
Optimal Rectangle Packing: New Results

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

We present new results on the problem of finding an enclos-
ing rectangle of minimum area that will contain a given a set
of rectangles. Many simple scheduling tasks can be mod-
elled by this NP-complete problem. We present a new lower
bound on the amount of wasted space in a partial solution, a
new dominance condition that prunes many partial solutions,
and extend our algorithms to packing unoriented rectangles.
For our experiments, we consider the set of squares of size
1x1, 2x2,...,NxN, and find the smallest rectangle that can con-
tain them for a given value of N. While previously we solved
this problem up to N=22, we extend this to N=25. Overall,
our new program is over an order of magnitude faster than
our previous program running on the same machine. We also
show that for the larger problems, our optimal algorithm is
faster than one that finds the best slicing solution, a popular
approximation algorithm. In addition, we solve an open prob-
lem dating to 1966, concerning packing the set of consecutive
squares up to 24x24 in a square of size 70x70.

Introduction
An Open Square-Packing Problem
If we take a 1x1 square, a 2x2 square, etc. up to a 24x24
square, the sum of the areas of these squares is 4900, which
is 702. This is the only nontrivial sum of consecutive
squares starting with one which is a perfect square(Wat-
son 1918). (Bitner & Reingold 1975) showed by a com-
puter search that these 24 squares cannot all be packed into
a 70x70 square with no overlap. In his Sept. 1966 Scien-
tific American Mathematical Games column (Gardner 1966;
1975), Martin Gardner asked his readers what is the largest
area of the 70x70 square that can be covered by these
squares, a problem he attributes to Richard B. Britton.
Twenty-seven readers sent in very similar solutions that left
49 square units uncovered, leaving out the 7x7 square. We
show here for the first time that this is the best one can do.

Rectangle Packing
Consider the following simple scheduling problem: We have
a set of independent and indivisible jobs, each requiring a
certain number of workers for a certain time. All workers

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

work the same hours, and are paid for the total time, whether
they are busy or idle. We can adjust the number of workers,
and the total time, to minimize the total labor cost, which
is proportional to the product of the number of workers and
the total time. Alternatively, we may want to complete all
jobs as quickly as possible, using as many workers as nec-
essary, or minimize the number of workers, taking as much
time as needed. A closely-related problem is scheduling a
set of tasks that require a certain resource, such as electric
power on a spacecraft, for a given amount of time, so that all
tasks are completed as soon as possible without exceeding
the maximum resource capacity.

We can model these problems as rectangle-packing prob-
lems. Each job is represented by a rectangle, whose height is
the amount of resource needed, and whose width is the time
required. The total amount of resource is the height of an en-
closing rectangle, and the total time is the width. All the job
rectangles must be packed into the enclosing rectangle, with
no overlap. To minimize the total cost, we want an enclosing
rectangle of minimum area. To minimize the amount of re-
source, we want an enclosing rectangle of minimum width,
whose height is the maximum amount of resource needed
for any job. Similarly, to minimize the time, we want an
enclosing rectangle of minimum height, whose width is the
time needed for the longest job.

In practice there may be other considerations, such as
precedence constraints between jobs. These can be added to
our solution algorithm, pruning partial solutions that don’t
satisfy the constraints. This will make it easier to determine
that a particular enclosing rectangle can’t contain all the job
rectangles, but more difficult to find a feasible solution with
a particular enclosing rectangle. For simplicity, we consider
the unconstrained case here.

Rectangle packing has other applications as well. One
is loading a set of rectangular objects onto a cargo pallet,
without stacking objects. In the design of VLSI chips, cir-
cuit blocks must be assigned to physical regions of the chip.
Another application is cutting a set of rectangles out of a
rectangular piece of stock material.

In scheduling, the orientation of job rectangles is fixed,
since resources and time are rarely interchangeable. In VLSI
design, however, we can usually rotate the rectangles ninety
degrees. Cargo-loading also involves unoriented rectangles,
while in cutting-stock problems the rectangles may be ori-



ented or unoriented. We consider both cases here.

Related Work
Most work on rectangle packing deals with approximate
rather than optimal solutions. Our previous paper on this
subject (Korf 2003) represents the current state of the art,
and contains comparisons to prior work. We showed that
optimal rectangle-packing is NP-complete. We also intro-
duced the benchmark of finding the enclosing rectangle of
smallest area that will contain the 1x1, 2x2,...,NxN square,
and solved the problem for N up to 22.

Overview
We first consider packing a set of rectangles into a fixed en-
closing rectangle, and then describe how to search the space
of enclosing rectangles for one of minimum area. We then
consider slicing solutions, a popular approximation method.
We describe our experimental results, and present further
work and conclusions. This paper repeats some of the mate-
rial from (Korf 2003), in order to make it self-contained.

