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An Average�case Analysis of the Gaussian Algorithm for Lattice Reduction

Abstract�The Gaussian algorithm for lattice reduction in dimension � is analysed under its standard version�
It is found that� when applied to random inputs in a continuous model� the complexity is constant on average�
the probability distribution decays geometrically� and the dynamics is characterized by a conditional invariant
measure� The proofs make use of connections between lattice reduction� continued fractions� continuants� and
functional operators� Analysis in the discrete model and detailed numerical data are also presented�

Une analyse en moyenne de l�algorithme de Gauss de r	eduction des r	eseaux

R�esum�e� L�algorithme de r�eduction des r�eseaux en dimension � qui est d	u 
a Gauss est analys�e sous sa forme
dite standard� Il est �etabli ici que� sous un mod
ele continu� sa complexit�e est constante en moyenne et que
la distribution de probabilit�es associ�ee decro	�t g�eom�etriquement tandis que la dynamique est caract�eris�ee
par une densit�e conditionnelle invariante� Les preuves font appel aux relations entre r�eduction des r�eseaux�
fractions continues� continuants� et op�erateurs fonctionnels� Une analyse du mod
ele discret compl�et�ee de
donn�ees num�eriques est aussi pr�esent�ee�
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 Introduction

The lattice reduction problem consists in 
nding a short basis of a lattice of Euclidean space given an
initially skew basis� This reduction problem is well�known to be central to many areas of approximation
and optimization with deep consequences in computational number theory� cryptography� and symbolic
computation�

In dimension d � �� lattice reduction may be viewed as a mere avatar of the Euclidean GCD algorithmand
of continued fraction expansions� Lattice reduction per se really started with Gauss who gave an algorithm
that solves the problem exactly using what resembles a lifting of the Euclidean algorithm to ��dimensional
lattices� In recent times� an important discovery was made by Lenstra� Lenstra and Lov�asz in ���� ��� ��� ����
their algorithm� called the LLL algorithm� is able to 
nd reduced bases in all dimensions d � �� The LLL
algorithm itself proceeds by stages based on the Gaussian algorithm as the main reduction step�

The Euclidean algorithm and the continued fraction algorithm are by now reasonably well understood
as regards complexity questions� Knuth�s book ���� provides a detailed account till ����� From results of
Wirsing� Babenko� and Hensley� the following facts are known� The worst case complexity of the Euclidean
algorithm is O�logN � when applied to integers at most N �Lam�e and Dupr�e�� the average case on random
inputs is also logarithmic �Dixon� Heilbronn�� the distribution of the number of iterations obeys in the
asymptotic limit a normal law with a variance that is logarithmic �a recent result of Hensley��

There are some deep connections between these properties and an invariant measure for the continued
fraction transformation whose existence was 
rst conjectured by Gauss and proved in this century by L�evy
and Kuzmin� Most of these results are obtained by means of functional operators related to continued
fractions and continuants of which extensive use will be made here� We refer in particular to the works of
Wirsing ����� Babenko ���� Mayer ���� ��� ��� ���� and Hensley ����

This paper provides a detailed analysis of the Gaussian algorithm� both in the average case and in
probability� Like its one�dimensional counterpart� the algorithm is known to be of worst�case logarithmic



complexity� a result due to Lagarias ����� with best possible bounds being provided by Vall�ee ���� and Kaib�
Schnorr ����� The probabilistic behaviour of the Gaussian algorithm turns out to be appreciably di�erent
however� The main results of the paper are as follows�

� The average�case complexity of the Gaussian algorithm �measured in the number of iterations performed�
is asymptotically constant� and thus essentially independent of the size of the input vectors�

� The distribution of the number of iterations is closely approximated by a geometric law�

The paper also describes the evolution of data during the execution of the algorithm� One begins with an
initial density of data inside some domain� What is the density inside the domain after k iterations of the
algorithm� We establish the following result�

� The dynamics of the algorithm is governed by a �conditional� limit measure that constitutes the analogue
of the limit measure 
rst observed by Gauss for continued fractions�

In this paper� we mostly focus on the analysis of what we call the �standard version of the Gaussian
reduction algorithm� which generalizes the standard Euclidean algorithm� Precise characterizations of the
behaviour of the algorithm are given here� In particular the geometric rate of decrease of the distribution of
costs and the limit measure are expressed simply in terms of spectral properties of Ruelle�Mayer operators
that generalize the Perron�Frobenius operator classically associated with Euclid�s algorithm�

Our analytic results are naturally expressed as multiple in
nite sums involving the continuants of con�
tinued fraction theory� As such sums tend to be rather slowly convergent� some attention is also paid to
obtaining precise estimates by means of suitable convergence acceleration techniques� For instance� we es�
tablish that the average case complexity of the algorithm is asymptotic to the constant � � ������� ����� � � �
that can be expressed with a number of remarkable quantities like ���� and the tetralogarithm of argument
����

On average� the Gaussian algorithm is thus of complexity O���� which is of an order di�erent from the
worst�case� The case of dimension d � � therefore departs signi
cantly from its ��dimensional analogue� and
it would be of interest to determine to which extent such a phenomenon propagates to higher dimensions�
Our analytic knowledge of the LLL algorithm in higher dimensions is of course less advanced� but Daud�e
and Vall�ee ��� already succeeded in proving that the LLL algorithm� when applied to d�dimensional lattices�
has an average�case complexity that is bounded from above by a constant Kd� where Kd � O�d� logd�� The
present work thus 
ts as a component of a more global enterprise whose aim is to understand theoretically
why the LLL algorithm performs in practice much better than worst�case bounds predict� and to quantify
precisely the probabilistic behaviour of lattice reduction in higher dimensions�

An extended abstract of the present paper appears in ����

� Lattice reduction in dimension �

Lattices and bases� This paper addresses speci
cally the reduction of ��dimensional lattices� A lattice of
rank � in the complex plane C is the set L of elements of C ��vectors � de
ned by

L �Zu�Zv � f�u! �v
�� �� � �Zg�

where �u� v�� called a basis� is a pair of R�linearly independent elements of C � A lattice is generated by
in
nitely many bases that are related to each other by integer matrices of determinant ���

Amongst all the bases of a lattice L� some that are called reduced enjoy the property of being formed with
�short vectors� In dimension �� the best reduced bases are minimal bases that satisfy optimality properties�
de
ne u to be a 
rst minimum of a lattice L if it is a nonzero vector of L that has smallest Euclidean norm�
a second minimum v is any vector amongst the shortest vectors of the lattice that are linearly independent

