
NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCCTOC.html

1 of 1 2004/12/05 08:39

NCC.mws

Generalities
Non-Crossing configurations

Appendix

Collecting the edges of a NC-tree

Collecting the edges of a NC-graph

Counting and drawing non-crossing configurations
Trees and forests

Trees

Forests

Connected and general graphs

Connected graphs

General graphs

Dissections and partitions

Dissections

Partitions

Univariate asymptotics
Asymptotic counting: algorithm

Outline

Implementation

Applications to non-crossing configurations

Trees

Forests

Connected graphs

General graphs

Dissections

Partitions

Exact and estimated values: comparisons

Trees

Forests

Connected graphs

General graphs

Dissections

Partitions

References

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

1 of 25 2004/12/05 08:39

Combinatorics of Non-Crossing Configurations

F. Cazals, August 1997

Generalities

Non-Crossing configurations

Take points equally spaced on the unit circle, and draw chords between these points with the

constraint that no two chords cross one-another. The resulting configuration is called a
non-crossing configuration and the study of such entities originates in the work of Euler and
Segner in 1753 for counting triangulations of a n-gon. Since then several types of such configurations
have been defined, and for example the presence/absence of cycles and the number of connected
components in a given configuration define the classes of trees and forests, connected graphs and
general graphs. In addition to be of combinatorial interest per se, these configurations are also
important for algorithmic problems arising in computer graphics or computational geometry where
they provide simple models for real-world situations.

If historically the study of these configurations has been carried out one at a time, it turns out that
they all fit in the model of algebraic and analytic combinatorics and are thus amenable to a unified
treatment. More precisely, they can be defined in terms of grammars, from which the generating
functions can automatically be obtained and used to asymptotically analyse the number of
configurations, the number of connected components, etc.

The goal of this worksheet is to present this chain, from the grammars specification using
combstruct, to the asymptotics of algebraic functions using some features of gfun, together with
some plots of random configurations and of the singularities determining the asymptotic behaviour.
The reader is referred to [FlaNo97] for the details.

The worksheet is organized as follows. In the rest of this section we define a few functions of null
combinatorial interest but that we shall need to plot random configurations. In section two we
present the grammar specifications for 6 of the main non-crossing configurations together with
some plots of random configurations. And section three is devoted to the asymptotic machinery used
to count the number of configurations of a given size, as well as a comparison between the
asymptotic estimates and the exact values.

But to begin with, we first load the combstruct, gfun and plots libraries:

> with(combstruct):with(gfun):with(plots):

Appendix

Again, we define here a few functions we shall need to plot NC configurations. The first one returns
the number of atoms in a structure, that is its size:

> size:=proc(t) convert(map(size, t), `+`) end:size(Epsilon):=0: size(Z):=1:

Since a configuration is defined by edges drawn between points equally spaced on the unit circle, we
first show how to retrieve these pairs of indices from the grammars to be defined in the next section:

Collecting the edges of a NC-tree

Since a tree T satisfies T=Product (Z, Sequence(Butterflies)), to plot it we just have to collect its
edges which are pairs of indices in 0..n-1:

> plotTree:= proc(aTree) local r, nbVertices;

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

2 of 25 2004/12/05 08:39

#--op returns the Sequence; 0 is the index of the root on the circle;
#--1 indicates that the butterflies attached to the root are counted as a
#--right wing
r:=getTreeEdges(op(2, aTree), 0, 1);
nbVertices:=size(aTree);

plotSetOfEdges(r, nbVertices)
end:

The parameters of getTreeEdges are the following: aSeqOfBtf is a sequence of butterflies; rootIdx is
the index of the vertex this sequence is attached to; leftRight (-1 or +1) indicates if this sequence is a
left/right wing of the bug. The algorithm works as follows:

1.We first compute the indices of the apex vertices of the butterflies

2.For a given butterfly, we recurse on the 2 wings and attach its apex to the rootIdx parameter