The three main contributions of this paper are a new lower
bound on the space wasted in any partial solution, an ad-
ditional dominance condition that allows us to prune more
partial solutions, and the extension to unoriented rectangles.
We extend the set of problems we can solve optimally from
N=22 to N=25, and solve the open problem proposed by
Gardner. Our new program is over an order of magnitude
faster than our previous program. It is also faster than our
program for finding slicing solutions, which is only an ap-
proximation algorithm.

All our experiments involve packing squares, which pro-
vides an infinite number of increasingly difficult problem in-
stances, each characterized by a single parameter. However,
our techniques are applicable to the more general rectangle-
packing problem as well. Where we take advantage of the
symmetry of squares, we also explain the generalization to
rectangles. We also explain some additional details omitted
from our previous paper, and correct several errors.

Rectangle Packing as a Binary CSP
First we consider the problem of given a fixed enclosing
rectangle, can we pack a given set of oriented rectangles into
it? The enclosing rectangle must be at least as wide as the
maximum width of any rectangle, and at least as tall as the
maximum height of any rectangle. Furthermore, the area of
the enclosing rectangle must equal or exceed the sum of the
areas of the given rectangles.

This can be modelled as a binary constraint-satisfaction
problem. There is a variable for each rectangle, whose legal
values are the positions it could occupy without exceeding
the boundaries of the enclosing rectangle. There is a binary
constraint between each pair of rectangles that they cannot
overlap. This suggests a backtracking algorithm.

We place the rectangles in decreasing order of size, in
order to avoid rearranging smaller rectangles if there is no
legal position for the largest unplaced rectangle. We can
define the size of a rectangle by its area, or its maximum di-
mension. The latter definition may be better, since placing a

long skinny rectangle is likely to be more constraining than
placing a square of the same area. We arbitrarily order the
positions in the enclosing rectangle from top to bottom and
from left to right. When placing unoriented rectangles, we
have to consider both orientations.

To check for overlapping rectangles, we maintain a two-
dimensional array the size of the enclosing rectangle, with
empty cells set to zero. When placing a new rectangle, we
only need to check if the cells on the boundary of the new
rectangle are occupied. The reason is that by placing the
rectangles in decreasing order of their maximum dimension,
or area, a previously-placed rectangle cannot be completely
contained within a new rectangle. This allows testing a posi-
tion for a rectangle in time linear in its maximum dimension.

To place a rectangle, all the cells it occupies are set to its
y dimension, When scanning the array for an empty cell, we
vary the second or y dimension fastest, since that produces
better cache performance. When we encounter an occupied
location, we add the stored value to the y index, effectively
skipping vertically over the occupying rectangle.

Due to the symmetry of enclosing rectangles, we only
consider solutions where the center of the largest rectangle
is in the upper-left quadrant of the enclosing rectangle. Any
other solution can be mapped to such a solution by flipping
the enclosing rectangle along one or both axes. This reduces
the running time by up to a factor of four.

Wasted-Space Pruning
As rectangles are placed, the remaining empty space gets
chopped up into smaller irregular regions. Many of these
regions cannot accommodate any of the remaining rectan-
gles, and must remain empty. When the area of this wasted
space, plus the sum of the areas of all the rectangles, exceeds
the area of the enclosing rectangle, the current partial solu-
tion cannot be completed, and the search can backtrack. The
challenge is to efficiently bound the amount of wasted space
in a partial solution. We begin with the algorithm in (Korf
2003), and then consider our improvement to it.

Previous Wasted-Space Algorithm
We begin with a wasted-space calculation based on a bin-
packing relaxation. For example, consider the partial solu-
tion shown in Figure 1. The 6x6 square has been placed,
and we would like to place the 5x5, 4x4, 3x3, 2x2, and 1x1
squares in this 12x8 rectangle.

Given a partial solution, we slice the empty space into
horizontal strips one unit high. In this case we get six strips
of length six, and two strips of length twelve. Each of
these strips represents a bin whose capacity is its length.
We then take the rectangles remaining to be placed, and
slice them into horizontal strips one unit high as well. In
this case we get five strips of length five, four strips of
length four, etc. Each such strip represents an element to
be packed into a bin, whose size is its length. This relaxes
the two-dimensional rectangle packing problem to a one-
dimensional bin-packing problem. The rectangle-packing
problem can be solved only if the corresponding bin-packing
problem can be solved. Even if the bin-packing problem can



6

Figure 1: Partial Solution to Rectangle-Packing Problem

be solved, however, there is no guarantee that the rectangle-
packing problem can be solved, since the latter problem is
more constrained. We can also slice the empty space and
rectangles to be placed into vertical strips as well.