�



Fig� �� A lattice and two of its bases represented by the parallelogram they span� The �rst basis is skew� the second
one is minimal �reduced
�

of u� Then a basis is minimal if it comprises a 
rst and a second miminum� Without loss of generality� one
can always assume a minimal basis to be acute� since one of �u� v� and �u��v� is certainly acute�

A slightly weaker notion will play an important r	ole in this paper� A basis is said to be quasi�minimal if
the triangle that it de
nes hu� v� u� vi contains two mimima of the lattice� Then there is one amongst the
six following pairs

�u� v�� �v� u�� �u� u� v�� �v� v � u�� �u� v� u�� �v � u� v� ���

that de
nes a minimal basis of the lattice� Again� we may restrict attention to quasi�minimal bases that are
acute�

The following result gives characterizations of acute minimal bases and acute quasi�minimal bases�

Proposition�� Let �u� v� be an acute basis� Then the following two conditions �a� and �b� are equivalent�

�a� �u� v� is minimal�

�b� �u� v� satis�es the two simultaneous inequalities�

�M�� � ju
v
j � � and �M�� � � � ��v

u
� � �

�
�

Let �u� v� be an acute basis� Then the three following conditions �c�� �d�� �e� are equivalent�

�c� �u� v� is quasi�minimal�

�d� the triangle that �u� v� de�nes is acute �it has three acute angles��

�e� �u� v� satis�es the two simultaneous inequalities�

�Q�� � � � ��u
v
� � � and �Q�� � � � �� v

u
� � ��

Proof� �a� � �b�� It is clear that a minimal basis satis
es �M��� and if acute also �M�� since otherwise the
vector v � u would be shorter than v�

�b�� �a�� Let w be an arbitrary nonzero vector of L� w � �u ! �v� Three cases are to be distinguished
depending upon � � �� j�j � �� and j�j � ��

Case � � �� One has jwj � j�j juj with � 	� �� so that jwj � juj�
Case j�j � �� Since �M�� holds� the quantity j��v�u�j is minimal amongst all the j��w�u�j when w lies on
the two straight lines corresponding to � � ��� and thus jvj itself is minimal amongst all the jwj when
w � �u! �v lies on the two straight lines corresponding to j�j � ��

Case j�j � �� From �M�� and �M��� the angle formed by �u� v� is in absolute value between ��� and ����
Thus� the orthogonal projection p�v� of v on u satis
es jp�v�j � p

���jvj� Therefore� for j�j � �� one has

jwj � j�u! �vj � �jp�v�j �
p
�jvj 	 jvj�

�



Finally� �u� v� is a minimal basis of the lattice� and this completes the proof of �b�� �a��

It is also clear that �d� and �e� are equivalent� Moreover� �c� implies �d�� The two smaller sides of the
triangle form a minimal basis� and satisfy �b�� and thus �e�� and 
nally �d��

�d� � �c�� The two vectors u and v formed with the two smaller sides of an acute triangle satisfy �b��
Then� since �b� implies �a�� they form a minimal basis�

The Gaussian reduction scheme� In general� a lattice reduction algorithm takes as input an arbitrary
basis and produces as output a basis that is reduced� In dimension �� the stronger notions of minimality and
quasi�minimality give rise to two closely related algorithms�

� the standard Gaussian algorithm SGA produces an acute quasi�minimal basis�
� the centered Gaussian algorithm CGA produces an acute minimal basis�

What is common to these two algorithms is an iterative structure aimed at satisfying simultaneously the
conditions of Proposition �� The conditions �M�� and �Q�� are simply satis
ed by exchanges between vectors�
The conditions �M�� and �Q�� are met by integer translations of one of the following types�

� for SGA� v �� v �mu with m � b��v�u�c�
� for CGA� v �� 
�v�mu� with m � b��v�u�e and 
 � sign���v�u��m�� �Here� bxe represents the integer

nearest to the real x��

The complex framework� Many structural characteristics of lattices and bases are invariant under linear
transformations"similarity transformations in geometric terms" of the form S� � z 
� �z with � � C nf�g�
An instance is the characterization of minimal and quasiminimal bases given in Proposition � that only
depends on the ratio z � v�u� It is thus natural to consider lattices and bases taken up to equivalence under
similarity� For such similarity invariant properties� it is su#cient to restrict attention to lattices generated
by a basis of the form ��� z��

In that case� the property for a basis to be minimal and acute corresponds to the fact that z belongs to
the so�called fundamental domain

F �

�
z
�� jzj � � and � � ��z� � �

�

�
� ���

Such a domain is familiar from the theory of modular forms ���� or the reduction theory of quadratic
forms ����� Similarly� a quasi�minimal and acute basis is determined by the fact that z belongs to the strip

B � f z j � � ��z� � � g� ���

without being in the disk D of diameter ��� ���

D � f z j ���
z
� � �g�

It should also be observed that exchange operations or translations introduced above only depend on
the complex ratio z � v�u� Thus the execution traces of the Gaussian algorithms are invariant under
similarity� This makes it possible to give a formulation of the Gaussian algorithms CGA and SGA entirely
in terms of complex numbers� Let �u�� v��� � � � � �uk� vk� be a sequence of bases constructed by one of the
Gaussian algorithms� We associate to it the sequence ��� z��� � � � � ��� zk� where zj � vj�uj� The geometric
transformation e�ected by each step of the algorithm consists of an exchange �u� v� 
� �v� u�� a translation
v 
� v�mu� and a possible sign change v 
� �v� In the complex framework� this corresponds to an inversion�
symmetry S � z 
� ��z� followed by a translation z 
� T�mz with T �z� � z ! �� and by a possible sign
change z 
� Jz where J�z� � �z�

�



Algorithm SGA

Input� A complex z that belongs to disk D of diameter ��� 
�
While �z � D
 do z �� U�z
�

Output� A complex z that belongs to domain B n D where B � f� � ��z
 � 
g�

Fig� �� The Standard Gaussian Algorithm �SGA��

In this context� the standard Gaussian algorithm brings z into the already de
ned strip

B � f z j � � ��z� � � g�
while the complete Gaussian algorithm brings z into

eB � f z j � � ��z� � �

�
g�

at the expense of a possible sign change�

The standard algorithm� The next sections are devoted to the analysis of the standard Gaussian al�
gorithm� SGA� that we specify now in full� The algorithm SGA produces a quasi�minimal basis whose
transformation into a completely minimal basis is trivial �as we will see later�� so that its analysis does
model the core of the reduction process� At the same time� no sign�change is involved� a feature that gives a
much regular structure to the algorithm� in many ways� SGA is to CGA what standard continued fractions
are to centered continued fractions� and the close connection with standard continued fractions justi
es our
terminology�

The algorithm SGA is directed towards bringing z inside the strip B de
ned in ���� B � f� � ��z� � �g�
In order to do so� it su#ces to consider a transformation U formed with an inversion�symmetry S and a
translation T�m aimed at bringing z into B� It is readily realized that this is achieved by the transformation

U �z� �
�

z
� b���

z
�c�

with buc the integer part of u� This transformation U is an extension to the complex domain of the operation
de
ning standard continued fraction expansions� for which U �x� � �

x
� b �

x
c�

In the rest of the paper� we assume that the Gaussian algorithm is applied to complex numbers z such
that ��z� 	� �� which corresponds to nondegenerate lattices� One also operates with bases that are acute� so
that z belongs to the half�plane ��z� � �� For reasons already explained� the reduction algorithm takes as
input complex numbers from the disk D of diameter ��� ��� The transformation U is then iterated till exit
from that disk� The corresponding speci
cation is given in Fig� ��

For this algorithm� upon exit from the main iteration loop� it is no longer true that that the basis ��� z�
is minimal� It is only quasi�minimal and a minimal basis results from applying one amongst � possible
permutations on the sides of the triangle generated by ��� z�� which transform the basis ��� z� into a minimal
basis ��� z��� where z� belongs to the set corresponding to ���

fz� �
z
� �� z�

z � �

z
�

�

�� z
�

z

z � �
g

This corresponds to the action of the cross�ratio group and to the fact that the domain B n D is the union
of six simple transforms of the fundamental domain F de
ned in ���� namely

B n D � F 
 SF 
 TJF 
 TJSF 
 STJF 
 TJSTJF �
These domains are represented in Fig� ��

�



F�

TJSF� TJSJSF�

SF� STJF�

F� TJF�

Fig� �� The upper part of domain B n D� Here F� and F� are resp� the upper part and lower parts of F

Thus simply adding a trivial test produces an algorithm whose output is a minimal basis ��� z�� In
addition� the analysis of the algorithm obtained in this way is then only a trivial variant of the analysis of
the core algorithm SGA�

The centered algorithm� The standard algorithm when completed by the 
nal phase just described pro�
duces a minimal basis� An alternative� corresponding to a path often taken in the literature� consists in using
a centered division algorithm� The corresponding algorithm� CGA can be subjected to an analysis similar to
the one exposed here� though more technical� In ���� we brie$y point out some of the principles upon which
the analysis can be based� It is found there that the average number of iterations equals �������� This is less
than the corresponding quantity for the standard algorithm ���������� but each iteration is computationally
more complicated since a centered remainder routine is needed�

Probabilistic models� The question addressed here is the estimation of the number L of iterations per�
formed by the standard algorithm� The model considered is in essence equivalent to applying the reduction
algorithm to random bases� where similar bases are identi
ed�

The continuous model is de
ned by the fact that the inputs are taken uniformly over the de
nition
domain D� The eventual goal is to analyse the behaviour of the algorithm under a discrete model where
inputs are members of Q�i� of the form

QhNi � f a
N

! i
b

N

�� b 	� �g�

suitably restricted to disk D� The random variable LhNi then depends on N � However� as N gets large� it
converges� both in moments and distribution� to its continuous counterparts� a fact to be proved in Section ��

Thus� the results to be enounced later for the continuous model "the average number of iterations is
constant and the probability distribution admits exponential tails" carry over to the discrete model� In
other words� the behaviour of lattice reduction in dimension � is essentially insensitive to the size of the
input vectors� This is a notable di�erence with the one�dimensional case of Euclid�s algorithm�

�



� Continued fractions and lattice reduction

The Gaussian algorithm is closely related to the linear fractional transformations �also called homographies�
that are associated to continued fractions� and thus also to the classical continuant polynomials� The proba�
bility distribution� the average cost and the dynamic densities can be expressed as a function of continuants�
In this way� a 
rst average�case analysis of the Gaussian algorithm can be given�

The fundamental disks� The algorithm SGA produces a sequence z�� z�� � � � � zk of transforms of z� � D
obtained by iterating the transformation U � As we saw� each step corresponds to a particular transformation

zj�� � �mj�� !
�

zj
or zj �

�

mj�� ! zj��
� ���

While zj is in D� ��zj satis
es ����zj� 	 �� so that we have the condition mj � �� Thus� from ���� there
results that an execution of the Gaussian algorithm on input z� translates into a complex continued fraction
expansion

z� �
�

m� !
�

m� !
�

���
mk ! zk

�

where the expansion is stopped as soon as zk lies in B n D� The number of iterations� L� then assumes the
value k � �� All the mj are at least ��

This leads us to introducing the set Lk of linear fractional transformations of depth k �for k � �� de
ned
as the collection of all h�z� of the form

hm�z� � hm��m������mk
�z� �

�

m� !
�

m� !
�

���
mk ! z

� ���

where the mj � N � f�� �� � � �g� In the sequel� we denote by jhj the depth of homography h� for an element
h of Lk� we have jhj � k�

The event �L � k ! �� coincides with the set of complex z such that all the U j�z�� for j � �� � � � � k� lie in
D� As soon as an iterate U i�z�� belongs to B nD� the same property holds for all the further iterates U j�z��
for j � i� Thus� de
ning Dk �� U ��k��D� with D� � D� we have �L � k ! �� � Dk� These domains form an
in
nite descending chain� D� � D� � D� � � � � � and each Dk is the disjoint union "up to boundary sets of
measure �" of transforms of D by the transformations of Lk of ����

Dk �� �L � k ! �� �
�
jhj�k

h�D��

The disk h�D� is the disk of diameter h���� ���� Within the theory of continued fractions� the transform
h���� ��� of interval ��� �� by an homography h of depth k is known as a fundamental interval of rank k� A
rendering of disks h�D�� also called the fundamental disks� is given in Figure ��

Since fundamental intervals of rank k are disjoint up to boundary sets of measure �� fundamental disks
of rank k are also disjoint in the same sense� and all these considerations imply that� under the uniform
probabilistic model of use� the probability �k that the algorithm performs at least k ! � iterations is

�k �
kDkk
kDk �

�

�

X
jhj�k

kh�D�k �
X
jhj�k

jh���� h���j�� ���

where kAk denotes the area of a domain A of the plane�

�



Fig� �� The domains D� n D�� D� n D�� D� n D�� D� n D�� D� n D� represented alternatively in black and white� �The
largest disk is D� � D which is the disk of diameter ��� 
��


Continuants� Homographies of Lk are naturally associated with continued fractions of depth k themselves
expressible in terms of continuants� ���� p� ���� ����� The continuant polynomials are de
ned by

Qk�x�� x�� � � � � xk� � xkQk���x�� � � � � xk��� ! Qk���x�� � � � � xk���� ���

with Q� � �� Q��x�� � x�� As is well�known the continuant polynomial Qk�x�� � � � � xk� is also the sum of
all monomials that obtain by crossing out pairs xixi�� of consecutive variables in the product x�x� � � �xk�
Continuants thus satisfy the symmetry property Qk�x�� � � � � xk� � Qk�xk� � � � � x��

Classically� a function hm � Lk with m � �m�� � � � �mk� admits the expression

hm�z� �
Pk ! zPk��

Qk ! zQk��
�

where the four coe#cients Qk�h�� Qk���h�� Pk�h�� Pk���h� can be expressed as elements of family Qk

Qk�h� � Qk�m�� � � � �mk�� Qk���h� � Qk���m�� � � � �mk����
Pk�h� � Qk���m�� � � � �mk�� Pk���h� � Qk���m�� � � � �mk����

���

For an homography h that is associated to �m�� � � � �mk�� denote by bh the homography associated to
�mk� � � � �m��� One has

Qk�bh� � Qk�h�� Qk���bh� � Pk�h�� ���

Note also the determinant identity

QkPk�� �Qk��Pk � ����k� ����

The diameter of a fundamental disk h�D� is the interval h���� ���� For h � Lk� the length �h of this
diameter can be solely expressed from ���� with continuants Qk and Qk��

�h � jh���� h���j � �

Qk�Qk ! Qk���
� ����

This simple fact has two main consequences� both for the worst�case analysis� and for the average case�
analysis of the SGA algorithm�

�



Worst�case analysis� We digress and show that the SGA algorithm always terminates for complex num�
bers z that are not real� The corresponding bounds intervene in our later analysis of the discrete model�

Proposition�� The domain Dk �� U ��k�D is a subset of the horizontal strip

Ik � fz j j�zj � �


�k
g�

where 
 � �� !
p
���� is the golden ratio� On a nonreal input z ��z 	� ��	 the number L�z� of iterations of

algorithm SGA satis�es

L�z� � d�
�
log�

�

j�zje� ����

Proof� The smallest continuant Qk is obtained� from ���� when all the mj are equal to �� Then� Qk reduces
to the �k! ��st Fibonacci number 
k��� de
ned by 
� � �� 
� � � and 
k�� � 
k ! 
k��� If 
 is the golden
ratio� 
 � �� !

p
����� the �k ! ��st Fibonacci number 
k�� satis
es 
k�� � 
k��� From ����� we deduce

that the radius of the fundamental disk h�D� satis
es� for all h of depth k�

�h
�
� �


�k
�

which shows the 
rst assertion� If now the complex number z satis
es j�zj � 
��k� then z cannot belong to
Dk� and L�z� is at most equal to k� and we obtain �����

Probabilistic analysis� The considerations above permit us to express the probability distribution of the
Gaussian algorithm in terms of continuants�

Theorem�� The probability �k that algorithm SGA performs more than k iterations on a random input
z � D is expressible as

�k �� Pr�L � k ! �� �
X
jhj�k

�

Q�
k�Qk ! Qk����

�

where Qk � Qk�m�� � � � �mk�	 Qk�� � Qk���m�� � � � �mk���	 and the sum is over all integers mj � ��

Proof� This statement results from combining the expression of diameter of h�D� given in ���� with the form
��� already found for the probability distribution�

The following table displays the probability distribution of SGA computed by Theorem � and the nu�
merical methods of Section � against the result of ��	 simulations of the algorithm�

k Pr �L � k � 
� Simulations

 ������� ���������

� ������� �������
��
� ���
��� ���
���
��
� ������� ����������
� ������� ����������
� ������� ���������

� ������� ������
���

Expectation� 
���

� 
���
���

�



Average�case analysis� The mean number of iterations of the lattice reduction algorithm of Gauss admits
a form that no longer involves continuants� We will see later in Section � that it is related in fact to a number
of remarkable constants including the tetralogarithm of argument ��� and �����

Theorem�� The mean number of iterations � �� E�L� of algorithm SGA applied to a random z � D is
given by the double sums	

� �
�

�
!

���

�


X
d��

�

d�

X
d�c��d

�

c�
�

�

�
!

���

�


X
d��

�

d�

X
d�c��d

�

c�
����

Proof� By a standard transformation� the expected cost is

� �
X
k��

Pr�L � k� � � !
X
k��

�k�

and the last sum represents a sum over all possible values of continuants� The formula ���� results from simple
number�theoretic arguments� each rational number c�d of the interval ��� �� admits two continued fraction
forms� the proper one �that 
nishes with mk � �� and the improper one �that 
nishes with mk�� � �� Thus�
c�d can be represented in two di�erent ways as a ratio of continuants Pk�Qk� Accordingly� any integer pair
�c� d� satisfying gcd�c� d� � �� d � �� and � � c � d can be written in two di�erent ways as a pair �Pk� Qk��
or equivalently as a pair �Qk��� Qk�� given the general properties ��� of continuants� In this manner� taking
into account boundary cases� namely numbers � and �� we 
nd

� �
�

�
! �

X
d��� ��c�d
gcd�c�d���

�

d��c! d��
�

The general term in the last sum is homogeneous of degree �� so that the gcd condition is eliminated provided
one divides the sum by ���� � �
����

� �
�

�
!

�

����
� with � ��

X
d��

�

d�

X
��c�d

�

�c ! d��
�
X
d��

�

d�

X
d�c��d

�

c�
� ����

Now� adding the terms that correspond to d � � and c � d� we obtain

� �
�

�
!

