
th
t��� d�t��th
t�

�
d�th
t�

d�t
� h
t��

because A
th
t�� � h
t�� Vice versa� by the formula for Z
y�� we obtain from the hypothesis
d
t� � h
t��

d� � yZ
y� �

�
d� � y

�
�

t
� d�
th
t�

������ t � yh
t���
�
�

�

�
d� �

th
t�

t
� d�th
t�

th
t�

����� t � yh
t���
�
�
h
h
t�j t � yh
t���

i
� A
y��

Riordan arrays having d
t� � h
t� were �rst introduced by Rogers ���� who called them
�renewal arrays	� As the concepts of A� and Z�sequences show� what seems essential in a
Riordan array is the fact that the elements in a given row linearly depend on the elements
of the row above it� starting from the element on the left� It is surprising that this depen�
dence can be made much looser� as the following theorems show 
see also the presentation of
Shapiro ���� They greatly increase the applicability range of the Riordan Array theory and
play a basic role in our approach to lattice path problems� Let us begin by the following�

Lemma ��� If in a lower triangular array fdn�kgn�k�N we have�

dn���k�� �
X
j��

ajdn�k�j

for some coe�cients aj �j � ��� independent of n and k� with a� �� �� then we obtain

dn�k �
X
j��

bjdn���k���j 
���

for coe�cients bj �j � �� also independent of n and k� Moreover� if A
t� and B
t� are the
generating functions of the two sequences� then B
t� � A
t��� and therefore�

b� �
�

a�
� bn � � �

a�

nX
j��

bjan�j 
j � �� 
���

�



Proof sketch� By writing formula 
��� in a matrix form and by using Henrici�s result
��� x����� we immediately obtain that A
t��� � B
t� and formula 
��� is simply the J�C�P�
Miller formula for reciprocal formal power series 
see Henrici ��� Th� ���c���

This lemma is the basis of the following Riordan Array characterizations� We wish to
point out that� by Theorem ��� the Z�sequence exists for every lower triangular array� and
therefore we can implicitly assume its existence in all the subsequent theorems� Our �rst
result is�

Theorem ��	 A lower triangular array fdn�kgn�k�N is Riordan if and only if there exists
another array f�i�jgi�j�N� with ���� �� �� such that every dn���k�� �n� k � �� can be expressed
as�

dn���k�� �
X
i��

X
j��

�i�jdn�i�k�j 
���

Proof sketch� If the array is Riordan� let fajgj�N be its A�sequence� the array de�ned as
���j � aj� �j � N� and �i�j � �� �i � �� j � �� is exactly as we desired� The proof of the �if	
part given in ���� is rather long and complex� It consists in proving that an A�sequence exists
for the given array and� therefore� it is Riordan� Lemma �� plays a basic role in this proof�

This theorem shows that we can characterize a Riordan Array by means of an A�matrix�
rather than by a simpleA�sequence� However� while the A�sequence is unique for a given Ri�
ordan Array� the A�matrix is not� For example� the following A�matrices� and many others�
all de�ne the Pascal triangle 
the proof is quite obvious and relies on the basic recurrence
for the binomial coe�cients��
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We can extend the linear dependence of the generic element dn���k�� to allow for elements
on its own row� starting from dn���k��� In fact� we can prove the following characterization�

Theorem ��
 A lower triangular array fdn�kgn�k�N is Riordan if and only if there exist
another array f�i�jgi�j�N� with ���� �� �� and a sequence f�igi�N such that�

dn���k�� �
X
i��

X
j��

�i�jdn�i�k�j �
X
j��

�jdn���k���j 
���

Proof� Here again� the �only if	 part is obvious� As to the �if	 part� we can eliminate
dn���k�� from the recurrence� by applying relation 
��� and by eventually changing the ar�
ray f�i�jg into f��i�jg� In the same way� we can subsequently eliminate all the dn���k���j �s�
Since only a �nite number of them actually appears in the evaluation of dn���k��� we can
always reduce dn���k�� to depend on some array f��i�jgi��������� which is the left part of a limit
array f��i�jg� as happens in Theorem ��� Therefore� we can conclude that fdn�kg is a Riordan

�



Array�

This result will be used in our study of lattice path problems� Moreover� we can obtain
the widest possible characterization of Riordan Arrays 
see Theorem ��� below��

Theorem ��� A lower triangular array fdn�kgn�k�N is Riordan if and only if there exists

another array f�i�jgi�j�N� with ���� �� �� and s sequences f��i�j gj�N �i � �� � � � � � s� such that�

dn���k�� �
X
i��

X
j��

�i�jdn�i�k�j �
sX

i��

X
j��

�
�i�
j dn�i�k�i�j�� � 
���

Proof� Repeated applications of the elimination technique used in the previous theorem�s
proof�

In Figure � we try to give a graphic representation of the zones which the generic ele�
ment dn���k�� 
denoted by a small disk or �bullet	� is allowed to depend on so that the array
can be Riordan� The three zones correspond to Theorems ��� �� and ��� and the only
restrictions are that ���� �� � and that the number of rows below row n be �nite�

Figure � The zones which dn���k�� can depend on�

Up to now� we have assumed that ���� �� � because this condition assures that the
resulting Riordan Array is proper� However� if we change this hypothesis� but maintain that
some �i�� �� �� for i � �� then we obtain a non�proper Riordan Array� i�e�� a Riordan Array
with h
�� � �� This happens under the following conditions�

Theorem ��� Let fdn�kgn�k�N be an array whose generic element dn���k�� is de	ned by a
linear recurrence�

dn���k�� �
X
i��

X
j��

	i�jd��k�j 
 	 n� S for some S � N�

Let � be the minimum index for which 	��� �� � and set 
� � 
 � �j� If �	i�j �� � we have
i � n� 
� and� whenever 
� � n� we also have j � 
� � n� then fdn�kgn�k�N is a non�proper
Riordan Array 
d
t�� h
t�� with h
t� � t�v
t� and v
�� �� ��

�



Proof� The theorem�s conditions allow us to de�ne a new array fd�n�kgn�k�N whose generic
element d�n���k�� is given by�

d�n���k�� �
X
i��

X
j��

�i�jd
�
n�i�k�j �

sX
i��

X
j��

�
�i�
j d

�
n�i�k�i�j�� �

where �i�j � 	n����j when 
� 	 n� and �
�i�
j � 	���n�j when 
� � n� The number s exists

thanks to the condition 
 	 n � S� for some S� This is actually the de�nition of a proper
Riordan Array� in which d�n�k � dn�k��k because the columns of fd�n�kg are the columns of
fdn�kg moved �k positions up� If 
d
t�� v
t�� is the new proper Riordan Array� then we should
have h
t� � t�v
t��

In Section �� we will examine an example of a non�proper Riordan Array in connection
with a lattice path problem�

� Generating functions

As previously noted� the A�sequence and the function h
t� of a Riordan Array are strictly
related to each other� This fact allows us to think that h
t� can be deduced from the A�

matrix f�i�jgi�j�N and the set of sequences f��i�j gj�N for i � �� �� � � � � s� Then� after �nding
the function h
t�� we can also �nd the A�sequence by determining its generating function
A
t��

Almost always� dn���k�� only depends on the elements of a �nite number of rows above
it� therefore� instead of treating a global generating function for the A�matrix� let us exam�
ine a sequence of generating functions P ���
t�� P ���
t�� P ���
t�� � � � corresponding to the rows
�� �� � � � � of the A�matrix� i�e��

P ���
t� � ���� � ����t� ����t
� � ����t

� � � � �

P ���
t� � ���� � ����t� ����t
� � ����t

� � � � �
and so on� Moreover� let Q�i�
t� be the generating function for the sequence f��i�j gj�N� Thus
we have�

Theorem ��� If fdn�kgn�k�N is a Riordan Array whose generic element dn���k�� is de	ned

by formula ���� through the A�matrix f�i�jgi�j�N and the set of sequences f��i�j gj�N� i �
�� � � � � � s� then the functions h
t� and A
t� for fdn�kg are given by the following implicit
expressions�

h
t� �
X
i��

tiP �i�
th
t�� �
sX

i��

th
t�i��Q�i�
th
t��� 
����

A
t� �
X
i��

tiA
t��iP �i�
t� � t
sX

i��

A
t�iQ�i�
t�� 
���

�



Proof� Let dk
t� � d
t�
th
t��k be the generating function of column k of the Riordan
Array� from 
��� we deduce�

dk��
t�

t
�
X
i��

X
j��

�i�jt
idk�j
t� �

sX
i��

X
j��

�
�i�
j t

�idk�i�j��
t�

d
t�
th
t��k��

t
�
X
i��

X
j��

�i�jt
id
t�
th
t��k�j �

sX
i��

X
j��

�
�i�
j t

�id
t�
th
t��k�i�j���

We can now divide everything by d
t�
th
t��k�

h
t� �
X
i��

ti
X
j��

�i�j
th
t��
j �

sX
i��

t�i
th
t��i��
X
j��

�
�i�
j 
th
t��

j�

We now go on to the generating functions P �i�
t� and Q�i�
t� and formula 
���� immediately
follows� Finally� by applying formula 
��� we obtain the expression 
��� for A
t��

As stated in the proof of Theorem ��� this theorem allows us to give some explicit for�
mulas for the element an of the A�sequence� By extracting the coe�cient of tn� we �nd�

an � �tn�A
t� �
X
i��

�tn�i�B
t�iP �i�
t� �
sX

i��

�tn���A
t�iQ�i�
t�

an �
nX

i��

n�iX
j��

b
	i

j �i�n�i�j �

sX
i��

n�iX
j��

a
	i

j �

�i�
n�i�j �

where a
	i

j and b

	i

j denote the coe�cients of tj in the formal power series A
t�i and B
t�i �

A
t��i� respectively� As far as Theorem �� is concerned� we have s � � and so�

an �
nX
i��

n�iX
j��

b
	i

j �i�n�i�j �

which agrees with the values a� � b
	�

� ���� and a� � b

	�

� ���� � b

	�

� ���� � ���� � b����� �

���� � ��������� 
see the proof of Theorem �� in ������ As to Theorem ��� we have�

an �
nX

i��

n�iX
j��

b
	i

j �i�n�i�j �

n�iX
j��

aj�n�i�j �

which only depends on the previously computed aj values �
The generic element dn���k�� often only depends on the two previous rows and sometimes

on the elements of its own row� In this case� the functional equation 
��� reduces to a second
degree equation in A
t� and� as a result� we can give an explicit expression for the generating
function of the A�sequence�

Theorem ��� Let fdn�kgn�k�N be a Riordan Array whose generic element dn���k�� only de�
pends on the two previous rows and� in case� on its own row� If P 
t�� �P 
t� and Q
t� are the

��



generating functions for the coe�cients of this dependence� i�e�� P 
t� � P ���
t�� �P 
t� � P ���
t�
and Q
t� � Q���
t�� then we have�

A
t� �
P 
t� �

q
P 
t�� � �t �P 
t�
�� tQ
t��


� � tQ
t��
� 
����

Proof sketch� Formula 
��� gives two solutions for A
t� and the one having A
�� � �
must be discarded because we always assume that a� �� ��

It is worth noting that if Q
t� � �� that is dn���k�� does not depend on the elements of
its own row� then we have�

A
t� �
P 
t� �

q
P 
t�� � �t �P 
t�


�

which is quite useful in several cases� When the dependence is more complicated� it is
naturally more di�cult to give an explicit expression for the A�sequence�

As shown in the previous section� h
t� is related to A
t� and d
t� is related to Z
t�� the
Z�sequence generating function� Since the Z�sequence exists for every lower triangular array

see Theorem ��� every recurrence de�ning dn���� in terms of the other elements in the
array can be accepted as a good de�nition of column �� Therefore� in analogy to 
���� let
us assume that we have the following linear relation�

dn���� �
X
i��

X
j��

�i�jdn�i�j �
sX

i��

X
j��


�i�
j dn�i�i�j � 
����

In general� there is no connection between the �i�j�s and the �i�j�s or between the �
�i�
j �s and

the �i�j �s and so we take the following generating functions into account�

R���
t� � ���� � ����t� ����t
� � ����t

� � � � �

R���
t� � ���� � ����t� ����t
� � ����t

� � � � �

etc�� and S�i�
t� �

P
j�� 

�i�
j t

j� The coe�cients de�ning dn���k�� and dn���� are sometimes
the same ones� in the sense that�

�i�j � �i�j�� and 
�i�
j � �

�i�
j �i��j�

In this case� we say that column � is unprivileged and we obtain the following formulas for
our generating functions�

R�i�
t� �
P �i�
t�� �i��

t
and S�i�
t� � Q�i�
t�

for every i which R�i�� P �i�� S�i� and Q�i� are well�de�ned for�
At any rate� we can easily prove the following�

��



Theorem ��� If fdn�kgn�k�N is a Riordan Array whose elements in column � are de	ned by
a relation ������ then the function d
t� is given by the following formula�

d
t� �
d���

� �P
i�� t

i��R�i�
th
t��� t
Ps

i�� h
t�
iS�i�
th
t��

� 
����

Proof sketch� We go on to generating functions and �nd 
���� by solving in d
t��

When column � is unprivileged� the formula for d
t� can be drastically simpli�ed and� nev�
ertheless� actually covers a large class of lattice path problems� For this reason� we state it
as a separate theorem�

Theorem ��� If fdn�kgn�k�N is a Riordan Array whose column � is unprivileged� then d
t�
is given by the formula�

d
t� �
d���h
t�P
i�� �i��ti

� 
����

Proof� We simply take the denominator in formula 
���� and substitute R�i�
t� and S�i�
t�
by their counterparts when column � is unprivileged� we then use Theorem ����s �rst result�

Besides being important for its own sake� this theorem also allows us to prove a very inter�
esting characterization of �renewal arrays	� i�e�� Riordan Arrays having d
t� � h
t�� when
column � is unprivileged�

Corollary ��� Let fdn�kgn�k�N be a Riordan Array whose column � is unprivileged
 then
fdn�kgn�k�N is a renewal array if and only if the following two conditions are satis	ed� i�
dn���k�� only depends on dn�k and not on any other element in column k� ii� ���� � d����

Proof� If column � is unprivileged and d
t� � h
t�� then by 
���� we have�
P

i�� �i��t
i � d����

therefore �i�� � ���i � � and this is equivalent to condition i�� Only ���� � d��� is left and
constitutes condition ii�� Vice versa� if column � is unprivileged� then condition i� implies�P

i�� �i��t
i � ����� so d
t� � d���h
t������� and so condition ii� gives d
t� � h
t��

We wish to conclude this section by introducing an important result concerning the
characterizations proven in the previous section� By means of generating functions� we can
show that Theorem �� gives the largest possible characterization of Riordan Arrays� In
other words� we can show that if dn���k�� depends on elements not contained in the grey
zones of Figure � then fdn�kgn�k�N is not a Riordan Array� It is worth noting that if dn���k��
depends on some elements d��� with 
 � n and � � k � � � 
 � n� then the recurrence is
not well�de�ned� and the computation of dn���k�� enters an in�nite loop and its indexes keep
growing� and� as a result� fdn�kgn�k�N is actually not de�ned� We must therefore show that
fdn�kgn�k�N is not a Riordan Array when dn���k�� depends on some element d��� with 
 	 n
and � � k� The following theorem shows this under the same conditions as Theorem ��

no ��i�j is involved� and with � � k � �� Actually� this is su�cient for our purposes because

the presence of some �
�i�
j �s does not change the proof� Moreover� the method is virtually the

same when � � k � � 
only a few technical aspects are slightly modi�ed��

�



Theorem ��	 If the generic element dn���k�� in an array fdn�kgn�k�N is de	ned by the
recurrence�

dn���k�� �
X
i��

X
j���

��i�jdn�i�k�j 
dn��� � ���n � N�

with some ��i��� �� �� then fdn�kgn�k�N is not a Riordan Array�

Proof sketch� By assuming that the array is Riordan and by going on to generating func�
tions� we obtain the contradiction that all the ��i��� are zero� This proves the theorem�

� Lattice path problems

In the foregoing sections� we assumed that Figure � can provide a representation of four
sample lattice path enumeration problems on the integer square lattice� To state it in more
formal�though less abstract�terms� a lattice path ofm steps is a �nite sequence 
s�� � � � � sm�
of ordered pairs si � 

xi��� yi���� 
xi� yi��� � 	 i 	 m� of lattice points such that�

a� x� � y� � ��

b� for � 	 i 	 m� xi � xi�� � �i� yi � yi�� � ��i�

c� the pairs 
�i� ��i�� � 	 i 	 m� are drawn from a set of permissible step templates� and

d� these permissible step templates obey some conditions on their occurrence�

We say that such a path starts at the origin 
�� �� and ends at 
xm� ym��
Therefore� in all the examples illustrated in Figure �� we refer to the step templates


