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A Polymomial Time Algo-
rithm to Test if a Number is
a Prime or Not

Manindra Agrawal (36), Professor of  Com-
puter Science and Engineering at the Indian
Institute of  Technology, Kanpur, along with
two BTech students of his, Neeraj Kayal (22)
and Nitin Saxena (21) have solved the age old
problem of  finding a ‘polynomial time’  algo-
rithm that decides whether a given number
is a prime or not.  Such an algorithm has been
eluding the best mathematicians and com-
puter scientists for several decades.  This
problem besides being of intrinsic  theoreti-
cal interest has many practical implications
in designing encryption algorithms used to
protect data stored in computers and trans-
mitted via communication networks.

Since the late 1950s, with the advent of com-
puters, there has been a shift of focus from
finding a mathematical formula to devising
an algorithm (a recipe of steps) that can test
for primality of a given number, however
large, in an efficient manner. This problem
has received immense attention in recent
years owing to the widespread use of prime
numbers in encryption algorithms. Testing
of primality thus became an important prob-
lem in theoretical computer science. If an
algorithmic solution to the problem posed is
found, then an executable computer pro-
gramme can be written. From the perspec-
tive of theoretical computer science, there-
fore, two things are required. One, a certifi-

cate or proof that the algorithm does give the
correct answer. Two, a measure of the effi-
ciency of the algorithm, namely, how well
the algorithm uses the computer resources –
such as time or the number of steps in the
algorithm, space or memory utilised – as a
function of the ‘input size’ of the problem to
obtain the solution. Consider the algorithm
for ordinary multiplication. The input size
for a given number n is the encoding of the
number to execute the algorithm. For any
given number n, the number of digits N in it
is roughly log n.  As is easily seen, the num-
ber of steps involved in the simple school
algorithm for multiplication of two  N-digit
numbers is proportional to N2. The number
of steps involved is thus at best some power
of N; that is, a polynomial in the input size.
Therefore, the time taken by a computer
program, written to execute the multiplica-
tion algorithm, will also grow with the num-
ber of digits at best as some power of N.
Contrast this with the school algorithm for
primality testing. To test the primality of
small numbers, say all those less than 1010,
one of the most efficient algorithms is the
following ancient algorithm due to the Greek
mathematician Eratosthenes (circa 240 BC).
To test a number n  for primality, just divide
by all the primes less than the square root of
n. For example, to determine if 211 is a prime,
we just divide by 2, 3, 5, 7, 11 and 13. The
number of steps involved here grows as the
number of divisions that one has to do, namely

n . Given a number N digits long its mag-

nitude n is approximately 10N.  Thus the
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number of divisions needed to find if it is a
prime number is N10  . For N = 100 the
algorithm grows exponentially with the
length of the number.  So if  N = 100, the
time taken for the algorithm to return an
answer could take longer than one’s lifetime.
One can easily imagine input sizes for which
programs would be running for ever!

All the earlier approaches  for finding poly-
nomial time algorithm for primality testing
have started with the basic equation that is
satisfied by all primes, known as the Fermat’s
little theorem. In 1976, G Miller used
Fermat’s little theorem and assumed the va-
lidity of the as-yet-unproven and deep con-
jecture in analytic number theory known as
the extended Riemann hypothesis (ERH)
and obtained a deterministic polynomial-time
algorithm. This was modified in 1980 by
M G  Rabin, who introduced a probability
function (random coin tosses) and obtained a
much more efficient, unconditional (that is,
without using any unproven hypotheses like
ERH) but randomised polynomial-time al-
gorithm. If the number was a prime, the
Rabin algorithm gave the correct answer, but
if it was composite, it sometimes (i.e., with
very low probability) determined it to be pri-
me.  However, the Miller–Rabin algorithm is
a very efficient test for practical real-life
implementation in areas such as cryptogra-
phy because the level of error is extremely
small and the probability of getting a correct
answer far outweighs the error probability.
Since then a number of randomised algo-
rithms in polynomial time have emerged.

Indeed, if randomisation had to be given up
it seemed one had to invoke some condition
such as the ERH. A breakthrough came in
1983 when L M  Adleman, C  Pomerance and
R S  Rumeley (APR) gave a deterministic and
unconditional algorithm but in an almost
polynomial time  – it gave answers in
Nlog log N steps – while all the earlier deter-
ministic and unconditional algorithms re-
quired exponential time. This was, however,
much less efficient than the Miller–Rabin
algorithm. This was further improved in 1984
by H Cohen and A K Lenstra to yield the
primality of a 100-digit number in a matter
of seconds. The next big leap in primality
testing came in 1986 with the work of S Gold-
wasser and J Kilian who gave a randomised
algorithm using some properties of a class of
curves known as elliptic curves. Adleman
and D Huang improved upon the Goldwass-
er–Kilian algorithm to derive a randomised
polynomial-time algorithm that also always
produced a proof of the correctness of the
primality testing. Given the trend in the
field during the 1980s, the general belief in
the community was there should exist a poly-
nomial time algorithm for proving primality,
but finding it was going to be very difficult.
The great strength of the Agrawal–Kayal–
Saxena (AKS) algorithm is that it is rela-
tively simple, not requiring fancy mathemat-
ics like elliptic curves, etc. It is deterministic
and relies on no unproven assumptions. The
reason for the AKS algorithm’s success is
simple. Unlike others who believed that the
elliptic curve method was the only viable
approach to the problem and, as in any other
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field, the newer algorithms were basically
incremental advances over the Goldwasser
and Kilian approach, AKS chose to abandon
the well-trodden approach altogether and
explored new lines of attack on the problem
using simple concepts of algebra. The key to
AKS result is a new, generalised version of
Fermat’s little theorem, a polynomial equa-
tion. The algorithm has been shown to run in
polynomial time at most as N12 where N is
the number of digits. For a special class of
primes known as Sophie–Germain primes,
using a widely believed conjecture on their
density, the algorithmic time complexity is
reduced to N6. AKS however believe that one
should be able to do better than this and the
time taken should go as N4.  The algorithm
was posted on IIT/K website on Aug.6, 2002,
and immediately attracted world-wide atten-
tion.  It has been critically evaluated and
called the best result in theoretical computer
science this decade.

Manindra Agrawal is a product of IIT/Kanpur
where he obtained  his B.Tech in Computer

Science and Engineering and a PhD in 1991.
He worked with Prof. Somenath Biswas on
complexity theory.  After a few years at
Chennai Mathematics Institute, he joined
IIT/Kanpur faculty in 1996.  Both Kayal and
Saxena completed their BTech in Computer
Science and Engineering at IIT/Kanpur in
May 2002.  The work on primality algorithm
was their undergraduate project.  They are
currently pursuing PhD at IIT/Kanpur.
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On Primes

“The problem of distinguishing prime numbers from composite numbers and of resolv-
ing the latter into their prime factors is known to be one of the most important and useful
in arithmetic.  It has engaged the industry and wisdom of ancient and modern geometers
to such an extent that it would be superfluous to discuss the problem at length ... .
Further, the dignity of the science itself seems to require that every possible means be
explored for the solution of a problem so elegant and so celebrated.”

– Karl Friedrich Gauss
Disquisitiones Arithmeticae, 1801

(translation from D E Knuth, The art of computing, Vol.2, Addison Wesley, 1998)
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