�

����
�� with �� ��

X
d��

�

d�

X
��c�d

�

�c! d��
�
X
d��

�

d�

X
d�c��d

�

c�
� ����

The constants � and �� are linked by the relation �� � � � �������

Dynamic analysis� We have already mentioned the importance of the invariant measure of Gauss in the
Euclidean algorithm� No such invariant measure can exist here as the reduction algorithm terminates with
probability �� However� a r	ole quite similar to the invariant measure of Gauss is played by a function that
describes the limit distribution of successive transforms of the input as the reduction algorithms proceeds�

Initially� the input distribution is uniform inside the disk D� so that to z� is associated the constant
density function over D� Assume now that the algorithm performs at least k ! � iterations� Then the kth
iterate zk is an element of D� A natural question is to determine its distribution inside D� The density of the
k�th iterate zk at point z is proportional to

lim
r��

�

�r�
Pr �zk � D�z� r�� � lim

r��

�

�r�
Pr �U ��k��D�z� r���

��



where D�z� r� is the disk of center z and radius r� The set U ��k��D�z� r�� is the disjoint union of all the disks
h�D�z� r�� for h in Lk� Thus the density of the k�th iterate zk is also proportional to

eFk�z� �� lim
r��

�

�r�

X
jhj�k

jjh�D�z� r��jj� ����

The proportionality factor is taken so as to ensure that the integral of the density over D equals �� and the
legitimate de
nition of the conditional density function inside D after k iterations of the algorithm is

Fk�z� �
�

��k

eFk�z�� ����

since
�

�
�k � jjU ��k�Djj �

ZZ
D

eFk�z�dxdy�
We shall call Fk the dynamic density �of order k� of the algorithm�

Theorem�� The dynamic density Fk is given by

Fk�z� �
�

��k

X
jhj�k

�

jQk��z ! Qkj
 � where �k � Pr �L � k ! ���

Proof� The jacobian of the linear transformation h is equal to jh��z�j�� so that

jjh�D�z� r�jj � �r�jh��z�j��

when r tends to �� From the determinant equality� we have

jh��z�j� � �

jQk��z !Qkj
 �

and from summing over all h of depth k� with �����

eFk�z� � X
jhj�k

�

jQk��z ! Qkj
 � ����

We come back to Fk by �����

Proposition	� The following functional relation holds between the dynamic densities Fk and Fk��	

�k

�k��
Fk�z� �

X
m��

�

jm! zj
Fk���
�

m ! z
��

Proof� Using ���� and ���� we isolate the last component m � mk in the k�uple m � �m��m� � � � �mk�
associated to h� and get eFk�z� � X

m��

X
jhj�k��

�

jQk��z !mQk�� ! Qk��j


�
X
m��

�

jm! zj

X

jhj�k��

�

jQk��!
Qk��

m�z j

�
X
m��

�

jm! zj

eFk���

�

m ! z
��

We come back to Fk and Fk�� with �����

��



Thus� assuming that Fk admits a limit F� and that ratio �k����k converges to some constant �� the
quantities � and F� satisfy

�F��z� �
X
m��

�

jm! zj
F��
�

m ! z
��

So� the limit objects � and F� must be an eigenvalue and a corresponding eigenvector of the operator H
de
ned by the right hand side of the previous identity� namely

H�f ��z� �
X
m��

�

jm! zj
f�
�

m ! z
��

In particular� the restriction of F� to the real axis must be an eigenvalue of the operator G such that

G�f ��x� �
X
m��

�

�m ! x�

f�

�

m ! x
��

This sharply motivates the introduction of the operator G in the next section� where we shall also establish
the assumptions regarding Fk and �k�

� The G operator

The complete analysis of the probability distribution and of the dynamics of the Gaussian algorithm depends
on the introduction of an operator Gs formally de
ned by

Gs�f ��t� �
X
m��

�

�m ! t�s
f�

�

m ! t
�� ����

and more speci
cally on the instance s � � that we simply denote by G �� G
� �Note that continued fractions
and the Euclidean algorithm correspond to the case s � ��� In fact� Proposition � involves a modi
ed operator

Hs�f ��t� �
X
m��

�

jm! tjsf�
�

m ! t
�� ����

and more speci
cally the instance s � �� However� in the case when the initial density F� is uniform�
Proposition � will show that it is su#cient to study operator G� which can be viewed as the holomorphic
version of H �� H
� The general case when the initial density F� is no longer uniform requires properties of
the whole family Hs and is treated in �����

Such operators Gs are well�known under the name of Ruelle�Mayer operators� They permit to generate
continuants� and at the same time their spectral properties� related to the Perron�Frobenius theory� have
nice consequences for the average analysis of the Gaussian algorithm�

Ruelle�Mayer operators and continuants� There is a close relationship between the iterates of Gs and
continuants� Operator Gs can also be expressed as a sum on all the homographies of depth �

Gs�f ��t� �
X
jhj��

eh�t�sf � h�t��
where eh�t� is the holomorphic function that coincides with

p
jh��t�j on the interval J � The iterate of order

k of Gs uses all the homographies of depth k

Gks �f ��t� �
X
jhj�k

eh�t�sf � h�t�� ����

��



and generates the continuants of depth k in the following sense�

Gks �f ��t� �
X
jhj�k

�

�Qk��t! Qk�s
f�

Pk��t ! Pk
Qk��t !Qk

��

in particular� using the symmetry relation ��� between Qk and Pk���

Gks �f ���� �
X
jhj�k

�

Qs
k

f�
Pk
Qk

� �
X
jhj�k

�

Qs
k

f�
Qk��

Qk
�� ����

The probability distribution and the dynamic densities involved in Theorem � and Theorem � precisely admit
such expressions�

Proposition
� The probability distribution �k and the dynamic density Fk can be expressed as a function
of iterates of order k of G�

�k �� Pr�L � k ! �� � Gk�u�t����� where u�t� �
�

�� ! t��

Fk�z� �
�

�k
Gk�vz�t����� where vz�t� �

�

�� ! tz���� ! t%z��
�

The expectation � admits the following expression

� � �I � G��� �u�����

Proof� Compare expressions involved in Theorem � and Theorem � with �����

Analytic properties of the Gs operators have been investigated in detail by Mayer and we globally refer to
���� and references therein� Ruelle�Mayer operators enjoy three main properties� In suitable Banach spaces�
they are nuclear of order �� in convenient Hilbert spaces� they are isomorphic to integral operators� with
Bessel functions as kernels� and they are diagonalizable� furthermore� for s real� their spectrum is real� and
they verify a Perron�Frobenius property� which proves the existence of dominant spectral objects�

Let J denote a bounded open interval that contains strictly the segment ��� �� and V the open disk with
diameter J � We require that V is strictly mapped inside itself by all the homographies of depth �� i�e��

h�V� � V for jhj � ��

For all s with ��s� 	 �� the operator Gs acts on the space A��V� of functions f that are holomorphic in V
and continuous on the closure V of V� The set A��V� endowed with the sup�norm is a Banach space� Note
that functions u and �z involved in Proposition � are elements of such a space�

Remark� Usually� one chooses for J and V the open interval and the open disk of center � and radius ����
respectively� This choice is however not intrinsic� and all the results of this section can be easily adapted
to other con
gurations of J and V provided that J is bounded� contains strictly the segment ��� ��� V is
the disk of diameter J � and V is strictly mapped inside itself by all the homographies of depth �� A typical
con
guration is based on an interval J of the form �� �� � ! ��� with � � � � ����

Nuclearity� Let B be a Banach space and B� its dual space� An operator M � B � B is nuclear of order
� if it admits a representation

M�f � �
X
i�I

�i e
�
i �f� ei for all f � B�

with ei � B� e�i � B� such that jjeijj � jje�i jj � � and the �i are p�summable for all p 	 � �i�e��
P j�ijp � !���

Such operators have been introduced and studied by Grothendieck ��� ���� They are compact and they
have a discrete spectrum� Moreover� most of matrix algebra can be extended to them� in particular� one can

��



de
ne the trace of such an operator� and also the analogue of the characteristic polynomial known as the
Fredholm determinant�

Some spaces have the nice property that every bounded map is nuclear of order �� A typical example of
such a space is the space A��V�� Since each operator Gs can be expressed as a convergent sum of bounded
operators� the operator Gs is itself bounded� and thus nuclear of order ��

Spectral decomposition� Ruelle�Mayer operators enjoy stronger properties when they operate on restricted
spaces of functions holomorphic in half�planes� which can be endowed with a Hilbert space structure� and
are called Hardy spaces� This point of view has been adopted 
rst by Babenko� and further generalized by
Mayer� whom we follow here�

Let us consider the half�plane B� � fz j ��z� 	 �g and the Hilbert space Hs of holomorphic functions f
on B��	�� bounded on in each of the half�planes B� �� 	 ����� which admit an integral representation

f�z� �

Z �

�

e�wz ��w� w�s���	� dw

ew � �

where � is square integrable with respect to measure dm�w� with density ���ew � ���

The norm in Hs is de
ned as

jf j�s
 �

Z �

�

j��w�j� dw

ew � �
�

and satis
es
jf�z�j � r�z� s� jf j�s
� ����

with a constant r�z� s� that depends on s and z � B��	�� On the space Hs� the operator Gs can be expressed
as

Gs�f ��z� �
Z �

�

e�wz Ks����w� w
�s���	� dw

ew � �
where Ks is an integral operator that involves the Bessel function Js�� of index s� �

Js���u� �
�X
k��

�
u

�
��k�s�� ����k

k& � �k! s�

under the form

Ks����w� �

Z �

�

Js����
p
vw� ��v�

dv

ev � �
In the space Hs� Gs is thus isomorphic to an integral operator� whose kernel is the Bessel function of index
s � �� This representation shows that Gs is diagonalizable on Hs and it gives the spectral decomposition of
the iterates Gks of Gs on the space Hs

Gks �f � �
X
i

�ki�s f
�
i�s�f � fi�s� ����

for all k � � and f in Hs� Here� the �i�s are the eigenvalues of Gs taken in order of decreasing moduli� the
functions fi�s are the associated eigenvectors� and f�i�s is the dual basis of fi�s�

Since the function Gs�f � belongs to Hs as soon as f belongs to A��V�� the two spectra� the spectrum of
Gs and the spectrum of its restriction to Hs� are the same� Moreover� for real s� the spectrum of Gs is real�
Using the relations ���� and ����� one derives the spectral decomposition of the iterates Gks �f ��t� of Gs

Gks �f ��t� �
X
i

�ki�s f
�
i�s�f � fi�s�t�� ����

for all k � �� f in A��V� and t � V� Here� the �i�s are the eigenvalues of Gs taken in order of decreasing
moduli� the functions fi�s are the associated eigenvectors� and f�i�s is the dual basis of fi�s in Hs that one
extends by

f�i�s�f � ��
�

�i�s
f�i�s�Gs�f ��

for f in to A��V��

��



Positivity� Operators called u��positive have been introduced by Krasnoselsky ����� they give a generaliza�
tion of positive operators for 
nite dimensional spaces� and possess dominant spectral properties�

A set K in a real space B is called a proper cone if �i� for all � 	 � and all f � K� �f � K� �ii�
K ��K � f�g� A proper cone is called reproducing if B � K �K� i�e�� every element f in B is equal to the
di�erence of elements of K�

Let K be a proper� reproducing cone� with a non�empty interior IntK� A linear operator M � B � B
is positive �with respect to cone K� if M�K� is a subset of K� Let u� be an element of IntK� a positive
operator M is u��positive with respect to cone K if there exists for every f 	� � in K a number p and reals
�� � 	 � such that

� u� �Mp�f � � �u��

where the order � is related to K � f � g if and only if g � f � K�

Krasnoselsky ���� showed that a compact and u��positive operator satis
es a Perron�Frobenius property�
it has a unique eigenvector g � IntK and the associated eigenvalue � is simple� positive� and in absolute
value strictly larger than all other eigenvalues�

For real s �s 	 ��� operator Gs leaves invariant the space R��V� of elements of A��V� which are real on
J � Space R��V� is a real Banach space and the set K of functions f of R��V� whose restriction to J is
positive is a proper� reproducing cone K� with a non�empty interior IntK� Function u� � � belongs to IntK
and the restriction of Gs to R��V� is u��positive with respect to cone K ����� Krasnoselsky�s theorem can
be applied� and� since the spectrum of Gs is real� the two spectra "the spectrum of Gs and the spectrum of
the restriction of Gs to R��V�" are the same�

Dominant spectral properties� From the previous facts� there results that the operator Gs has a Perron�
Frobenius property�

Theorem�� �Mayer� For real s 	 �	 the operator Gs � A��V�� A��V� has a positive dominant eigenvalue
�s �� ���s which is simple and strictly larger than the other eigenvalues in absolute value� The corresponding
eigenfunction fs is strictly positive on J 	 and is normalized by fs��� � �� The adjoint operator G�s � A�

��V��
A�
��V� has a positive eigenfunctional f�s with eigenvalue �s such that f�s �f� 	 � if f 	 � on J �

If Ps denotes the projection on the dominant eigensubspace	 Ps � f�s �fs	 and �s denotes a subdominant
eigenvalue of Gs	 then for every element f of A��V� that is strictly positive on J 	 for every t � J 	 one has