Unfortunately, bin-packing is also NP-Complete, so it
may not be cost-effective to completely solve the horizon-
tal and vertical bin-packing problems for each partial solu-
tion in our rectangle-packing search. Instead, we use a re-
laxation of bin packing to compute a lower bound on the
wasted space in any partial solution, in linear time. This
lower bound is due to (Martello & Toth 1990), but we give a
different formulation of it below(Korf 2001).

For example, slicing the empty space in Figure 1 ver-
tically yields six strips of length eight, and six strips of
length two. Thus, there are twelve cells that can only ac-
commodate rectangles of height two or less. In our exam-
ple, only the 2x2 and 1x1 squares can occupy any of these
cells. Thus, at least 12 − 22

− 12 = 7 cells of empty
space must remain empty in any extension of this partial
solution. Since the sum of the areas of all the rectangles
(62 + 52 + 42 + 32 + 22 + 12) is 91, and the area of the
enclosing rectangle is 8 × 12 = 96, and 91 + 7 > 96, this
partial solution cannot be extended to a complete solution.

For a more detailed example, assume that a partial so-
lution creates empty bins of capacities 1,2,2,3,4,7, and ele-
ments of size 2,3,4,4,5. No element can fit in the bin with
capacity one, so one unit of space will be wasted. There
are two bins of capacity two, but only one element of size
two, so we place it in one of these bins, and the other bin
will be wasted. There is one bin of capacity three, and one
element of size three, so we place this element in this bin.
There is one bin of capacity four, but two elements of size
four. Thus, we place one of them in this bin, and the other is
carried forward to be placed in a larger bin.

The next bin has capacity seven, with two elements re-
maining, the leftover element of size four, and one of size
five. Only one of these elements can be placed in this bin,
but to avoid branching and make our wasted-space computa-
tion efficient, we reason as follows: The sum of the sizes of
the remaining elements that could fit in the bin of capacity
seven is 4 + 5 = 9. Since we only have one such bin, at

most seven units of these elements can fit in this bin, leav-
ing at least two units left over. Thus, there is no additional
waste, and two units are carried over. This results in a lower
bound of three units of wasted space for this subproblem.

The sum of the elements is 18, and the sum of the bin ca-
pacities is 19. The sum of the elements and the wasted space
(18 + 3 = 21) exceeds the total capacity of the bins (19),
implying that the problem is not solvable. Since the bin-
packing relaxation is not solvable, neither is the rectangle-
packing problem, and we can prune this partial solution.

In general, the wasted space is estimated as follows. We
first construct two vectors, one for the bins, and one for the
elements remaining to be packed. For each capacity, the bin
vector contains the total area that occurs in bins of that ca-
pacity, which is the product of the capacity and the number
of such bins. For bins of capacity 1,2,2,3,4,7, this vector
would be 1,4,3,4,0,0,7. Similarly, the element vector con-
tains the total area of the elements of each size, which is the
product of the size and the number of elements of that size.
For elements of size 2,3,4,4,5, this vector would be 0,2,3,8,5.

We then scan these vectors in increasing order of size,
maintaining the accumulated waste, and the area carried
over from smaller elements. For each size, there are three
cases: 1) if the bin area of that size exceeds the sum of the
carryover area and the element area of that size, then we
add the amount of excess to the wasted space, and reset the
carryover to zero; 2) if the bin area of that size equals the
carryover plus the element area of that length, we leave the
wasted space unchanged, and reset the carryover to zero; 3)
if the bin area of that size is less than the carryover plus the
element area of that size, we set the carryover to the differ-
ence between them, and leave the wasted space unchanged.

We calculate the wasted space for the horizontal relax-
ation of the current partial solution, and for the vertical re-
laxation, and take the maximum of the two. The maximum
wasted space is added to the total area of the rectangles, and
if this sum exceeds the area of the enclosing rectangle, we
prune this partial solution and backtrack.

New Lower Bound on Wasted Space
We have developed a more accurate lower bound on the
wasted space in a partial solution. The key idea is to con-
sider the vertical and horizontal dimensions together, rather
than performing separate calculations in the two dimensions
and taking the maximum wasted space. We first consider
the special cases of packing squares or unoriented rectan-
gles, and then consider packing oriented rectangles.

