The N+1 Queens Problem

Doug Chatham Morehead State University November 5, 2004

Acknowledgements

 Joint work with Gerd Fricke and R. Duane Skaggs

The Eight Queens Problem

- Place eight queens on a standard chessboard so that no two attack each other.
- First posed in 1848.
- Generalized in 1850 to N queens on an N x N board.

Counting N-queens solutions

N	Number of solutions	N	Number of solutions
4	2	11	2,680
5	10	12	14,200
6	4	13	73,712
7	40	14	365,596
8	92	15	2,279,184
9	352	16	14,772,512
10	724	17	95,815,104

More counting

Ν	Number of solutions to N-queens problem
18	666,090,624
19	4,968,057,848
20	39,029,188,884
21	314,666,222,712
22	2,691,008,701,644
23	24,233,937,684,440
24	227,514,171,973,736

More about N-queens...

- Theorem: For N > 3, there is at least one solution to the N-queens problem.
- Proved first by Ahrens in 1910.
- Also proved by Hoffman, Loessi, and Moore in 1969. (Mathematics Magazine, March-April 1969, 66-72.)
- Also proved by others.

At most N queens, right?

- Clearly, each row can only have one queen.
- Clearly, an N x N chessboard can have at most N nonattacking queens placed on it.

The Nine Queens Contest

- January-March 2004, The Chess Variant Pages at chessvariants.org.
- If we place a pawn between two queens on the same row (or column or diagonal), the queens no longer attack each other.
- Question: How many pawns do we need in order to put 9 nonattacking queens on a standard chessboard?

Solution to 9 Queens Contest

- Answer: One pawn.
- A solution:
 - QUEENS at a8, b5, c2, d4, d6, e1, f7, g5, h3
 - PAWN at d5

The N+k Queens Problem

- Given N+k queens, how many pawns need to be put on an N x N board to allow the queens to be placed on the board so they don't attack each other?
- This is the queens' separation number s_Q(N+k,N).

The N+1 Queens Problem

- $s_Q(4,3) = 5$.
- s_Q(5,4) doesn't exist.
 - When we put 5 queens on a 4 x 4 board, at least two queens will be on adjacent squares.

The N+1 Queens Problem

- $s_Q(6,5) = 3$.
 - Verified by computer search.
- Theorem: For $N \ge 6$, $s_Q(N+1,N) = 1$

Sketch of Proof of Theorem

- We take known solutions to the n-queens problem and add extra rows, columns, queens, and a pawn.
- We have four main patterns and a few exceptional cases.

N-Queens Construction A

- n ≥ 4
- n ≡ 0 or 4 (mod 6)
- Number rows and columns 0, 1,..., n-1
- Queens at (2i+1,i) for i=0,..., n/2-1
- Queens at (2i-n,i) for i=n/2,...,n-1.

N-Queens Construction B

- n ≥ 4 , n ≡ 2 or 4 (mod 6)
- Number rows and columns 0, 1,..., n-1
- Queens at (n/2+2i-1 (mod n),i) for i=0,1,...n/2-1 and at (n/2+2i+2 (mod n), i) for i=n/2-1,...,n-1

Pattern I: N \geq 6, N = 0 or 2 (mod 6)

- Take Construction A solution to (n-2)-Queens.
- Add two columns to left and one row to top and bottom
- Put pawn to the left of the queen in column 0.
- Put extra queens at top and bottom of the pawn's column and to the left of the pawn.

Pattern II: $N \ge 10$, $N \equiv 0$ or 4 (mod 6)

- Take Construction B solution to (N-2)-Queens. Add rows and columns as in Pattern I.
- If N=10, w=4.
- If N=12, w=7.
- If N>12, w= L(N-1)/4
- Pawn: (w, -1)
- Extra Queens: (w, -2), (-1,-1), (N-2, -1)

Pattern III: $N \ge 11$, $N \equiv \pm 1 \pmod{6}$

- Add row on top and column to right of Pattern II solution to (N-1)-Queens.
- Pattern II leaves main diagonal open, so add a queen to the upper right corner.

Pattern IV: $N \ge 15$, $N \equiv 3 \pmod{6}$

- Take Construction A solution to (N-3)-Queens.
- Add 3 columns to left, 2 rows on top, 1 row on bottom.
- Pawn: ((N-3)/2, 2)
- Extra Queens
 ((N-3)/2,-3), (N-2, -2),
 (-1,-1), (N-3,2)

Final Cases: N = 7 and N = 9

Counting N+1 Queens solutions

Ν	Number of solutions	N	Number of solutions
4	0	9	396
5	0	10	2,288
6	16	11	11,152
7	20	12	65,172
8	128		

Other pieces?

What if we replace the queens with other pieces, such as rooks or bishops?

For
$$N \ge k+2$$
,
 $s_R(N+k, N) = k$.

Other pieces? (Continued)

Other boards?

- What if we look at rectangular or othershaped boards?
 - For instance, if the board is donutshaped, one pawn won't be enough.

Conjecture: $s_Q(N+2,N) = 2 \text{ for } N \ge 7.$

Ν	Number of solutions to "N+2 Queens"	Ν	Number of solutions to "N+2 Queens"
5	0	9	160
6	0	10	698
7	4	11	6,771
8	18		

Conjecture: $S_Q(N+3,N) = 3 \text{ for } N \ge 8.$		
N	Number of solutions to "N+3 Queens"	
7	0	
8	8	
9	44	
10	528	

N+k Queens?

- Grand Conjecture: For each k, for large enough N we have s_o(N+k,N) = k.
 - Is this true?
 - How much is "large enough"?
 - What happens when N isn't "large enough"?

References

- http://www.chessvariants.org/problems.dir/ 9queens.html
 - Home of Nine Queens Contest.
- http://www.liacs.nl/~kosters/nqueens.html
 - Extensive bibliography on N-queens and related problems.
- Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press. ISBN 0-691-11503-6.