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ABSTRACT

An estimate is given of the size of a solution n 2 N of the inequality �(an+ b) < �(an), gcd(a; b) = 1.
Experiments indicate that this gives a useful indication of the size of the minimal solution.
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1. Introduction

Let �(m) be the Euler totient function. Recently, D.J. Newman [5] has shown that for any
nonnegative integers a; b; c, and d with ad 6= bc, there exist in�nitely many positive integers
n for which

�(an+ b) < �(cn+ d): (1.1)

For the case a = c = 30; b = 1; d = 0, Newman stated that there are no solutions n with
n < 20; 000; 000 and that a solution may be beyond the reach of any possible computers.
Two years later, Greg Martin [3] found the smallest solution for this case, which turned out
to be a number as large as 1116 decimal digits.
In this paper, we will analyse Newman and Martin's approach to this problem which en-

ables us, for the case a = c; gcd(a; b) = 1; d = 0; to give an estimate of the size of an
n satisfying (1.1). Experiments indicate that this estimate also gives a useful indication of
where the minimal solution of (1.1) can be expected.

Notation By pk we mean the k-th prime and by Pk the product p1p2 : : : pk.

Acknowledgements I like to thank Greg Martin and two anonymous referees for their con-
structive criticism which led to an improved presentation of this paper.
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2. A solution of �(30n+ 1) < �(30n)
We �rst consider the special case a = c = 30, b = 1, d = 0. As Martin showed, if n satis�es
�(30n+ 1) < �(30n), then

�(30n+ 1)

30n+ 1
<

�(30n)

30n+ 1
<

�(30)n

30n
=

4

15
= 0:26666 : : : ; (2.1)

(using �(ab) � �(a)b 8 a; b 2 N). Since � is multiplicative and since �(pe)=pe = �(p)=p for
any prime p and any e � 2, the smallest m for which �(m)=m has a given value, is squarefree.
Therefore, we look for solutions of the inequality �(30n+ 1) < �(30n) among the numbers

mk :=
kY

i=4

pi; k = 4; 5; : : : ;

which satisfy

mk � 1 mod 30 and
�(mk)

mk
<

4

15
: (2.2)

Such mk exist with high probability because the numbers

�(mk)

mk
=

kY
i=4

�
1� p�1i

�
; k = 4; 5; : : :

decrease monotonically to zero, and because the residues mk mod 30, k = 4; 5; : : : , seem to
be uniformly distributed. For example, in the �rst 800 terms, the �(30) = 8 possible values

1; 7; 11; 13; 17; 19; 23; 29

occur with frequencies
100; 99; 107; 104; 110; 100; 85; 95;

respectively.
With help of the GP/Pari package [1], we have found that

m388 � 1 mod 30 and
�(m388)

m388
= 0:26631::: <

4

15
; (2.3)

and that there is no mk with 4 � k < 388 which satis�es these conditions. Now we check
whether the number n388 := (m388�1)=30 actually is a solution of the inequality �(30n+1) <
�(30n). It turns out that n388 = 23n0 where n0 = 5:502175051:::�101124 has no prime divisors
� p50000 = 611953. Using the well-known result that if n0 has no prime divisors � B then

�(n0)

n0
>

�
1�

1

B

�log n0= logB

;

we �nd
�(30n388)

30n388
=

�(240n0)

240n0
=

4

15

�(n0)

n0
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>
4

15

�
1�

1

611953

�log n0= log 611953

= 0:26658:::

Since
30n388

30n388 + 1
= 1� 7:57::: � 10�1128;

we conclude that
�(30n388)

30n388 + 1
> 0:26657:

Combining this with (2.3) we have

�(30n388 + 1)

30n388 + 1
= 0:26631::: < 0:26657 <

�(30n388)

30n388 + 1

which implies that �(30n388 + 1) < �(30n388).
So n388 = 4:401740040:::�101125 is a solution of the inequality �(30n+1) < �(30n), but it

is not the smallest one. Martin [3] found this by computing the minimum number of distinct
prime factors of such an n, viz., 382, by explicitly giving a solution with 382 distinct prime
factors, and by showing that there are no smaller ones. Martin's minimum solution is given
by

n = (z � 1)=30; where z =

 
383Y
i=4

pi

!
p385p388;

and
n = 2:329098101::: � 101115:

3. An estimate of the size of a solution of �(an+ b) < �(an), gcd(a; b) = 1

In this section we will mimic and analyse the step described in Section 2 to �nd an mk �

1 mod 30 for which �(mk)=mk < �(30)=30, for the more general case a = c, gcd(a; b) = 1,
d = 0 in (1.1). So we consider the inequality

�(an+ b) < �(an); gcd(a; b) = 1; (3.1)

and look for a number mk � b mod a for which �(mk)=mk < �(a)=a. We expect this mk

to be a solution of (3.1) and, also, that its size is not too far from the size of the smallest

solution of (3.1) as we have seen in Section 2 for the case a = 30, b = 1.
As in Section 2, consider the products of the small primes which are not in a:

mk :=
Pk

gcd(Pk; a)
for k = 1; 2; : : : ; (3.2)

which satisfy

mk � b mod a and
�(mk)

mk
<

�(a)

a
: (3.3)

Writemk = ank+b. We derive an estimate of the expected size of the smallestmk satisfying
(3.3) as follows. This mk must satisfy

�(ank + b) � �(ank): (3.4)
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We assume that b� ank so that ank + b � ank. Dividing gives:

�(ank + b)

ank + b
�

�(ank)

ank
: (3.5)

For the left hand side of (3.5) we have, using (3.2)1:

�(ank + b)

ank + b
=

�(mk)

mk
=

a

�(a)

�(Pk)

Pk
=

a

�(a)