Packing Squares or Unoriented Rectangles For each
empty cell, we determine the width of the contiguous empty
row that it occupies, and the height of the contiguous empty
column it occupies. The minimum of these two values is
the size of the largest square that could occupy that empty
cell. For unoriented rectangles, we use the minimum dimen-
sion as the size. For example, in Figure 1, the twelve empty
cells below the 6x6 square have a minimum dimension of
two, the 36 cells to the right of the 6x6 square have a mini-
mum dimension of six, and the twelve remaining cells have a
minimum dimension of eight. Thus, we represent this empty



space as one bin of size twelve that can accommodate rect-
angles of minimum dimension two or less, one bin of size
36 that can accommodate rectangles of minimum dimension
six or less, and one bin of size twelve that can accommo-
date rectangles of minimum dimension eight or less. Once
we have mapped the empty space to this constrained bin-
packing problem, we apply the same linear-time algorithm
described above to bound the total wasted space.

Packing Oriented Rectangles When packing oriented
rectangles, we have at least three choices for computing
wasted space. One is to use the separate horizontal and ver-
tical bin-packing relaxations described above. Another is to
use our new lower bound that integrates both dimensions,
but using the minimum dimension of each rectangle to de-
termine where it can fit. The third option is to use our new
bound, but use both the height and width of each empty re-
gion and rectangle, as described below.

For each empty cell, we store the width of the empty row
it occupies, and the height of the empty column it occupies.
Empty cells are grouped together if both these values match.
We refer to these values as the maximum width and height
of the group of empty cells. A rectangle cannot occupy any
of a group of empty cells if its width or height is greater than
the maximum width or height of the group, respectively.

This results in a constrained one-dimensional bin-packing
problem. There is one bin for each group of empty cells with
the same maximum height and width. The capacity of each
bin is the number of empty cells in the group. There is one
element for each rectangle to be placed, whose size is the
area of the rectangle. There is a bipartite relation between
the bins and the elements, specifying which elements can be
placed in which bins, based on their heights and widths.

These additional constraints simplify the bin-packing
problem. For example, if any rectangle can only be placed
in one bin, and the capacity of that bin is smaller than the
area of the rectangle, then the problem is unsolvable. If any
rectangle can only be placed in one bin, and the capacity of
the bin is sufficient to accommodate it, then the rectangle is
placed in the bin, eliminated from the problem, and the ca-
pacity of the bin is decreased by the area of the rectangle. If
any bin can only contain a single rectangle, and its capac-
ity is greater than or equal to the area of the rectangle, the
rectangle is eliminated from the problem, and the capacity
of the bin is reduced by the area of the rectangle. If any
bin can only contain a single rectangle, and its capacity is
less than the area of the rectangle, then the bin is eliminated
from problem, and the “remaining area” of the rectangle is
reduced by the capacity of the bin.

Applying any of these simplifying rules may allow further
simplifications. When the remaining problem can’t be sim-
plified any further, we compute a lower bound on the wasted
space. We identify a bin for which the total area of the rect-
angles it could contain is less than the capacity of the bin.
The excess capacity is wasted space, and the bin and rect-
angles involved are eliminated from the problem. We then
look for another bin with this property.

The order in which these bins are identified can affect the
total amount of wasted space. Define bin a to contain bin

3
4

Figure 2: Position of 3x3 Square is Dominated

b if the maximum width of bin a is greater than or equal to
the maximum width of bin b, and the maximum height of
bin a is greater than or equal to the maximum height of bin
b. If bin a contains bin b, then any rectangle that will fit in
bin b will also fit in bin a. Given this relation, we want to
start with the “smallest” contained bins that don’t contain
any others, and then consider the “larger” containing bins.

Dominance Relations
The largest rectangle is placed first in the upper-left corner
of the enclosing rectangle. Its next position will be one unit
down. This leaves an empty strip one unit high above the
rectangle. While this strip may be counted as wasted space,
if the area of the enclosing rectangle is large relative to that
of the rectangles to be packed, this partial solution may not
be pruned based on the wasted space. Partial solutions that
leave empty strips to the left of or above rectangle place-
ments are often dominated by solutions that don’t leave such
strips, and hence can be pruned from consideration.

We describe here a very simple dominance condition.
Consider the partial solution shown in Figure 2, with a per-
fect 2x3 rectangle of empty space above the 3x3 square. If
we extend this to a complete solution, we can construct an-
other solution by sliding the 3x3 square up two units, and
moving any rectangles placed above the 3x3 square into the
new 2x3 rectangle of empty space created immediately be-
low the 3x3 square. Since rectangles are placed from top to
bottom and left to right, the 3x3 square was previously in
the upper-left corner. Thus, this new solution would have
been found earlier, the position of the 3x3 square in Figure 2
is dominated by its position in the upper-left corner, and we
need not consider this partial solution.

