Counting Divisors
by Harold Reiter

The purpose of this note is to find and study a method for determining and
counting all the positive integer divisors of a given positive integer. Let N be a
given positive integer. We say d is a divisor of N and write d|N if N/d is a positive
integer. Thus, for example, 3|15. Denote by Dy the set of all positive integer
divisors of N. For example Dg = {1,2,3,6}. We discuss a method for finding Dy
and we study its ‘geometric’ structure. There are four parts to this note. In the
first part, we count the divisors of a given positive integer N based on its prime
factorization. In the second part, we construct all the divisors, and in the third part
we discuss the ‘geometry’ of the divisors. In part four, we discuss applications to
contest problems.

1. Counting the divisors of N. First consider the example N = 72. To find
the number of divisors of 72, note that the prime factorization of 72 is given by
72 = 2332, Each divisor d of 72 must be of the form d = 2'37 where 0 < i < 3 and
0 < j < 2. Otherwise, 2%3?/d could not be an integer, by the Fundamental Theorem
of Arithmetic (the theorem that guarantees the unique factorization into primes of
each positive integer). So there are 4 choices for the exponent ¢ and 3 choices for j.
Hence there are 4 - 3 = 12 divisors of 72. Reasoning similarly, we can see that for
any integer

N = pPp? - piF,

the number of divisors is
Hle(ei + 1) = (61 + 1)(62 + 1) tee (ek + 1)

2. Constructing the divisors of N. In part 1 we found the number of members of
Dy for any positive integer N. In this part, we seek the list of divisors themselves.
Again we start with the prime factorization of N. Suppose N = p{'pg*---pk. If
k = 2 the listing is straightforward. In this case, we build a table by first listing
the powers of p; across the top of the table and the powers of py down the side,
thus obtaining an (e; + 1) - (e2 + 1) matrix of divisors. Again we use N = 72 as an




example.

[ 2727
P[1]2]4]s
3736|1224
329 [18 36| 72

What do we when the number of prime factors of N is more than 27 If £ = 3 we
can construct ez + 1 matrices of divisors, one for each power of p3. For example, if
N = 360 = 23325, we construct one 4 x 3 matrix for 5° and one for 5'. The result
is a 4 x 3 x 2 matrix of divisors. The two 4 x 3 matrices are shown below.

22t 2727 2]t 2 [ 2
3112 [4]8] . [37]510] 2040
373 6|12 24 371530 60 | 120
329 [18 36| 72 32 45| 90| 180 | 360

For larger values of k we can create multiple copies of the matrix associated with
the number N = pi'p5? - - pF 7.

3. The geometry of Dy. To do this, we first explore the relation ‘divides’. Re-
call that a|b means that a and b are positive integers for which b/a is an integer.
The relation ‘|” has several important properties, three of which are crucial to our

discussion.

1. Reflexive. For any positive integer a, ala.
2. Antisymmetry. For any pair of positive integers a, b, if a|b and b|a, then a = b.
3. Transitivity. For any three positive integers, a, b, ¢, if a|b and b|c then ac.

These properties are easy to prove. The first says that each integer is a divisor of
itself; that is, a/a is an integer. The second says that no two different integers can
be divisors of one another. This is true since a larger integer can never be a divisor
of a smaller one. The third property follows from the arithmetic b/a - ¢/b = ¢/a
together with the property that the product of two positive integers is a positive
integer. Any set S with a relation < defined on it that satisfies all three of the
properties above is called a partially ordered set, or a poset. A branch of discrete
mathematics studies the properties of posets, (5, <X).