Y
p�pk

�
1�

1

p

�
:

For the right hand side of (3.5) we assume that:

�(ank)

ank
�

�(a)

a
:

This requires that the prime divisors of nk which are not in a are not too small. Substitution
in (3.5) gives Y

p�pk

�
1�

1

p

�
�

�
�(a)

a

�2

:

With Mertens's Theorem [2, x22.8]:

Y
p�x

�
1�

1

p

�
�

e�


log x
as x!1;

where 
 is Euler's constant (= 0:5772:::), it follows that

log pk � e�

�

a

�(a)

�2

: (3.6)

We estimate the corresponding size of nk as follows. We have

ank + b = mk =
Pk

gcd(Pk; a)
;

so that
log nk � logPk � log a� log(gcd(Pk; a)):

By the Prime Number Theorem [2, Chapter 22],

logPk =
X
p�pk

log p = �(pk) � pk; as pk !1;

where �(:) is Chebyshev's function. So we could simplify our estimate of log nk by replac-
ing logPk by pk, but this introduces an undesirable error. Summarizing, we have the following

Estimate An estimate of the size of a solution of the inequality

�(an+ b) < �(an); with gcd(a; b) = 1;

1with k such that pk � the largest prime in a.
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is given by logn � logPk� log a� log(gcd(Pk; a)), where k is such that log pk � e�
(a=�(a))2.

For a = 30; b = 1 this gives: pk � 2685, logn � 2600, log10 n � 1129 while in Section 2
we found k = 388, p388 = 2677 and log10 n388 = 1125:643::.

Remark Greg Martin [4] pointed out that when a is the product of several primes, a=�(a) has
order of magnitude log log a and if such an a has D digits, then it follows from the analysis
given above that the smallest solution to �(an + b) < �(an) will have about exp(c(logD)2)
digits, for some constant c. In particular, there is in general no polynomial-time algorithm
for �nding the least solution to this inequality, for the simple reason that just writing down
the answer takes longer than any polynomial function of D!

4. A program for finding a solution of �(an+ b) < �(an), gcd(a; b) = 1

We have written a GP/Pari program2 which �nds a solution of (3.1), for given a and b, in
the same way as we found the solution of �(30n + 1) < �(30n) in Section 2. This program
has two steps:

Step 1 Find the smallest k 2 N for which mk as de�ned in (3.2) satis�es (3.3).

Step 2 For thismk de�ne nk := (mk�b)=a. Find a lower bound for the quotient �(ank)=(ank)
by dividing out all the prime factors of nk up to some �xed bound B. Let

nk := n0n00n000; where

n0 consists of the prime factors of nk which are in a,
n00 consists of the (known) prime factors of nk which are not in a, and which are � B, and
n000 consists of the (unknown) prime factors of nk which are > B. Then

�(ank)

ank
=

�(a)

a

�(n00)

n00
�(n000)

n000
>

�(a)

a

�(n00)

n00

�
1�

1

B

�log n000= logB

=: R:

Now check whether �(mk)=mk, as computed in Step 1, satis�es

�(mk)

mk
< R

ank
ank + b

:

If so, it follows that
�(ank + b)

mk
<

�(ank)

mk
;

so that nk is a solution of (3.1). If not, continue with Step 1 to �nd the next smallest solution
of (3.3). 2

We have run this program for b = 1 and a = 6; 30; 42 with B = p15000 = 163841 and for
b = 1, a = 210 with B = p100000 = 1299709, and compared the values of pk and log10 n, as
estimated using Section 3, with the values of pk and log10 n computed with this program.
The results are given in Table 1.

2This program is available from the author upon request.
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estimated computed

a (b = 1) pk log10 n k pk log10 n
~k

6 = 2:3 157 57:796:: 36 151 57:796:: 35
30 = 2:3:5 2685 1129:072:: 388 2677 1125:643:: 385
42 = 2:3:7 971 397:081:: 171 1019 421:063:: 161

210 = 2:3:5:7 46476 20048:160:: 4981 48413 20880:507:: 4789

Table 1: Comparison of estimated (according to Section 3) and computed values of pk and

log10 n, where the computed value of n = (mk � b)=a, with mk = Pk= gcd(Pk; a), satis�es
�(an + b) < �(an), gcd(a; b) = 1. The last column lists the minimal value ~k of k for which

�(mk)=mk < �(a)=a.

The main reason for the di�erence between the estimated and computed values of pk and
log10 n is that the condition mk � 1 mod a is only satis�ed in about 1 in every �(a) cases (on
the assumption of the uniform distribution of the residues mk mod a).
The last column of Table 1 lists the minimal value ~k of k for which �(mk)=mk < �(a)=a,

where mk = Pk= gcd(Pk; a). Since this inequality is a necessary condition for any solution,
we can use our computed solution and this ~k to �nd the minimal solution. For example, for
a = 6; b = 1, we have ~k = 35, so

m = p3p4 : : : p35 = 5:7 : : : 149

is the smallest product of consecutive primes� 5 which satis�es the inequality �(m)=m < 1=3.
In addition, for this m we have m � 1 mod 6, �(m) = 8:2531::: � 1055 and

�(m� 1) = �(2:3:1381:70140112179047:p39) = 8:2838::: � 1055;

where p39 is a prime of 39 decimal digits, easily computable from m � 1 and the other
given factors of m � 1. So this m is also the minimal solution � 1 mod 6 of the inequality
�(m) < �(m� 1).
Table 1 lists sizes of estimated and computed solutions for various values of a, with b = 1.

In fact, our program �nds solutions for all those values of b for which gcd(a; b) = 1, and since
we have no indications that the residues mk mod a are not uniformly distributed, we expect
the solutions for b 6= 1 to have about the same size as those given for b = 1 in Table 1.
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