This dominance condition applies whenever there is a per-
fect rectangle of empty space of the same width immediately
above a placed rectangle, with solid boundaries above, to the
left, and to the right. The boundaries may consist of other
rectangles or the boundary of the enclosing rectangle. Simi-
larly, it also applies to a perfect rectangle of empty space of
the same height immediately to the left of a placed rectangle.
It applies to both oriented and unoriented rectangles.

Our current implementation checks if the position of the
last rectangle placed is dominated by an earlier position. In
addition, the placement of a rectangle can cause the position
of a previously-placed rectangle to be dominated. For ex-
ample, in Figure 2, if the 4x4 square were placed after the



3x3 square, it would cause the position of the 3x3 square to
be dominated. In our experiments, checking if the current
placement caused the positions of previously placed rect-
angles to become dominated reduced the number of nodes
generated, but increased the running time.

Surprisingly, we didn’t notice this simple dominance con-
dition previously (Korf 2003). Instead, we implemented a
more complex dominance condition that doesn’t require a
perfect rectangle of empty space, but only applies to rela-
tively narrow empty strips above or to the left of a placed
rectangle. Neither dominance condition subsumes the other,
and our current implementation uses both.

Searching the Space of Rectangles
So far, we have focussed on packing an enclosing rectangle
of particular dimensions. We now consider how to search the
space of such rectangles to find one of minimum area. While
the space of such rectangles is quadratic, we only have to
examine a linear number of enclosing rectangles in the worst
case, as shown in (Korf 2003).

Any enclosing rectangle must be at least as tall as the
tallest rectangle to be placed. We set the height h of the first
enclosing rectangle to this height. We then greedily place
each rectangle, in decreasing order of height, in the leftmost
and uppermost position available in the enclosing rectangle.
We continue until all rectangles are placed, resulting in an
enclosing rectangle of a particular width w. We store the
area of this rectangle as the best so far.

When the height of a candidate enclosing rectangle is less
than the sum of the heights of the two tallest rectangles, the
minimum feasible width is at least as large as the sum of
the widths of the two tallest rectangles, since they can’t be
placed on top of each other. To compute this minimum fea-
sible width in general, we sort the rectangles in decreasing
order of height. We then scan the list in order, summing the
widths of the rectangles, until we reach a rectangle that can
be placed on top of the previous rectangle. The minimum
feasible width is then the smaller of this sum, and the max-
imum width of any rectangle. For example, the rectangle in
Figure 1 of height eight must be at least fifteen units wide to
contain all the squares up to 6x6, since none of the 6x6, 5x5,
nor 4x4 rectangles can be placed on top of another.

We then search the space of enclosing rectangles by incre-
mentally increasing the height h, and decreasing the width
w, as follows. If the area of an enclosing rectangle is less
than the total area of the rectangles to be packed, or it fails
to meet the minimum width for its height, the enclosing rect-
angle is infeasible, and we increase the height h by one unit.
If the area of the candidate enclosing rectangle is greater
than that of the best solution found so far, we skip it, and
decrease the width w by one unit. If we successfully packed
the last enclosing rectangle, we decrease the width w by one
unit. If we failed to pack the last enclosing rectangle, we in-
crease the height h by one unit. We continue until the width
w equals the maximum width of any rectangle to be packed,
and return the best rectangle packing we found.

For example, consider the case of packing the set of
squares of size 1x1, 2x2, up to 6x6. The sum of the areas of
these squares is 91. We start with height h = 6, and greedily

fill a rectangle of this height. The width of this rectangle is
w = 18, the minimum width for this height. The area of this
rectangle is 6 × 18 = 108. We then decrease w to 17, but
this is less than the minimum width for this height. Thus, we
increase h to 7. The resulting 7×17 rectangle has an area of
119, which is greater than our best area so far of 108, so we
decrease w to 16. Since 7 × 16 = 112 > 108, we decrease
w further to 15. Since 7 × 15 = 105 < 108, and 15 is the
minimum width for this height, we test this rectangle, suc-
cessfully pack the six squares in it, and reduce our best area
so far to 105. We then reduce w to 14, but this is less than
the minimum width for this height, so we increase h to 8.
Since 14 is less than the minimum width of 15 for this height
as well, we increase h to 9. Since 9 × 14 = 126 > 105,
9 × 13 = 117 > 105, and 9 × 12 = 108 > 105, we re-
duce w to 11. Since 9 × 11 = 99 < 105, and 11 is the
minimum width for this height, we test this rectangle, and
successfully pack all six squares, reducing our best area so
far to 99. We then decrease w to 10, but 10 is less than the
minimum width of 11 for this height, so we increase h to
10. Since 11 is also the minimum width for a height of 10,
we increase h to 11. In general, this would continue until
w = 6, but for the special case of square packing, we can
quit when h > w, since rotating the enclosing rectangle has
no effect. Thus, the 9× 11 rectangle is the optimal solution.