> getTreeEdges:=proc(aSeqOfBtf, rootIdx, leftRight)
local i, a, eL, currentBtf, cumul;

if aSeqOfBtf = Epsilon then {}
else
cumul := rootIdx;
if leftRight=1 then #--we are processing a right wing
for i to nops(aSeqOfBtf) do
currentBtf := op(i, aSeqOfBtf);
a[i] := cumul + size(op(1, currentBtf)) + 1;
cumul := cumul + size(currentBtf)
od;
else #--and here a left one
for i from nops(aSeqOfBtf) by -1 to 1 do
currentBtf := op(i, aSeqOfBtf);
a[i] := cumul - size(op(3, currentBtf)) - 1;
cumul := cumul - size(currentBtf);
od;
fi;

#-- recurses for each Prod(?, Z, ?) in the sequence, with ? = E or Seq()
eL := {};
for i from 1 to nops(aSeqOfBtf) do
currentBtf := op(i, aSeqOfBtf);
eL := eL union getTreeEdges(op(1, currentBtf), a[i], -1);
eL := eL union {[a[i], rootIdx]};
eL := eL union getTreeEdges(op(3, currentBtf), a[i], 1);
od;

#--returns the result
eL;
fi;
end:

Collecting the edges of a NC-graph

This first procedure recursively collects the edges of an EA, and is a straightforward application of
the EA definition above. The parameter ori stands for the index of the lefmost point of the arch:

> getArchEdges:=proc(arch, ori) local i, offset, res;

if (arch=Epsilon) then res:={}

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

3 of 25 2004/12/05 08:39

else
#--we first add the `roof' of the arch
res := {[ori, ori+size(arch)]};

#-----Prod(Z, Seq1, Seq2)
if (op(1,arch)=Z) then
res := res union getArchEdges(op(2,arch), ori);
res := res union getArchEdges(op(3,arch), ori+1+size(op(2,arch)))
else #--Sequence of arches
offset:=0;
#--let's process all the arches in this sequence
for i from 1 to nops(arch) do
res := res union getArchEdges(op(i, arch), ori+offset);
offset := offset + size(op(i,arch))
od
fi
fi;
res;
end:

Same thing but to a sequence of arches:

> getArchesSeqEdges:=proc(archesSeq, ori)
local i, arch, offset, res;
res:={}; offset:=0;

for i from 1 to nops(archesSeq) do
arch:= op(i, archesSeq);
res:= res union getArchEdges(arch, ori+offset);
offset := offset+size(arch)
od;
#--returns the setOfEdges and the new origin
res,ori+offset;
end:

And now the main procedure which collects the edges of a Non-Crossing graph:

> getNCGraphEdges:=proc(aNCGraph)
local res, ori, edges,
i, j,
seqOfSeqOrProd, seqOrProd;

#--first, the right ear which is a Seq(EA)
ori:=1;
res:=getArchesSeqEdges(op(3,aNCGraph), ori);
edges:=res[1]; ori := res[2];

edges := edges union {[0, ori]};

#--then the EAs inbetween two successive childs of v_1
seqOfSeqOrProd := op(5,aNCGraph);

for i from 1 to nops(seqOfSeqOrProd) do
seqOrProd:=op(i, seqOfSeqOrProd);
#--2 connected graphs
if (op(1, seqOrProd)=Z) then
res:=getArchesSeqEdges(op(2, seqOrProd), ori);
edges:= edges union res[1]; ori := res[2];

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

4 of 25 2004/12/05 08:39

res:=getArchesSeqEdges(op(3, seqOrProd), 1+ori);
edges:= edges union res[1]; ori := res[2]

#--a Sequence
else
res:=getArchesSeqEdges(seqOrProd, ori);
edges:= edges union res[1]; ori := res[2]
fi;

#--we need to add the current child to the graph root
edges := edges union {[0, ori]};
od;