Each finite poset has a unique directed graph representation. This pictorial
representation is what we mean by the geometry of Dy. To construct the directed
graph of a poset (5, <), draw a vertex (dot) for each member of S. Then connect
two vertices @ and b with a directed edge (an arrow) if a < b. Of course, in our case



Dy this means we connect a to b if a|b. The case Dg is easy to draw:

Fig. 1 The digraph of Dy

The circles at each of the four vertices are called loops. They are there because
each number is a divisor of itself. The reader should imagine that all the non-loop
edges are upwardly directed. The directed edge from 1 to 6 indicates that 1/6. But
since we know that the vertices of Dg satisfied all three properties required of a poset,
we can leave off both (a) the loops, which are implied by the reflexive property, and
(b) the edges that are implied by the transitivity condition. The ‘slimmed down’
representation, called the Hasse diagram, is much easier to understand. It captures
all the essential information without cluttering up the scene. The Hasse diagram of

Dyg is shown below. 6

Fig. 2, the Hasse diagram of Dy

In general, the Hasse diagram for Dy has only those non-loop edges which are
not implied by transitivity, that is, those edges from a to b for which b is a prime



number multiple of a. The Hasse diagrams of D7y, D3g, and Dgg are shown below
72
24 ‘ 36
18
8
9
4
2 3
1

Fig. 3 The Hasse diagram of Dz

Notice that each prime divisor of 30 can be considered a direction, 2 is left ("),
3is up (1) and 5 is right (). Also note that if a, b are divisors of 30 then a|b if and
only if there is a sequence of upwardly directed edges starting at a and ending at b.
For example 1|30 and (1, 3), (3,15), (15,30) are all directed edges in the digraph of
D3q. On the other hand, we say 2 and 15 are incomparable because neither divides
the other, and indeed there is no upwardly directed sequence of edges from either
one to the other.



30

Fig. 4 The Hasse diagram of D3

What would the divisors of 60 look like if we build such a diagram for them?
Try to construct it before you look at Dygg.



Fig. 5 The Hasse diagram of Dy

Consider the same (lattice/Hasse) diagram for the divisors of 210. We can draw
this in several ways. The first one (Fig. 6a) places each divisor of 210 at a level
determined by its number of prime divisors. The second one (Fig. 6b) emphasizes
the ’degrees of freedom’. These two diagrams are representations of a four dimen-
sional cube, not surprising since the Hasse diagram for Djq is a three-dimensional
cube. A mathematical way to say the two digraphs are the same is to say they are
1somorphic. This means that they have the same number of vertices and the same
number of edges and that a correspondence between the vertices also serves as a
correspondence between the edges. Note that the digraphs in 6a and 6b have the re-
quired number of vertices (16) and the required number of edges (32). Can you find
an N such that the Hasse diagram of Dy is a representation of a five-dimensional
cube. Such a digraph must have 2° = 32 vertices, and 2 - 32 + 16 = 80 edges.






Fig 6b The Hasse diagram of Dy

How can the geometry help us do number theory? One way to use the geometry
is in the calculation of the GCF and LC'M of two members of Dy. Note that each
element d of Dy generates a downward ‘cone’ of divisors and an upward cone of
multiples. We can denote these cones by F(d) and M(d) respectively. Then the
GCF(d,e) = max{F(d) N F(e)} and LCM(d,e) = min{M (d) N M(e)}.

4. Problems from competitions. The following problems come from MathCounts
and the American Mathematics Competitions.

1. How many positive integers less than 50 have an odd number of positive integer
divisors?
Solution: A number has an odd number of divisors if and only if it is a perfect

square. Therefore, there are exactly seven such numbers, 1,4, 9,16, 25, 36, and
49.

2. (The Locker Problem) A high school with 1000 lockers and 1000 students tries
the following experiment. All lockers are initially closed. Then student number
1 opens all the lockers. Then student number 2 closes the even numbered
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lockers. Then student number 3 changes the status of all the lockers numbered
with multiples of 3. This continues with each student changing the status of
all the lockers which are numbered by multiples of his or her number. Which
lockers are closed after all the 1000 students have done their jobs?