Minimizing One Dimension
A related but easier problem is finding the enclosing rect-
angle of smallest area that minimizes one dimension, while
containing all the enclosed rectangles. The minimum width
of an enclosing rectangle is the maximum width of all the
rectangles to be contained. Similarly, the minimum height
of an enclosing rectangle is the maximum height of all the
rectangles to be contained. To minimize one dimension, we
set it to its minimum value, and compute a solution using
a greedy algorithm. We then iteratively decrease the other
dimension one unit at a time, until we can no longer fit all
the rectangles in the enclosing rectangle.

Slicing Solutions
A popular approximation technique for rectangle packing is
to consider slicing solutions. In a slicing solution, the en-
closing rectangle can be divided by a straight horizontal or
vertical cut that doesn’t intersect any of the enclosed rect-
angles, such that both the resulting pieces are also slicing
solutions. For example, Figure 3 is not a slicing solution,
since every straight cut through the enclosing rectangle in-
tersects at least one square. In general, slicing solutions are
not optimal, but are easier to represent and manipulate.

We also wrote a program to find slicing solutions of min-
imum area. It uses the same algorithm described above for
searching the space of rectangles. Given an enclosing rect-
angle of fixed dimensions, it tries all vertical cuts of the rect-
angle, from the width of the narrowest rectangle, up to cut-
ting it in half. Similarly, it tries all possible horizontal cuts,
from the height of the shortest rectangle, to the halfway cut.
For each cut, it tries to divide the rectangles into two groups
so that the sum of the rectangle areas in each group is no



Size Optimal Waste Slicing Korf03 Implementation Current Implementation Ratio
N Solution Percent Solution Time Nodes Time Nodes Time Time
1 1 × 1 0% 1 × 1 1 1
2 2 × 3 16.67% 2 × 3 2 2
3 3 × 5 6.67% 3 × 5 3 3
4 5 × 7 14.29% 5 × 7 8 8
5 5 × 12 8.33% 5 × 12 5 5
6 9 × 11 8.08% 9 × 11 18 18
7 7 × 22 9.09% 7 × 22 45 32
7 11 × 14 9.09% 11 × 14 45 32
8 14 × 15 2.86% 15 × 15 131 104
9 15 × 20 5.00% 13 × 24 297 206

10 15 × 27 4.94% 15 × 27 4874 1023
11 19 × 27 1.36% 18 × 30 1247 805
12 23 × 29 2.55% 23 × 30 23563 8629
13 22 × 38 2.03% 21 × 41 78149 24115
14 23 × 45 1.93% 21 × 51 137020 1 61481
15 23 × 55 1.98% 23 × 57 2 1463883 15 393395 2 7.5
16 27 × 56 1.06% 36 × 44 17 1615957 18 649800 4 4.5
16 28 × 54 1.06% 36 × 44 17 1615957 18 649800 4 4.5
17 39 × 46 0.50% 39 × 48 43 19141929 3:43 3246060 18 12.4
18 31 × 69 1.40% 31 × 71 2:45 68185079 16:46 14969573 2:03 8.2
19 47 × 53 0.84% 35 × 74 33:04 744810082 3:34:13 85756403 15:07 14.2
20 34 × 85 0.69% 46 × 65 1:58:57 723623798 3:34:55 157034645 25:09 8.5
21 38 × 85 0.99% 33 × 104 7:12:23 6459138738 36:59:10 848442675 2:55:31 12.6
22 39 × 98 0.71% 57 × 69 67:16:56 28241475202 185:12:05 3415889278 12:29:30 14.8
23 64 × 68 0.64% 15647354137 2:20:06:16
24 56 × 88 0.57% 68308619567 16:09:59:25
25 43 × 129 0.40% 158590367061 42:13:40:48

Table 1: Experimental Results for Minimum-Area Rectangles than Contain all Consecutive Squares from 1x1 up to NxN

greater than the areas of the two resulting enclosing rect-
angles. Furthermore, for oriented rectangles, the width and
height of each rectangle must be no greater than the width
and height, respectively, of the enclosing rectangle, while for
unoriented rectangles, the maximum of the width and height
of each rectangle must be less than or equal to the minimum
dimension of the enclosing rectangle. For each successful
partition, it recursively searches for a slicing solution to the
two resulting subproblems. If the last cut was vertical, the
first recursive cut of the left rectangle must be horizontal, to
avoid the redundant work of performing these two cuts in
the opposite order. Similarly, if the last cut was horizontal,
the first recursive cut of the top rectangle must be vertical.