#--and the left ear
res:=getArchesSeqEdges(op(4,aNCGraph), ori);
edges:= edges union res[1]; ori := res[2];

#--returns the result
edges
end:

To plot a NC Graph, we just collect the edges and pass them to the plotSetOfEdges procedure:

> plotNCGraph:=proc(aNCGraph);
plotSetOfEdges(getNCGraphEdges(aNCGraph), size(aNCGraph))
end:

Now, given pairs of indices in 0,...,nbVertices-1 on the unit circle, the following procedure draws the
corresponding chords
assuming that the k-th point has coordinates ((cos((2 Pi k)/nbVertices), sin((2 Pi k)/nbVertices))):

> plotSetOfEdges:=proc(aSetOfEdges, nbVertices) local pointsOnCircle;

pointsOnCircle:= expand(map(`*`, aSetOfEdges,2*Pi/nbVertices));
plot([op(map2(map,[cos,sin], pointsOnCircle))],color=blue,axes=NONE)
end:

Counting and drawing non-crossing configurations

Trees and forests

Trees

A Tree is a sequence of butterflies attached to a root, a Butterfly being an ordered pair of trees whose
roots have been merged into a single node. Since this merge step cannot be specified by an operation
such as B = Prod(T, Z, T)/Z in combstruct, it is more convenient to express a butterfly as the product
of 2 forests, a Forest being a sequence of butterflies. Indeed, we now just have to attach the roots of
all the trees of the two forests to a newly added node:

> tbf:={T=Prod(Z, Sequence(B)), F=Sequence(B), B=Prod(F,Z,F)};

Standard functionalities of Combstruct consist in counting the number of entities of a given type:

> seq(count([T,tbf], size=i),i=1..10);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

5 of 25 2004/12/05 08:39

> seq(count([F,tbf], size=i),i=1..10);

> seq(count([F,{F=Sequence(B), B=Prod(F,Z,F)}],size=i),i=0..10);

And randomly generating all the configurations of a given size:

> allstructs([T,tbf],size=2);

> expleT:=draw([T, tbf], size=20);

We can also use gfseries to retrieve the first terms of the generating functions:

> Order:=10:gfseries(tbf,unlabelled,z);

And here is an example of random tree:

> plotTree(draw([T,tbf],size=20));

>

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

6 of 25 2004/12/05 08:39

Forests

In order to dissociate the trees in a forest, let us substitute to each vertex of a tree another vertex
together with a forest

> fo:={B=Prod(Sequence(B),V,Sequence(B)),
V=Union(Prod(Z, F)),
F=Union(Epsilon, Prod(V, Sequence(B)))};

> seq(count([F, fo], size=i), i=1..10);

Connected and general graphs

Connected graphs

To see how nc-graphs are built, consider the set of childs attached to the root .

The graphs built on and are connected by hypothesis, while between any two

other vertices and one can have either one connected graph or two connected graphs.

But any graph built from a sequence of successive vertices of the circle is a system of arches since the
arcs which are chords are not allowed to cross. The endpoints of these arches are shared by the
graphs built to the left and to the right of a given , so that we shall say that the size of an arch

built on points is . At last, we are interested here in Elementary Arches, that is arches that

always contain an arc between the firt and last points. General arches are easily obtained by
sequencing EAs.

From this discussion we derive the Combstruct specification of NC graphs containing at least 2
vertices. In particular, the 5 arguments of a C entity are as follows:

1.first Z: the root of the graph

2.second Z: the lefmost point of the first EA

3 and 4. the two EAs built on and

5.the sequence of EAs found between two consecutive childs of . The first term corresponds to

one EA,

and the second one to two EAs. For the latter case, the Z in the Prod stands for the lefmost point of
the secong EA.