�� ��� 
�� ��� and 
�� ���� subject to the condition that � 	 yi 	 xi� for � 	 i 	 m� and
only the choice of 
�� ��� is at issue� In the examples that include Figure �
i� and �
ii��
� � �� while �� is a positive integer� so the gradient ���� of the step template is large and
therefore the step is said to be �steep	� In the examples that include Figure �
iii� and
�
iv�� �� � �� while � is a positive integer� and we get a small gradient� Therefore� the
step is said to be �shallow	� We could obviously give some more complicated examples
that allow combinations of these step templates� and sometimes may have di�erent colours�
There is vast literature on lattice path enumeration� and we particularly want to mention
the following� �� �� �� �� �� �� ��� ��� ��� ��� ��� �� ��� In all the examples illustrated in
Figure �� we obtain lower triangular arrays fdn�kgn�k�N where dn�k is the number of paths
which start at 
�� �� and end at 
n� n � k�� as illustrated in Figure �� To be more precise�
we are going to examine some lattice paths having templates in the class T � f
�� ���j�� �� �
N� � � �� � �g 
 f
�� ���j� � �� �� � �g� We denote a step template 
�� ��� having � � � by
e�n�

�

� where e stands for east and n for north� a template is steep if � 	 �� and is shallow
if � � �� � �� if � � �� � � the template will be called almost steep� A step template 
�� ���
having � � � will be denoted by wj�jn�

�

� where w stands for west� for convenience�s sake�
we consider every template of this kind as being steep too� In Figure �
a� we illustrate the
di�erent kinds of templates and distinguish the sets of steep from almost steep templates by

��
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Figure �� The lower triangular arrays resulting from Figure ��

two di�erent shades of grey� These templates play a fundamental role in our approach to
the lattice path theory�

We can now de�ne a lattice path problem R as a pair 
RA� R��� where�

� RA is a possibly in�nite set of templates in T�

� R� is a possibly in�nite set of steep templates in T�

An R�path is a path composed of steps with templates in R� and satis�es the following
conditions� i� if a step ends on the main diagonal x� y � �� then its template should belong
to R�� otherwise ii� the template should belong to RA� There is an important de�nition
related to these conditions� let RS be the subset of RA made up of all its steep templates�
if RS �� R�� then we say that R is a lattice path problem with privileged access to the main
diagonal� otherwise� if RS � R�� then R have unprivileged access to the main diagonal� None
of the examples in Figure � have privileged access to the main diagonal� an example having
privileged access will be given further on�

Thanks to these de�nitions� we can now prove our main result regarding lattice path
problems� When we go from a lattice path problem R � 
RA� R�� to the lower triangular
array counting the paths from the origin to the point 
n� n� k�� as we did to go from Figure
� to Figure �� we simply change the two sets RA and R� into two recurrences� one valid
in general� the other only valid for the column corresponding to its main diagonal� i�e�� for
column �� It is immediately clear that a template 
�� ��� translates into the dependence of

��



dn���k�� from dn�����k�������� Since we always have d��� � �� corresponding to the empty
path� these recurrences completely de�ne the array� It is worth noting that a problem
with privileged 
unprivileged� access to the main diagonal is translated into an array with
privileged 
unprivileged� column ��
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Figure �� Possible steps originating from a given point in Z� and their positions in the
corresponding triangular array� e�east� n�north� w�west�

In Figure �
b� we show� in terms of step templates� the dependence of the generic element
dn���k�� 
or dn����� 
denoted by ��	� from other elements in the array� Since R� is only
made up of steep templates� the recurrence for dn���� does not depend on any elements in
the white or dark�grey zones� and this makes very good sense� All these considerations help
us to prove our main theorem�

Theorem ��� Let 
RA� R�� be a lattice path problem and let fdn�kgn�k�N be its corresponding
counting array� Then fdn�kgn�k�N is a Riordan Array if and only if RA is made of both steep
templates and at least one almost steep template� and a number S exists such that for every

�� ��� � RA 
 R� with � � �� we have �� � S� Besides� fdn�kgn�k�N is proper if RA contains
the almost steep template 
�� ���

Proof� This is an obvious consequence of Theorems �� and ���� the condition on S implies
that there is only a �nite number of rows below row n which dn���k�� 
or dn����� may depend
on�

This theorem justi�es our initial statement that only case 
iv� in Figure � does not cor�
respond to a Riordan Array� The Riordan Array theory can be applied to the other cases to
solve the lattice path problems� as we are now going to show�

In Figure �
i�� we give a schematic illustration of the dependence of dn���k�� from the
other elements in the array and obtain the recurrence�

dn���k�� � dn�k � dn�k�� � dn���k���

��



However� we can directly use Theorem ��� to obtain the function h
t� because P ���
t� � ��t�

and Q���
t� � �� and therefore h
t� is the solution to the equation�

h
t� � � � t�h
t�� � th
t���

Since ���� � �� the Riordan Array is proper� i�e�� h
�� �� �� this implies that�

h
t� �
��p

� � �t� �t�

t
� � t�
� � � t� �t� � �t� � ��t� � ���t � � � �

The conditions in Corollary ��� are now satis�ed and so the Riordan Array is actually a
renewal array and d
t� � h
t�� Finally� the A�sequence can be computed with formula 
�����
where �P 
t� � � and we �nd the simple expression�

A
t� �
� � t�

� � t
� � � t� t� � t� � t� � t � � � �

The Riordan Array theory can now be used to obtain some information about these paths�
For example� the total number Nn of paths extending up to x � n is given by the row sums�
which can be computed by means of formula 
��� with f
t� � 
�� t����

N 
t� �
X
n��

Nnt
n �

d
t�

� � th
t�
�

�� t�p
� � �t � �t�

�t�
�

We can obtain the average height of these paths in a similar way� We begin by computing
the weighted row sums�

W
t� �
X
n��

Wnt
n �

td
t�h
t�


� � th
t���
�

�� �t� 
�� t�
p
�� �t� �t�

�t�
�

we then extract the asymptotic value for Wn and Nn� by means of Darboux� method�

Nn 
q
�� 

p


�


 � 
p
�n��


n � ��
q
�
n� �

� Wn  
 �p�
q
�� 

p


�


 � 
p
�n��


n � ��
q
�
n� ��

�

Finally� the quantity desired is computed by subtracting the value of Wn�Nn from n because
the weight of an element measures the distance from the diagonal along the y�axis�

For the problem illustrated in Figure �
ii�� we have P ���
t� � � � t� and Q���
t� � ��
therefore� h
t� is given by the solution of the third degree equation�

h
t� � � � t�h
t�� � th
t��� 
����

By Corollary ���� this is a renewal array and d
t� � h
t�� By using the Lagrange Inversion
Formula 
see Goulden and Jackson ����� we can �nd an explicit expression 
although not a
closed formula� for the generic element dn�k� If we multiply 
���� by t� and set y � th
t� so
that y
�� � �� then we have y � t
� � y���
� � y� and� therefore�

dn�k � �tn�d
t�
th
t��k � �tn�
y

t
yk � �tn���yk�� �

��



�
k � �

n� �
�yn�k�

�
� � y�

�� y

�n��

�
k � �

n � �

n�kX
j��

�
n � �

j��

��
n� k � j

n� k � j

�
�

which can be easily checked against the true values given in Figure �
ii� 
if j�� is not an
integer� the binomial coe�cient should be taken as ���

Finally� for the problem illustrated in Figure �
iii�� we have P ���
t� � P ���
t� � Q���
t� � ��
therefore� h
t� is given by the solution of h
t� � � � t� th
t��� that is�

h
t� �
��p

�� �t� �t�

t
�

By Corollary ���� this is not a renewal array and we should compute d
t� by means of formula

���� in Theorem ����

d
t� �
�

� � th
t�
�

� �p
� � �t� �t�

t
� � t�

which� as announced� is the same as for the problem illustrated in Figure �
i��
The problem in Figure �
iv� does not correspond to any Riordan Array� we do not try

to solve it here and invite the reader to refer to our paper �Lattice paths with steep and
shallow steps	�

We want to conclude this section with some other examples that illustrate various ways
of applying the results obtained in the previous sections�

The �rst example is R � 
RA� R�� with RA � f
�� ��� 
�� ��� 
�� �g and R� � f
�� �g�
Since RS � f
�� ��� 
�� �g �� R�� we have a problem involving privileged access to the main
diagonal� In this case� we know the A� and Z�sequences� for which we have A
t� � �� t� t�

and Z
t� � t� By formula 
��� and Theorem ��� we �nd�

d
t� �
� � t�p

� � t� �t�

t
� � t�
� h
t� �

�� t�p�� t� �t�

t�
�

The resulting triangle is shown in Figure �� its row sums are�
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Figure �� Walks with e� ne and n�e steps having privileged access to the main diagonal�
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which are the well�known trinomial coe�cients�
Another example� is R � 
RA� R�� RA � f
�� k�jk � Ng 
 f
�� ��g and R� � f
�� k�jk �

Ng� i�e�� having unprivileged access to the main diagonal� In this case� even though we have
an in�nite number of step templates� we can easily �nd P ���
t� � ��
� � t� and Q���
t� � ��
Figure � illustrates the situation corresponding to this problem� by Theorem ���� we �nd
that h
t� is the solution of the following third�degree equation�

h
t� �
�

�� th
t�
� th
t��� or h
t� �

�


�� th
t���
�

If we set y � th
t�� so that y
�� � �� the previous relation becomes�

y �
t


�� y��
�

and we are now able to apply the Lagrange Inversion Formula� By Corollary ���� this is a
renewal array and we have�

dn�k � �tn�d
t�
th
t��k � �tn�
�

t

th
t��k�� � �tn���yk�� �

�
�

n� �
�yn�


k � ��yk


�� y��n��
�

k � �

n� �
�yn�k�
�� y���n�� �

k � �

n� �

�
�n� k � �

n� k

�
�

Another example having unprivileged access to the main diagonal and with an in�nite
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Figure �� Walks with n and nke steps� k � N� and their corresponding array�

number of step templates is RA � f
�� ���j� � N� �� � � � �g� We now have P �i�
t� � ��
�i � � and can therefore �nd�

h
t� �
�

�� t
�

By Corollary ���� this is not a renewal array� but formula 
���� in Theorem ��� gives d
t� �

h
t��
P

i�� t
i � �� Therefore� the Riordan Array is D � 
�� 
� � t���� and dn�k �

�
n��
k��


�

Let us now consider an example having some north�west steps� more precisely� let RA �
f
�� ��� 
�� ��� 
��� ��g with unprivileged access to the main diagonal� In Figure �� we show

��



the �rst values corresponding to this problem� If we want to compute the �rst n rows of
the resulting array� we must begin by computing the �rst n starting values on the x�axis�
We then go on to compute the values on the line y � �� and so forth� reducing the number
of values computed by one each time� This corresponds to evaluating a su�cient number
of values on the diagonal n � k in the resulting Riordan Array� We then examine one
diagonal at a time and reduce the number of its rows by one� In this problem we have
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Figure �� A problem with an nw template�

P ���
t� � Q���
t� � Q���
t� � �� and formula 
���� gives h
t� as a solution of the third�degree
equation�

h
t� � � � th
t�� � th
t��� 
���

By Corollary ���� this is a renewal array and the Lagrange Inversion Formula can be used to
�nd an explicit expression for dn�k� By setting y � h
t� � � so that y
�� � �� formula 
���
becomes y � t
� � y�
 � y� and we therefore have for n �� k �

�tn�d
t�
th
t��k � �tn�k�
� � y�k�� �
k � �

n� k
�yn�k���
� � y��n�k
 � y�n�k �

�
k � �

n� k

n�k��X
j��

�
n� k

j � �

��
n� k

j

�
j���

which can be checked against the values shown in Figure ��
We conclude by studying a problem corresponding to a non�proper Riordan Array� Let

RA � f
�� ��� 
�� ��� 
� ��� 
�� �g with unprivileged access to the main diagonal� In Figure ��
we illustrate the problem schematically� We follow Theorem �� and modify the templates in
order to obtain a problem relative to a proper Riordan Array� Each template 
�� ��� becomes
a template 
��� ����� where �� � � � �
�� � �� and ��� � �� � �
�� � ��� In our case� � � �
and so the new templates are �RA � f
�� �� 
�� ��� 
�� ��� 
� ��g� For this problem� we have
P ���
t� � �� t� t� and P ���
t� � t�� This gives the relation h
t� � �� th
t�� t�h
t��� t�h
t���
that is�

h
t� �
� � t�p

�� t� �t� � �t�

t�
� � t�
�

��
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Figure �� A problem corresponding to a non�proper Riordan Array�

Since we have d
t� � h
t� by Corollary ���� we can conclude that the original problem
corresponds to the non�proper Riordan Array�

D �

�
�� t�p

�� t� �t� � �t�

t�
� � t�
�
� � t�p

� � t� �t� � �t�

t
� � t�

�
�
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