Experiments

Square Packing as a Benchmark

To test our algorithms, we first considered the task of pack-
ing the set of squares of size 1x1, 2x2, etc. up to NxN into
a rectangle of minimum area. This provides a set of increas-
ing difficult problems, each specified by a single parameter.
We hope that the simplicity of these benchmarks will moti-
vate other researchers to solve the same instances, allowing
direct comparisons between different approaches.

While square packing allows further optimizations, most
of our code applies to the general rectangle-packing prob-

lem, with several exceptions. One is that when attempting to
place a square, we only check the corner cells of the square,
rather then the entire boundary. This is valid because we
place the squares in decreasing order of size, and if a smaller
square overlaps a larger square, one of its corner positions
must overlap. This doesn’t affect the number of nodes gen-
erated, has only a small impact on the running time, and is
easily modified to checking the complete boundary.

Another exception is that we terminate the search for en-
closing rectangles when the height exceeds the width. The
reason is that for square-packing, or unoriented rectangle
packing, there is no difference between packing a rectan-
gle of height h and width w, versus a rectangle of height w
and width h. For the case of oriented rectangle packing, we
would continue the search for enclosing rectangles until the
width decreases to the width of the widest rectangle.

The most significant difference between square packing
and oriented rectangle packing is our new lower bound on
wasted space. Our implementation is for the case of square
packing or unoriented rectangle packing, while the exten-
sion to oriented rectangle packing is described above.

Minimum-Area Rectangles
We found the minimum-area rectangles that will contain the
set of squares of size 1x1, 2x2,...,NxN, for all N up to N=25.
Figure 3 shows the best solution for N=25. We also found



the best slicing solutions to these problems up to N=22. Ta-
ble 1 shows our results. All running times are on the same
1.8 gigahertz PC. The first column gives the problem size,
which is the number of squares N. The second column shows
the dimensions of the rectangle(s) of minimum area that con-
tain all the squares with no overlap. There are two optimal
packings for N=7 and N=16. The third column gives the
percentage of area of the optimal rectangle that is left empty.
The fourth column shows the dimensions of the optimal slic-
ing solution, and the fifth column shows the running time to
compute it in hours, minutes and seconds. The sixth column
gives the number of nodes generated to find the optimal so-
lution by our previous program (Korf 2003), and the seventh
column gives the running time. A node is a placement of
a square. While the nodes reported here are the same as in
(Korf 2003), the running times are about three times faster,
reflecting a faster machine. The eighth and ninth columns
show the nodes generated and running times for our new
implementation, the latter in days, hours, minutes, and sec-
onds. The last column shows the running time of our old
program divided by the running time of our new program.
The empty entries in the top of the table represent times less
than one second, and the empty entries at the bottom of the
table represent problems we weren’t able to solve with the
weaker programs.

Our new algorithm is about an order of magnitude faster
than our previous algorithm(Korf 2003), allowing us to solve
problems of size N=23, 24 and 25 for the first time.

Our algorithm for slicing solutions is slower than our new
optimal algorithm, despite the fact that slicing solutions are
only approximate. For example, the best slicing solution for
N=22 wastes 3.51% of the area, compared to .71% for the
optimal solution, but still runs over five times slower than
our optimal algorithm. The reason is that any program must
try to pack all feasible enclosing rectangles that are smaller
than the minimum-area rectangle that contains all the rectan-
gles. Since the best slicing solutions are significantly worse
than optimal solutions, there are many more enclosing rect-
angles that must be tried, and many more partial solutions
that must be explored.

24 Squares in the 70x70 Square
We also solved the open problem mentioned at the begin-
ning of this paper, concerning packing the 1x1, 2x2,...,24x24
squares into a 70x70 square. We verified that the minimum
area that must be left empty is 49 units, which is achieved by
leaving out the 7x7 square. This took about five days to run,
and generated about 20 billion nodes. In solving this prob-
lem, we took advantage of the fact that the enclosing rectan-
gle is a square, which is symmetric about the main diagonal.
Thus, we only considered positions of the 24x24 square on
or above the main diagonal in the upper-left quadrant. Fur-
thermore, if the 24x24 square was on the main diagonal, then
we only considered positions of the 23x23 square that were
on or above the main diagonal.

All the solutions are very similar to those found by hand
by Martin Gardner’s readers in 1966! In particular, the posi-
tions of all the squares down to the 11x11 are the same.

The longest continuous decreasing sequence of these

25
18

17
16

10

12 14
15

9
5

8 11

20
23

13
7
6

24
19

21 22

4

3

2

Figure 3: Optimal Packing of Squares up to 25x25



2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
3 5 7 9 11 13 15 18 21 24 27 30 33 36 39 43 47 50 54 58 62 66 71 75

Table 2: Size of Smallest Square that will Contain all Consecutive Squares from the 1x1 up to the NxN.

squares that can be packed into the 70x70 square includes
the 6x6, but all these solutions leave out the 5x5, 4x4, and
3x3, for a total of 50 units of empty space.