> ar:={EA = Union(Sequence(EA, card >= 2),
Prod(Z, Sequence(EA), Sequence(EA))
),
C=Union(Z,
Prod(Z,Z,Sequence(EA), Sequence(EA),
Sequence(Union(Sequence(EA,card>=1), Prod(Z,Sequence(EA),Sequence(EA))))))};

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

7 of 25 2004/12/05 08:39

We can now count the number of elementary arches of a given size. The sequence found is not in
[Sloa95]:

> seq(count([EA,ar], size=i),i=1..20);

> allstructs([EA,ar],size=2);

We can also count the number of NC-graphs. The corresponding sequence turns out to be M3594 in
[Sloa95] and gives the reverse

of the g.f. for squares:

> seq(count([C,ar], size=i),i=1..10);

As usual, we can get all the structures of a given size, or just draw some of them:

> allstructs([C,ar],size=3);

> draw([EA,ar],size=10);

And an example of random graph:

> plotNCGraph(draw([C,ar],size=10));

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

8 of 25 2004/12/05 08:39

>

General graphs

As observed in [FlaNo97], a general graph is obtained from a connected one by the substitution Z ->
Prod(Z, G). So that we just have to rewrite the previous grammar by adding a new symbol which
makes this substitution. Notice however that the decomposition of a connected graph misses a
configuration for general graphs: the one where vertex does not have any child, which we

therefore add:

> br:={EA = Union(Sequence(EA, card >= 2),
Prod(V, Sequence(EA), Sequence(EA))
),
V=Union(Prod(Z, G)),
G=Union(Epsilon,
Prod(Z, G),
Prod(V,V,Sequence(EA), Sequence(EA),
Sequence(Union(Sequence(EA,card>=1), Prod(V,Sequence(EA),Sequence(EA)))))
)
};

The number of graphs is given by the following sequence, not to be found in [Sloa95]:

> ggSeq:=[seq(count([G, br], size=i), i=0..20)];

In this case, it also turns out that the differential equation verified by is of order 1:

> ggDiffEq:=listtodiffeq(ggSeq,y(x));

From this equation and the condition , we get the following closed form:

> closedForm:=dsolve(ggDiffEq[1],y(x));
subs(_C1=-1/2,closedForm);

As shown in [FlaNo97], this corresponds to the general term:

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

9 of 25 2004/12/05 08:39

> cn:=proc(n)
local k,l;
sum((-1)^k*product(2*l-1,l=1..n-k-1)/(factorial(k)*factorial(n-2*k))*3^(n-2*k)*2^(-k-2),
k=0..iquo(n,2))
end:

> gn:=proc(n) 2^n*cn(n-1) end;

> seq(gn(i), i=3..10);

Dissections and partitions

Dissections

A dissection of a convex polygon is a partition of the polygon into polygonal regions

by means of non-crossing diagonals. If the polygonal region containing the edge has

sides, one gets a bigger dissection by replacing the edges by a dissection. So that a dissection is

either an edge connecting two vertices or a sequence of dissections. The tricky point in sequencing 2
dissections consists in not counting the same vertex twice, as for the connected graphs above. When
sequencing dissections, we therefore assume that each dissection provides its rightmost point while
the lefmost one is the rightmost point of the dissection to the left in the sequence. With this
convention, the number of dissections of size actually counts the number of dissections of a

polygon with vertices, and the grammar is:

> dissG:={Di=Union(Z, Sequence(Di, card >= 2))};

The corresponding sequence, M2898 in [Sloa95] and related to Schroeder's second problem is:

> seq(count([Di, dissG], size=i), i=1..10);

Partitions

A non-crossing partition of size is a partition of [n]={1,2,...,n} such that if a<b<c<d and a block

contains and , then no block contains and . Given a partition block, possibly empty,

one gets a bigger partition by subsituting to each vertex the product between Z and another
partition. So that:

> partG:={P=Sequence(V), V = Prod(Z,P)};

We get the sequence of Catalan numbers, which can be checked in terms of generating functions:

> seq(count([P, partG], size=i), i=1..10);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