Gks �f ��t� � �ksPs�f ��t�
�
� !O�j�s

�s
jk�
�
� for k �� ����

where the implied constant in O error term depends on f� s and t�

For s � �� the operator Gs has dominant spectral properties that are very well known� the dominant
eigenvalue �� is equal to �� the subdominant eigenvalue� which is also simple� is equal to �� � ����������
the famous Gauss�Kuzmin�Wirsing constant� the dominant eigenvector f�� which corresponds to the limit�
density of the continued fraction algorithm� and the dominant eigenvector f�� of the adjoint operator are
both explicit and equal respectively to

f��z� �
�

� ! z
and f�� �f � �

�

log �

Z �

�

f�x�dx�

For other values of parameter s� the operators Gs have been less studied and to the best of our knowledge�
they have never been used for any s 	� �� In fact� for s 	� �� the dominant spectral objects of operators Gs
do not seem to be related to any known special functions� We will give later �in Section �� some numerical
estimates of these objects in the case s � ��

��



In general� from ����� the dominant eigenvalue �s can be obtained as

�s � lim
k

�Gks �f ��x���	k ����

for any analytic function f that is strictly positive on J and any x of J � Choosing f � � and x � � and
using ����� one gets

�s � lim
k

�
X
Qk

�

Qs
k

��	k�

The smallest continuant Qk is the �k ! ��st Fibonacci number 
k that we already used in Proposition �� It

satis
es limk 

�	k
k � 
 where 
 is the golden ratio �� !

p
����� This shows that�

for u � �� �s�u � �


u
�s� ����

so that the map s 
� �s de
nes a strictly decreasing function of s�

In the sequel� we are going to use dominant spectral properties of Gs �for s � �� to derive an asymptotic
behaviour for the probability distribution and for the dynamic densities of the Gaussian algorithm�

Asymptotic behaviour of probability distribution� The distribution of the number of iterations of
Gaussian algorithm is closely approximated by a geometrical law� whose ratio is equal to the dominant
eigenvalue �
 of G�

Theorem�� There exist real numbers ci such that	 for all k � �	

�k �� Pr�L � k ! �� �
X
i

ci �
k
i�
�

where the �i�
 are the eigenvalues of G ordered with respect to decreasing moduli� In particular	 one has
asymptotically�

�k � c �k


�
� !O�j�


�

jk�
�
�

Here	 �
 �� ���
 is the dominant eigenvalue of G	 �
 �� ���
 is a subdominant eigenvalue of G� Numerically	
one has�

�
 � ������� j�
j � ������ c � ����

This theorem is in accordance with observation of the numerical data following Theorem �� as the proba�
bilities decay roughly like �����n� We come back later in Section � to the numerical estimates of the two
dominant eigenvalues of G�

Proof� We use Proposition �� Theorem �� and the spectral decomposition given in ���� associated with u
de
ned in Proposition �� The real ci are de
ned by ci � f�i�
�u� and Theorem � proves that the real c �� c�
is strictly positive�

Limit density� The limit density is an eigenfunction of the nonanalytic operator H and it is expressible in
terms of the dominant eigenfunction f
 of the analytic operator G�

Theorem�
� The dynamic density Fk�z� converges geometrically to a limit density F��

F��x! iy� � �

Z �

��
��� w�� f
�x! iyw� dw�

There	 f
 is the dominant eigenfunction of G and � the normalization constant determined by
RR

F� dx dy �
�� The limit density F� is an eigenfunction of the operator H and	 on the real axis	 it is proportional to the
dominant eigenfunction f
 of G�

��
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Fig� �� The limit density F��

Proof� From Proposition � and Theorem �� it is clear that the limit density F� exists and is proportional
to the function z 
� f�
 ��z�� since

F��z� � lim
k��

�

��k
Gk��z���� � �

c�
f�
 ��z��

Moreover� for real x� the function F��x� is an eigenfunction of G relative to eigenvalue �
� and it is thus
proportional to f
� Thus� by the equality above and for x real� the three quantities f�
 ��x�� f
�x� and F��x�
are proportional� then F� extends the function f
 in the same way as �z extends �x outside the real axis�
For z � x! iy � D and t � V� we have

�z�t� �
�

�� ! xt�

�

�� ! � yt
��xt �

���
�
X
k

����k�k ! �� y�k
t�k

�� ! xt�
��k
�

Using
t�k

�� ! xt�
��k
�

�&

��k ! ��&

d�k

dx�k
�

�

� ! xt
�
�

we obtain

�z�t� �
X
k

����k
��k�&

�y�k

��k ! ����k ! ��

d�k

dx�k
�x�t��

Since x is here a parameter� the linear form f�
 commutes with derivation with respect to x� and� since f�
 ��x�
is proportional to f
�x�� we deduce that f�
 ��z� is proportional toX

k

����k
��k�&

�y�k

��k ! ����k ! ��

d�k

dx�k
f
�x��

Finally� with � as a normalization constant�

F��z� � �

Z �

��

���w�� f
�x! iyw�dw

that can also be written

F��z� � �

Z
�

�w � z��w � %z�

�z � %z��
f
�w�dw

for any simple path that links z to %z� With the last form� one can easily check that F� is an eigenfunction
of operator H�
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 The discrete model

The analysis of the standard algorithm under the discrete model where inputs are taken from the discrete
set

QhNi � f a
N

! i
b

N

�� b 	� �g � D� ����

derives from the previous analyses thanks to �Gauss�s principle � This principle relates the number of integer
points in a domain to the area of the domain� a disk of radius � contains �N��� !O��N ! �� lattice points
of QhNi� From worst�case bounds of Proposition �� we know also that the reduction algorithm performs a
number of iterations that is O�logN ��

Theorem��� Let LhNi be the number of iterations of the standard Gaussian algorithm applied to random
inputs from QhNi �D� The random variable LhNi admits the following upper�bound �which corresponds to
worst�case analysis�

LhNi�z� � kN with kN �� d�
�
log�Ne�

The random variable LhNi converges in moments and in distribution to the random variable L associated with

the continuous model� In particular	 the distribution �
hNi
k of LhNi converges uniformly to the distribution

�k of L

�
hNi
k ��k � O�

�

N
�� with �

hNi
k � � for k 	 kN � ����

the mean value �hNi �� E�LhNi� satis�es

�hNi �� � O�
logN

N
��

and the ��th moment M
hNi
� of LhNi converges to the ��th momentM� of L

M
hNi
� �M� � O�

�logN ��

N
�

uniformly in � and N provided that �& � O�N���� where � is a real 	 � de�ned as a function of the dominant
eigenvalue �
 of operator G	

� �
j log�
j
� log


� ������

Proof� From Proposition� the integer kN is an upperbound on the worst�case complexity in the sense that

