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Primes in arithmetic progressions

The main object of study is
m(r;q,a) = #{primes p < x: p = a (mod q)}

Dirichlet proved in 1837 that as long as ged(q,a) = 1,
there are infinitely many primes congruent to

a (mod q).

Chebyshev remarked in 1853 that there seem to be more
primes congruent to 3 (mod 4) than to 1 (mod 4).

Similar biases have been observed to other moduli,
notably by Shanks in 1959.



=1 (mod 4) p=1 (mod 3)

p =3 (mod 4) p =2 (mod 3)

5 7 2
13 7 13

17 11 19 11
29 19 31 17
37 23 37 23
41 31 43 29
53 43 61 41
61 47 6/ 47
73 59 73 53
89 67 79 59
97 71 97 71
101 79 103 83
109 83 109 89
113 103 127 101
137 107 139 107
149 127 151 113
157 131 157 131
173 139 163 137
181 151 181 149
193 163 193 167




p=1 (mod 5) p =3 (mod 5)

p =2 (mod 5) p =4 (mod 5)
11 2 3 19
31 7 13 29
41 17 23 59
61 37 43 79
71 47 53 89
101 6/ 73 109
131 97 83 139

151 107 103 149
181 127 113 179
191 137 163 199
211 157 173 229
241 167 193 239
251 197 223 269
271 227 233 349
281 257 263 359
311 277 283 379
331 307 293 389
401 317 313 409
421 337 353 419
431 347 373 439




Classical analytic results

It was proved in the 1890s, independently by Hadamard
and de la Vallée Poussin (with contributions from von
Mangoldt, and all based on Riemann’s 1860 memoir),

that
li(x)

T(2;q,a) ~ —=

¢(q)
when ged(q, a) = 1, where
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li(x) :/ il
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In particular,
T\ZT, a
11 ( ) Q7 )

=1
r—oo (x5 q, b)

when ged(q, a) = ged(q, b) = 1.



However, the biases exist because the analytic objects in
the proofs “naturally” count prime powers (in

particular, squares of primes).

For example, for Res > 1 the Riemann zeta-function

is given by
()= n= J] @=p)"
n=1 primes p
and so

log¢(s) = > log(l—p*)~"

primes p

o
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primes p k=1
— 9~ + 3—5 + %4—5 + 5—5 4+ 7—5 4+ %8—5
+397° 117+ 137+ 4167 + ...



Similarly, related to primes in arithmetic progressions
modulo q are the Dirichlet L-functions, given for
Res > 1 by

L(s,x) = > _x(n)n™* = H (1—x(p)p—) 7",

where x is a Dirichlet character (mod q), that is, a

function on the integers with period ¢ satisfying

x(mn) = x(m)x(n)
and
X(n) #0 <= ged(g,n) = 1.
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p" =2 (mod 3)
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Comparing the functions 7(z;q,a) to each other

It was a surprise when Littlewood proved in 1914 that
both 7(x;4,3) — m(x;4,1) and 7(x;3,2) — w(x; 3, 1)
changed sign infinitely often.

Other results about sign changes of

m(x;q,a) — m(x; q,b) were established, mostly subject
to hypotheses on the location of zeros of Dirichlet
L-functions, by Knapowski and Turan in the 1960s and
by Kaczorowski in the 1990s.



p=1 (mod 4) p=1 (mod 4)

p =3 (mod 4) p =3 (mod 4)
26717 26683 616673 616547
26729 26687 616717 616579
26737 26699 616729 616639
26777 26711 616741 616643
26801 26723 616757 616703
26813 26731 616769 616723
26821 26759 616789 616783
26833 26783 616793 616787
26849 26839 616829 616799
26861 26863 616841 616843
26881 26879 616849 616871
26893 26891 616877 616943
26921 26903 616897 616951
26953 26927 616909 616991
26981 26947 616933 616999
26993 26951 616961 617011
27017 26959 616997 617027
27061 26987 617053 617039
27073 27011 617077 617051
27077 27031 617129 617059

m(26,861;4,1) = 1,473 = 7(26,861; 4,3) + 1
7(616,841;4,1) = 25,189 = 7(616,841;4,3) + 1