10 of 25 2004/12/05 08:39

> gfsolve(partG, unlabelled, z);

Univariate asymptotics

Asymptotic counting: algorithm

Outline

As shown in [FlaNo97] for the six NC configurations we are interested in, the generating function
 satisfies an algebraic equation. In the case of NC forests for example, we have:

> eq:=y^3+(-z+z^2-3)*y^2+(z+3)*y-1;

Like in many implicitely defined functions [Dr97, HaPa73], we expect a priori to have locally

an expansion of the square-root type, that is:

By a singularity analysis at the dominant singularity and denoting , we get:

 or

We now examplify this method for the class of NC-forests. The singulatities sought may arise at

those points such that E(z,y)=0 and . In order to get the candidates satisfyning

these conditions, we just have to eliminate between the two previous equations through a

resultant computation:

> res_y:=resultant(eq,diff(eq,y),y);
res_y:=expand(normal(res_y/gcd(res_y,diff(res_y,z))));
Omega[0]:=normal(res_y/z^ldegree(res_y));

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

11 of 25 2004/12/05 08:39

And the singularities sought are the solutions of the previous equation whose modulus is smaller
than 1. If the set found has cardinality one, we are done. It actually turns out that this is the case for
all our configurations but the connected graphs where a `ghost' singularity has to be elimanated by
an external argument --see [FlaNo97]. In our case:

> rhonums:=[fsolve(Omega[0],z,complex)];
Omega[1]:=map(proc(x) if abs(x)<1 then x fi end,rhonums);

And a convenient way to represent our singularity both in symbolic and numerical form is:

> rho_symb:=RootOf(Omega[0], z, op(Omega[1]));

Since in our case the dominant coefficient of the equation in does not vanish, the function

remains finite at its singularity. Its value is also the quantity defined above.

Since the point is a singularity, we have and . Candidate

values for are therefore obtained as follows:

> deq:=subs(z=rho_symb, diff(eq,y));
print(`Candidate values for function at singularity`);
tau_vals:=[fsolve(deq,y)];
print(tau_vals);

Plugging back these candidates into the equation eq, we could get the correct one from a carefully
controlled numerical analysis:

> eTau:=subs(z=rho_symb, eq);
[seq(evalf(subs(y=tau_vals[i], eTau)), i=1..nops(tau_vals))];

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

12 of 25 2004/12/05 08:39

To get the constant we are missing, let us just compute the Puiseux expansions verified by

with the algeqtoseries procedure from the gfun package:

> all_puis:=algeqtoseries(subs(z=rho_symb*(1-t^2),eq),t,y,6);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

13 of 25 2004/12/05 08:39

and select those with a term --which corresponds to the square-root sought due to the change of

variable :

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

14 of 25 2004/12/05 08:39

> #--convert into series i.e. remove the O()
all_puis_s:=map(eval, map2(subs, O=0, all_puis));
#--collect the coeff in t and select the non-null one(s)
c1:=map(proc(x) if x<>0 then x fi end, map(coeff, all_puis_s, t, 1));
print(`Constant`, evalf(c1,10));

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

15 of 25 2004/12/05 08:39

Should we have found several expansions containing a term, the right one could have been

selected from the formula and . Also note that the

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

16 of 25 2004/12/05 08:39

minus sign has to be adopted for since the generating function increases with its argument.

We can locally plot the algebraic curve in the neighborhood of the singularity:

> implicitplot(eq, z=-.1..0.15, y=-1..1.3, numpoints=5000);

Putting everything together, we get the following procedure which we apply to the remaining NC
configurations.