Smallest Enclosing Square
In the same Scientific American article(Gardner 1966;
1975), Gardner attributes another related problem to
Solomon Golumb. For each set of consecutive squares from
the 1x1 up to the NxN square, what is the smallest square
that can contain them all? He gives a table, due to John
Conway, Golomb, and Robert Reid, which gives these val-
ues up to N=17. We confirmed these values, and extended
the table through N=25, as shown in Table 2.

Further Work and Generalizations
There are many things we could try to improve the per-
formance of our program. We relax our rectangle-packing
problem to a bin-packing problem, but we only use the bin-
packing problem to compute a lower bound on the wasted
space. Alternatively, we could try to actually solve the bin-
packing relaxations, and prune the search space when the
corresponding bin-packing problem can’t be solved.

Another possible optimization comes from the observa-
tion that when the empty space becomes divided into discon-
nected components, packing one component is independent
of packing the others. What is needed in this case is a two-
level search. The top-level search partitions the rectangles
among the connected components of empty space, based on
the areas of the rectangles and the areas of empty space. A
lower-level search then tests the feasibility of these assign-
ments, based on the actual geometry of the empty space.

An obvious generalization of this work is to three or more
dimensions. Each of the techniques we described general-
izes to higher dimensions in a straightforward way, although
the resulting problem spaces are much larger. Even our
benchmark set generalizes to higher dimensions. For ex-
ample, we can ask what is the smallest rectangular volume
that will contain the 1x1x1, 2x2x2x, up to NxNxN cube.

Conclusions
Rectangle packing is a simple abstraction of several real-
world problems, including scheduling, pallet loading, VLSI
design, and cutting-stock problems. We extended our previ-
ous work on the problem of finding an enclosing rectangle
of minimum area that contains a given set of rectangles. Our
new contributions in this paper are a more effective lower-
bound estimate of the amount of wasted space in a partial
solution, an additional dominating condition to prune more
of the search space, and the extension of our techniques to
packing unoriented rectangles. In addition, we improved our
implementation, reducing the constant time per node gener-
ation. Our algorithm finds optimal solutions, but is also an

anytime algorithm, returning an approximate solution im-
mediately and continuing to improve it as it continues to
run. The space requirement of the algorithm is negligible,
consisting primarily of the two-dimensional grid whose size
is that of the enclosing rectangle. We tested our algorithm
on the problem of packing a set of squares of size 1x1, 2x2,
up to NxN into a rectangle of minimum area, and have ex-
tended the size of problems we can solve optimally from
N=22 to N=25. Our current program runs an order of magni-
tude faster than our previous program on the same machine.
Our new program is also faster than a program that com-
putes slicing solutions, a popular approximation algorithm.
We believe that this class of square-packing test cases repre-
sent a simple, elegant set of rectangle-packing problems of
increasing difficulty, and propose this as a benchmark set for
other researchers. We also solved an open problem posed by
Martin Gardner in 1966, concerning packing the consecutive
squares up to 24x24 into a 70x70 enclosing square.

Acknowledgements
Thanks to Thomas Wolf for his excellent website de-
scribing the background of the 70x70 problem (http :
//home.tiscalinet.ch/twolf/tw/misc/squares.html),
and for patiently answering my questions about it. This
research was supported by NSF under grant No. EIA-
0113313, by NASA and JPL under contract No. 1229784,
and by the State of California MICRO grant No. 01-044.

References
Bitner, J., and Reingold, E. 1975. Backtrack programming
techniques. Communications of the A.C.M. 18(11):655.
Gardner, M. 1966. Mathematical games: The problem
of mrs. perkin’s quilt and answers to last month’s puzzles.
Scientific American 215(3):264–272.
Gardner, M. 1975. The problem of mrs. perkin’s quilt and
other square-packing problems. In Mathematical Carnival.
New York: Alfred A. Knopf. 139–149.
Korf, R. 2001. A new algorithm for optimal bin packing. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI-02), 731–736. Edmonton, Alberta, Canada:
AAAI Press.
Korf, R. 2003. Optimal rectangle packing: Initial results.
In Proceedings of the Thirteenth International Conference
on Automated Planning and Scheduling, (ICAPS 2003),
287–295. Trento, Italy: AAAI Press.
Martello, S., and Toth, P. 1990. Lower bounds and re-
duction procedures for the bin packing problem. Discrete
Applied Mathematics 28:59–70.
Watson, G. 1918. Messenger of Mathematics, New Series
48:1–22.