(Leech 1957)



p=1(mod3) p=2(mod3)
608981812531 608981811929
608981812651 608981812037
608981812717 608981812391
608981812759 608981812613
608981812771 608981812667
608981812867 608981812697
608981812891 608981812709
608981812951 608981812721
608981812993 608981812919
608981813017 608981812961
608981813029 608981813123
608981813137 608981813261
608981813191 608981813273
608981813269 608981813303
608981813311 608981813357
608981813347 608981813459
608981813449 608981813501
608981813569 608981813507
608981813677 608981813621
608981813683 608981813711

(Bays and Hudson 1978)

7(608,981,813,029; 3, 1) = 11,669,295,396 = 7(608,981,813,029; 3,2) + 1




The work of Rubinstein and Sarnak

In 1994, Rubinstein and Sarnak proved some striking

results under the following two hypotheses:

GRH (the Generalized Riemann Hypothesis): all zeros
of Dirichlet L-functions in the critical strip 0 < Res < 1

1

actually lie on the line Re s = 3

LI: the nonnegative imaginary parts of these zeros are

all Linearly Independent over the rational numbers



Define a “density”

f (t> B 17 if W(.I';q, a1> > e > W(CU;QJG’T)J
PG00, otherwise.

Assuming GRH, 044, 4, exists.

Assuming GRH & LI, 44,4, > 0.

Moreover, if S, S" are squares modulo ¢ and N, N’ are
nonsquares, then

0 < 5q;S,N < % < 5q;N,S <1
and

1
0¢:5.5" = 5 = Og; NN+

For example, d4.3 1 ~ .9959 and d3.0 1 ~ .9990.



Extending their ideas

In 2000, Feuerverger and M. extended the ideas of
Rubinstein and Sarnak and made further calculations
(under the same hypotheses GRH & LI).

For example, 1 and 4 are squares (mod 5) while 2 and 3

are nonsquares, and we calculated that
05:2,1 = 05;2,4 = 0531 = 05;34 A2 .9521

In contrast, 3, 5, and 7 are nonsquares (mod 8) while 1
is the only square; similarly, 5, 7, and 11 are
nonsquares (mod 12) while 1 is the only square. We
calculated that

58;3,1 ~ .99957 (512;5’1 ~ .99921
58;5,1 ~ .99739 (512;7’1 ~ .99801
58;7,1 ~ .99894 (512;11,1 ~ .99998&

Regarding the three-way race among 5, 7, and
11 (mod 12):



m(x;12,5) > m(x;12,7) m(x;12,5) > w(z;12,11) m(x;12,7) > w(x;12,11)

x127>7rx125 x1211>7rx125 3:1211>7rx127

mw(x;12,5) > 7(x;12,7) > 7(x; 12, 11)

m(x;12,7) > w(x; 12,5) m(x;12,5) > 7(x; 12, 11)

> m(x;12,11) > m(x;12,7)
m(x;12,7) > m(x;12,11) >
m(x;12,11) > 7(x;12,5) m(x;12,5) > m(x;12,7)

m(x;12,11) > 7(x;12,7) > 7(x; 12,5)



Computation of 012.571;

Define a function v : R — R? by
v(t) = 4te " (m(e;12,5) — (e’ 12,7), (12, 7) — 7(e'; 12, 11)).

Notice that
m(eh12,5) > w(e';12,7) > w(e';12,11) <= v(t) € R%,,.

Rubinstein and Sarnak proved (on GRH & LI) that v(¢)

has a limiting distribution function g(x,y) and that

512;5,7,112/ / g(x,y) dx dy.
0 Jo

Moreover, we have a formula for the Fourier transform

g(x,y) (next slide).

Some almost standard analysis yields

512;5,7,11 - = 4—7T2PV//2 zy df dy
R

(where PV denotes the Cauchy principal value).