Implementation

We first look for the singularity(ies) of smallest modulus(i):

> locateDominantSing := proc(eq, y, z)
local res_y, Omega, rhonums,
rho_symb;

#--we look for the z such that eq and diff(eq,y) have a common root y
res_y:=resultant(eq,diff(eq,y),y);
res_y:=expand(normal(res_y/gcd(res_y,diff(res_y,z))));
Omega[0]:=normal(res_y/z^ldegree(res1_y));
rhonums:=[fsolve(Omega[0],z,complex)];

#--we are just interested in roots of modulus < 1
Omega[1]:=map(proc(x) if abs(x)<1 then x fi end,rhonums);
if nops(Omega[1])<>1 then
ERROR(`More than one root of modulus < 1: not implemented!`) fi;

rho_symb:=RootOf(Omega[0], z, op(Omega[1]));
print(`Singularity is`); print(rho_symb);

rho_symb
end:

And then the asymptotic expansion. The values returned are:
1.the symbolic expressions for the constant

2.the dominant singularity

3.the Puiseux expansion

> singExpansion:=proc(eq, y, z)
local rho_symb,
deq, tau_vals,
all_puis, all_puis_s, c1;

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

17 of 25 2004/12/05 08:39

#--numerical and symbolic representation of the singularities
rho_symb:=locateDominantSing(eq, y, z);

#--values of the function at the singularity
deq:=subs(z=rho_symb, diff(eq,y));
print(`Candidate values for function at singularity`);
tau_vals:=[fsolve(deq,y)];
print(tau_vals);

#--Puiseux expansion; we expect a single exp. to have a t term
all_puis:=algeqtoseries(subs(z=rho_symb*(1-t^2),eq),t,y,6);

#--convert into series i.e. remove the O()
all_puis_s:=map(eval, map2(subs, O=0, all_puis));
#--collect the coeff in t and select the non-null one(s)
c1:=map(proc(x) if x<>0 then x fi end, map(coeff, all_puis_s, t, 1));

if nops(c1)<>1 then
print(`Problem in singular expansion`); print(all_puis); RETURN(FAIL)
else
c1:=op(c1); if evalf(c1)>0 then c1:=-c1 fi
fi;

#--returns the constant c1 and the singularity in symbolic forms
print(`c1 constant`, c1,evalf(c1,20));
[c1,rho_symb, my_puis]
end:

Applications to non-crossing configurations

We now present the whole chain that goes from the grammars specification to the asymptotic
machinery. More precisely, for each of the NC configurations studied above, we:

1.call Combstruct[gfeqns] to retrieve the system of equations verified by the generating functions
associated with the grammar,

2.compute the algebraic equation verified by a given generating function with gfun[algfuntoalgeq],

3.feed this equation to the asymptotic machinery developped above.

Trees

Generating functions associated with the grammar:

> gfeqns(tbf, unlabelled, z);

> treesSys:=gfsolve(tbf, unlabelled, z);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

18 of 25 2004/12/05 08:39

Algebraic equation:

> trees:=algfuntoalgeq(subs(treesSys,T(z)), y(z));

Asymptotic machinery:

> resTrees:=singExpansion(trees, y, z):

Plot of the singularity:

> implicitplot(trees, z=-0.2..0.2, y=-1..1, numpoints=5000);

Forests

> forests:=y^3+(-z+z^2-3)*y^2+(z+3)*y-1;

> resForests:=singExpansion(forests, y, z):

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

19 of 25 2004/12/05 08:39

Connected graphs

Generating functions associated with the grammar:

> CGSys:=gfsolve(ar, unlabelled, z);

Algebraic equation:

> CG:=algfuntoalgeq(subs(CGSys,C(z)), y(z));

Asymptotic machinery:

> resCG:=singExpansion(CG, y, z):

Error, (in locateDominantSing) More than one root of modulus < 1: not implemented!