Solution: Build a table for the first 20 lockers, and notice that the lockers
that end up open are those numbered 1,4,9, and 16. This looks like the
squares. Think about what it takes to make a locker end up open. It takes
an odd number of changes, which means an odd number of divisors. We know
how to count the number of divisors of a number N = pi'ps*---pS». N has
Dy = (e;1 +1)(ea +1)--- (e, + 1) divisors. So the issue is how can this last
number be odd. It’s odd if each factor e; + 1 is odd, which means all the e;
have to be even. This is true precisely when N is a perfect square. So the
lockers that are closed at the end are just the non-square numbered lockers.

. If N is the cube of a positive integer, which of the following could be the
number of positive integer divisors of N7

(A) 200 (B)201 (C)202 (D)203 (E) 204

Solution: C. The number N must be of the form N = p?*¢*/ ..., So the
number of divisors must be of the form D = (3e+1)(3f+1) ---. Such a number
must be one greater than a multiple of 3. The number N = (267)3 = 221 has
exactly 202 divisors.

. Let
N=69+5-69*+10-69%+10-692+5-69 + 1.

How many positive integers are factors of N7

(A)3 (B)5 (C)69 (D)125 (E) 216

Solution: The expression given is the binomial expansion of N = (69+ 1)° =
70° = 25 .55 - 75. So N has (54 1)(5+ 1)(5 + 1) = 216 divisors.

. How many of the positive integer divisors of N = 23.33.5%.73.11% have
exactly 12 positive integer divisors?

Solution: Let n be a divisor of N with 12 divisors. Then n = p3¢? where p
and ¢ belong to {2, 3,5,7,11} or n = p?>qr where p,q,r € {2,3,5,7,11}. There
are 5 -4 = 20 of the former and 5 - (;1) = 30 of the later. So the answer is
20 + 30 = 50.



6. How many ordered pairs (x,y) of positive integers satisfy
xy+x+y=1997

Solution: Add one to both sides and factor to get (z+1)(y+1) = 200 = 2352.
which has 4 - 3 factors, one of which is 1. Neither z 4+ 1 not y + 1 can be 1, so
there are 10 good choices for z + 1.

7. How many positive integers less than 400 have exactly 6 positive integer divi-
sors?

Solution: Having exactly 6 divisors means that the number N is of the form
p°® or p?’q where p and ¢ are different prime numbers. Only 2° = 32 and
3% = 243 are of the first type. If p = 2, then ¢ could be any prime in the range
3,5,...97 of which there are 24 primes. If p = 3, then ¢ could be 2 or any
prime in the range 5, .. .43 and there are 13 of these. If p = 5, then ¢ could be
2 or 3 or any prime in the range 7,...13. If p = 7 then ¢ = 2,3, or 5. There
are two values of ¢ for p = 11 and one value of g for p = 13. Tally these to get
2+24+13+5+3+2+1=050.

8. The product of four distinct positive integers, a, b, ¢, and d is 8!. The numbers
also satisfy

ab+a+b = 391 (1)
bc+b+c = 199. (2)
What is d?
Solution: Add 1 to both sides and factor to get
(a+1)(b+1) = 392 =27 (3)
(b+1)(c+1) = 200 =25 (4)

Build a factor table for 392.
[ [[2°]21] 2% [ 2° |
012 4 8
7T 7 114 28 | 56
7249 1 98 | 196 | 392

Thus it follows that (a+1, b+1) is one of the following pairs: (1,392), (2,196), (4, 98), (8,49), (7, 56).
Each of these lead to dead ends except (49,8) and (8,49). For example,
a+1=70b+1=56leads toa =6 and b =55 =5-11, which is not a factor

of 8!. Next note that b = 48 cannot work because b+ 1 = 49 is not a factor of

200. Therefore a = 48 and b = 7. This implies that ¢ + 1 = 200/(b+ 1) = 25

and ¢ = 24. Finally, d =5. Thus , a =48,0 =7,c =24 and d = 5.
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