The N+1 Queens Problem

Doug Chatham

Morehead State University
November 5, 2004

Acknowledgements

- Joint work with Gerd Fricke and R. Duane Skaggs

The Eight Queens Problem

- Place eight queens on a standard chessboard so that no two attack each other.
- First posed in 1848.
- Generalized in 1850 to N queens on an $\mathrm{N} \times \mathrm{N}$ board.

Counting N -queens solutions

N	Number of solutions	N	Number of solutions
4	2	11	2,680
5	10	12	14,200
6	4	13	73,712
7	40	14	365,596
8	92	15	$2,279,184$
9	352	16	$14,772,512$
10	724	17	$95,815,104$

More counting

N Number of solutions to N -queens problem
18 666,090,624
19 4,968,057,848
20 39,029,188,884
21 314,666,222,712
22 2,691,008,701,644
23 24,233,937,684,440
24 227,514,171,973,736

More about N-queens...

- Theorem: For $N>3$, there is at least one solution to the N -queens problem.
- Proved first by Ahrens in 1910.
- Also proved by Hoffman, Loessi, and Moore in 1969. (Mathematics Magazine, March-April 1969, 66-72.)
- Also proved by others.

At most N queens, right?

- Clearly, each row can only have one queen.
- Clearly, an N x N chessboard can have at most N nonattacking queens placed on it.

The Nine Queens Contest

- January-March 2004, The Chess Variant Pages at chessvariants.org.
- If we place a pawn between two queens on the same row (or column or diagonal), the queens no longer attack each other.
- Question: How many pawns do we need in order to put 9 nonattacking queens on a standard chessboard?

Solution to 9 Queens Contest

The N+k Queens Problem

- Given N+k queens, how many pawns need to be put on an $\mathrm{N} \times \mathrm{N}$ board to allow the queens to be placed on the board so they don't attack each other?
- This is the queens' separation number $\mathrm{s}_{\mathrm{Q}}(\mathrm{N}+\mathrm{k}, \mathrm{N})$.

The N+1 Queens Problem

- $\mathrm{S}_{\mathrm{Q}}(4,3)=5$.
- $\mathrm{S}_{\mathrm{Q}}(5,4)$ doesn't exist.
- When we put 5 queens on a 4×4 board, at least two queens will be on adjacent squares.

The N+1 Queens Problem

Sketch of Proof of Theorem

- We take known solutions to the n-queens problem and add extra rows, columns, queens, and a pawn.
- We have four main patterns and a few exceptional cases.

N -Queens Construction A

- $n \geq 4$
- $\mathrm{n} \equiv 0$ or $4(\bmod 6)$
- Number rows and columns $0,1, \ldots, n-1$
- Queens at $(2 i+1, i)$ for $i=0, \ldots, n / 2-1$
- Queens at (2i-n,i) for $i=n / 2, \ldots, n-1$.

N-Queens Construction B

- $\mathrm{n} \geq 4, \mathrm{n} \equiv 2$ or 4 (mod 6)
- Number rows and columns $0,1, \ldots, n-1$
- Queens at (n/2+2i-1 $(\bmod n), i)$ for $\mathrm{i}=0,1, \ldots \mathrm{n} / 2-1$ and at $(n / 2+2 i+2(\bmod n)$, i) for $i=n / 2-1, \ldots, n-1$

Pattern I: $\mathrm{N} \geq 6, \mathrm{~N} \equiv 0$ or $2(\bmod 6)$

- Take Construction A solution to ($n-2$)-Queens.
- Add two columns to left and one row to top and bottom
- Put pawn to the left of the queen in column 0.
- Put extra queens at top and bottom of the pawn's column and to the left of the pawn.

Pattern II: $\mathrm{N} \geq 10, \mathrm{~N} \equiv 0$ or $4(\bmod 6)$

- Take Construction B solution to ($\mathrm{N}-2$)Queens. Add rows and columns as in Pattern I.
- If $N=10, w=4$.
- If $\mathrm{N}=12, \mathrm{w}=7$.
- If $\mathrm{N}>12, \mathrm{w}=\lfloor(\mathrm{N}-1) / 4\rfloor$
- Pawn: (w, -1)
- Extra Queens: (w, -2), $(-1,-1),(N-2,-1)$

Pattern III: $\mathrm{N} \geq 11, \mathrm{~N} \equiv \pm 1(\bmod 6)$

- Add row on top and column to right of Pattern II solution to ($\mathrm{N}-1$)-Queens.
- Pattern II leaves main diagonal open, so add a queen to the upper right corner.

Pattern IV: $\mathrm{N} \geq 15, \mathrm{~N} \equiv 3(\bmod 6)$

- Take Construction A solution to (N-3)Queens.
- Add 3 columns to left, 2 rows on top, 1 row on bottom.
- Pawn: ((N-3)/2, 2)
- Extra Queens ((N-3)/2,-3), (N-2, -2), (-1,-1), (N-3,2)

Final Cases: $\mathrm{N}=7$ and $\mathrm{N}=9$

Counting N+1 Queens solutions

N	Number of solutions	N	Number of solutions
4	0	9	396
5	0	10	2,288
6	16	11	11,152
7	20	12	65,172
8	128		

Other pieces?

- What if we replace the queens with other pieces, such as rooks or bishops?
- For $\mathrm{N} \geq \mathrm{k}+2$, $S_{\mathrm{R}}(\mathrm{N}+\mathrm{k}, \mathrm{N})=\mathrm{k}$.

Other pieces? (Continued)

 $s_{B}(2 n-1, n)=1$ for $n \geq 3 \quad s_{B}(2 n, n)=1$ for $n \geq 3$ odd

Other boards?

- What if we look at rectangular or othershaped boards?
- For instance, if the board is donutshaped, one pawn won't be enough.

Conjecture:
 $\mathrm{S}_{\mathrm{Q}}(\mathrm{N}+2, \mathrm{~N})=2$ for $\mathrm{N} \geq 7$.

N	Number of solutions to "N+2 Queens"	N	Number of solutions to "N+2 Queens"
5	0	9	160
6	0	10	698
7	4	11	6,771
8	18		

Conjecture:
 $S_{Q}(N+3, N)=3$ for $N \geq 8$.

N	Number of solutions to "N+3 Queens"
7	0
8	8
9	44
10	528

N+k Queens?

Grand Conjecture: For each k, for large enough N we have $s_{Q}(N+k, N)=k$.

- Is this true?
- How much is "large enough"?
- What happens when N isn't "large enough"?

References

- http://www.chessvariants.org/problems.dir/ 9queens.html
- Home of Nine Queens Contest.
- http://www.liacs.nl/~kosters/nqueens.html
- Extensive bibliography on N -queens and related problems.
- Watkins, John J. (2004). Across the Board: The Mathematics of Chess Problems. Princeton: Princeton University Press. ISBN 0-691-11503-6.