As observed in [FlaNo97], due to the two singularities found, we need additional information to
select the right one. Eliminating the negative value and performing the previous computations yields
the following and :

>
resCG[1]:=-RootOf(54*_Z^2-7+72*RootOf(-1+108*_Z^2,.96225044864937627418e-1));

> resCG[2]:=RootOf(-1+108*_Z^2,.96225044864937627418e-1);

Plot of the singularity:

> implicitplot(CG, z=-0.05..0.15, y=-.05..0.2, numpoints=10000);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

20 of 25 2004/12/05 08:39

General graphs

Generating functions associated with the grammar:

> GGSys:=gfsolve(br, unlabelled, z);

Algebraic equation:

> GG:=algfuntoalgeq(subs(GGSys,G(z)), y(z));

Asymptotic machinery:

> resGG:=singExpansion(GG, y, z):

Plot of the singularity:

> implicitplot(GG, z=-0.2..0.1, y=0.9..1.2, numpoints=10000);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

21 of 25 2004/12/05 08:39

Dissections

> dissSys:=gfsolve(dissG, unlabelled, z);

> diss:=algfuntoalgeq(subs(dissSys,Di(z)), y(z));

> resDiss:=singExpansion(diss, y, z):

It should be noticed that the equation obtained in the paper and stated below in slightly

different.But remember that counts here the number of dissections of a polygon with

vertices. Of course, we still have the same singularity:

> diss2:=2*y^2-z*(1+z)*y+z^3:

> resDiss2:=singExpansion(diss2, y, z):

Plot of the singularity:

> implicitplot(diss, z=-1..1, y=-1..1, numpoints=1000);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

22 of 25 2004/12/05 08:39

Partitions

> partsSys:=gfsolve(partG, unlabelled, z);

> parts:=algfuntoalgeq(subs(partsSys,P(z)), y(z));

> resParts:=singExpansion(parts, y, z);

Here we are in trouble since there are 2 Puiseux expansions with terms. But only the first one

makes sense since the generating function increases with its argument. So that:

> resParts[1]:=2: resParts[2]:=1/4:

Plot of the singularity:

> implicitplot(parts, z=-2..1, y=-5..5, numpoints=1000);

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

23 of 25 2004/12/05 08:39

Exact and estimated values: comparisons

We have already seen that an estimate of the number of objects of size is given by:

> nbEnt:=proc(c1,rho, n)
evalf(c1*rho^(-n)/(2*sqrt(Pi*n^3)))
end;

Comparisons with the exact values are as follows. It is interesting to observe that these values are
within about 2% in any case:

Trees

> exactTr:=evalf(count([T,tbf], size=100));

> estimTr:=nbEnt(resTrees[1],resTrees[2],100);

> exactTr/estimTr;

Forests

> exactFo:=evalf(count([F,fo], size=100));

> estimFo:=nbEnt(resForests[1], resForests[2], 100);

> exactFo/estimFo;

Connected graphs

> exactCo:=evalf(count([C,ar],size=100));

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

24 of 25 2004/12/05 08:39

> estimCo:=nbEnt(resCG[1],resCG[2],100);

> exactCo/estimCo;

General graphs

> exactGG:=evalf(count([G, br], size=100));

> estimGG:=nbEnt(resGG[1], resGG[2], 100);

> exactGG/estimGG;

Dissections

> exactDiss:=evalf(count([Di, dissG], size=100));

> estimDiss:=nbEnt(resDiss[1], resDiss[2], 100);

> exactDiss/estimDiss;

Partitions

> exactPart:=evalf(count([P, partG], size=100));

> estimPart:=nbEnt(resParts[1], resParts[2], 100);

> exactPart/estimPart;

>

NCC.html http://algo.inria.fr/libraries/autocomb/NCC-html/NCC1.html

25 of 25 2004/12/05 08:39

References

[Dr97] M. Drmota, Systems of functional equations, Random Structures and Algorithms 10, 1-2,
1997.

[FlaNo97] P. Flajolet and M. Noy, Analytic Combinatorics of Non-Crossing Configurations, Rapport
de Recherche INRIA No. 3196, 1997.

[HaPa73] F. Harary and E.M. Palmer, Graphical Enumeration, Academic Press, 1973.

[Sloa95] N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995.