What is g(x,y)?

The function g can be interpreted as the distribution
function for a sum of independent random variables; its

Fourier transform can then be computed.

Recall the Bessel function Jy(z Z
=1

There are three nontrivial characters modulo 12: x _s,
s, and xiz (where xp(n) = (2))

n

If we define

P = [l ‘]0<¢1/242+ w?)’

>0
L(3+iv,xp)=0

then we have the formula

g(z,y) = F(2z, x_4)F(2y — 22, x—3)F(—2y, x12)-



Obstacles to computing 0125711

Recall that

0125711 = — — 4_7r2PV//2 o d dy.
R

(1) Knowing the zeros of the functions L(s, x)

(2) Discretizing the integral

(3) Dealing with the Principal Value

(4) Restricting the range of integration

(5) Truncating the infinite products hiding in g(z, y)



Knowing the zeros of the functions L(s, x)

In 1993 Rumely published his calculations of zeros of
Dirichlet L-functions to all moduli 3 < ¢ < 100 (and

more).

He calculated all of the zeros in the critical strip

0 < Res < 1 satisfying | Im s| < 2500, and for small
moduli (including ¢ = 12) went up to at least

| Tm s| < 10000.

(All of them happened to have Re s = %, by the way.)



Discretizing the integral

We choose € > 0 and use the approximation

g(x,y) g(me/2,ne/2)
/ /RQ dudy = mzn;z (me/2)(ne/2)

If f(x,y) = g(x,y)/zy, that the Poisson summation

formula gives

g? Z flme/2,ne/2) = £(0,0)

m,nel
m.,n odd

+ fork /e, 2ml fe)(—1)F.

The main term is f(0,0) = // gz, y) dx dy.
IR

The other f terms can be translated into quantities
involving g(x, y), which are subsequently estimated

using quantitative forms of the Law of Large Numbers.



Dealing with the Principal Value

We note that

P\/// dd—PV// xy_gxo)(oy)dxdy
R2 Ty R2

since ¢ is an even function of each variable separately.

The new integrand can be extended continuously to the coordinate
axes, and can itself be shown to be an integrable function (not

trivial in more than one dimension!).

Therefore the PV on the right-hand side can be removed, and the
Poisson summation formula truly applies, giving

/ / g(x 0)@(0 v o dy

o 2 g m5/2,n6/2) g(me/2,0)g(0,ne/2)
N Z (me/2)(ne/2)

m,nez
m,n odd
e Z g(me/2,ne/2) Z Gg(me /2, n€/2)
(me/2)(ne/2) mn
mnez mnel
mnodd m,n odd

again since ¢ is even in each variable.



Restricting the range of summation

m,nel |m|,|n|<C
m,n odd m,n odd

requires estimating the functions F'(z, x) for large z.

This follows from the asymptotic formula

#{0 <~y <T: L(3+1v,x )—O}N—loqu

2me

(where ¢ is the conductor of x) and the estimate

Jol2)] < min {1,/ }.

Remark: this Bessel function inequality is sharp for
infinitely many z. Does anybody know a nice reference
for this precise inequality, rather than simply the

asymptotic inequality

|J0(Z>| S 240(1) 2

m|z|




Truncating the infinite products

We use the approximation

22 22
I () L (G

L(%+z’7,xp)20 L(%+i77XD):0

X g Jo( —1/24': V2>

L(3+iv,xp)=0

- 1 () < -

L(3+iv,xp)=0

where we have defined

1
bi(x,T) = Z it 2

v>T
L(3+iv,xp)=0

Luckily, we have the classical formula

L'(1, x)
L(1, x)

where ¢, is a constant depending only on whether y(—1) equals 1

2b1(x,0) = logg — ¢, +2Re
77

or —1. There are closed-form formulas for L(1, x) and L'(1, x), and
hence b1(x,7T") and our approximation can be computed from

Rumely’s list of zeros up to height 7'