LhNi�z� � kN for z � QhNi� �
hNi
k � � for k 	 kN �

We denote by P hNi�h� the number of points of QhNi that are contained inside the fundamental disk h�D��
The probability distribution �

hNi
k admits the following expression

�
hNi
k �

�

P hNi�I�

X
jhj�k

P hNi�h��

We remark that P hNi�h� � � as soon as the diameter �h of disk h�D� is less than ��N � Otherwise� by
�Gauss�s principle � a fundamental disk h�D� of diameter �h contains a number of points equal to

P hNi�h� �
�

�
N����h ! O�

�h
N

���

��



This is valid in particular for D itself� and

P hNi�I� �
�

�
N��� ! O�

�

N
���

Since the fundamental intervals h���� ��� of rank k form a partition of ��� ��� from ���� and ���� we get

X
jhj�k

�h � ��
X
jhj�k

��h � �k�

and thus X
jhj�k�
h�

�
N

��h � �k !O�
�

N
��

We then deduce the 
rst two assertions of the theorem�

The ��th momentM
hNi
� of LhNi �

M
hNi
� ��

X
k��

�k ! ��� Pr �LhNi � k ! �� �
X
k�kN

�k ! ��� ��hNi
k ��

hNi
k����

is to be compared with the ��th moment M� of L�

M� ��
X
k��

�k ! ��� ��k ��k����

The di�erence between M
hNi
� et M� is composed of two terms

A ��
X
k
kN

�k ! ��� ��k ��k���� B ��
X
k�kN

�k ! ��� ��k � �k����

where �k �� �
hNi
k ��k� With Abel�s transformation� and ����� we deduce that

B � k�N O�
�

N
��

The sum A can be written with Theorem � as a function of dominant eigenvalue �
 of operator G

A � O � X
k�kN

k� �k

�
� O � Z �

kN

x��x
dx
�
�

A direct computation gives

A � O �
�& �kN
 k�N

�
� O��& k�N

N�

�
with � �

j log�
j
� log


�

The relation ���� proves that � is greater than �� so that� provided that �& � O�N����� one obtains

A � k�N O�
�

N
��

��



� Numerical estimates

We have already mentioned numerical estimates for the mean and the probability distribution of the Gaussian
algorithm� including the mean value of the cost� � ������� and the estimate of the dominant eigenvalue �
 �
������� Most of the expressions obtained so far involve slowly converging sums� The purpose of this section is
to give indications on series transformations that permit to evaluate the mean �Theorem ���� the probability
distribution �Theorem ��� and traces �Theorem ��� to great accuracy� We also detail ways in which exact
bounds can be proved on �
 and �
 using trace formulae and truncation of operators �Theorem ����

A real number � is said to be polynomial time computable if there exists an integer r such that an
approximation of � to accuracy ���d can be computed in time O�dr�� We let P denote the class of such
numbers� A major problem is to 
nd which of the constants of this paper are polynomial time computable�
E�ective numerical procedures usually go along with proofs of membership in P �

Expected cost� The expected number of iterations � of the Gaussian algorithm admits an expression that
involves the remarkable constants ���� and Li
�

�
��� where Li
�z� is the tetralogarithm�

Li
�z� �
z

�

!
z�

�

!
z�

�

! � � � �

�X
n��

zn

n

�

Given that the zeta function is easily computable ���� this proves that � is a member of P while providing
a fast computation scheme�

Theorem��� The mean number of iterations of the Gaussian algorithm SGA can be expressed with sums
of generalized harmonic numbers

� �
��

�
!

���

�


�X
d��

����d
d�

dX
c��

�

c�
����

� �
��

�
� ���

�


�X
d��

����d
d�

dX
c��

�

c
� ����

or with ���� and the tetralogarithm Li
�
�
� �	

� � ���

�


�
��Li
�

�

�
� ! ������ log � ! �log ��


�
!

��

��
�log��� ! ��� ����

Thus	 � lies in the class P of polynomial time computable constants and

� � ������� ����� ���������� ����� ���������� ����� ����������� ������

Proof� Our computations are based on ��� ��� ���� see ��� for a vivid introduction to the subject� The starting
point is Equations ���� and ���� from the proof of Theorem �� Our aim is to transform the constants � and
�� de
ned there�

� ��
X
d��

�

d�

X
��c�d

�

�c ! d��
�
X
d��

�

d�

X
d�c��d

�

c�
�

�� ��
X
d��

�

d�

X
��c�d

�

�c! d��
�
X
d��

�

d�

X
d�c��d

�

c�
�

that are linked by the elementary relation �� � � � ������� These constants are also conveniently expressed
in terms of generalized harmonic numbers

H�r�
n ��

nX
j��

�

jr
�

��



and the related sums

S�r� s� ��
�X
n��

�

ns
H�r�
n A�r� s� ��

�X
n��

����n
ns

H�r�
n � P �r� s� ��

�X
n��

����n
ns

H
�r�
�n �

The following elementary relations hold�

S�r� s� ! A�r� s� �
�X
n��

�� ! ����n�
ns

H�r�
n �

�X
n��

�

�s
H

�r�
�n

ns
�

�

�s��
P �r� s��

With the pairs �r� s� � ��� �� and �r� s� � ��� ��� one gets

P ��� �� � ��S��� �� !A��� ���� P ��� �� � ��S��� �� !A��� ���� ����

Proof of ����� We 
rst use the pair ��� ��

�� �
X
d��

�

d�
�H

���
�d �H

���
d � � P ��� ��� S��� �� � �A��� �� ! S��� ���

Furthermore� squaring ���� and folding by symmetry yields

S��� �� �
�

�
����� !

�

�
���� �

�

�
����� �� �

�

�
���� ! �A��� ���

which is equivalent to the second expression for ��

Proof of ����� We now use the pair ��� ��� We link S��� �� with S��� ��� P ��� �� with P ��� ��� hence also A��� ��
withA��� ��� by means of an old trick of Euler and Nielsen that is based on partial fraction decomposition �����
We take

�

�
�

c��d� c�
� �

c�d

�
�

�

c�d�
!

�

c��d� c��
� �

d��d� c��
� ����

�

�
�

c�d
� �

c��c! d�

�
�

�

c�d�
!

�

c��c! d��
� �

d��c ! d��
� ����

and propose to sum over all pairs �c� d� with d � � and � � c � d� From ����� we obtain

�S��� �� � ������ � S��� ��� ! ����� ! �S��� ��� ����� �
�

�
����

and� from �����
��P ��� ��� S��� ��� � ������ � S��� ��� ! ������ � P ��� ���� ��

These equations relate A��� �� to A��� ��� so that � becomes expressible in terms of A��� ���

A��� �� �
��

��
����� �

�
A��� ��� � �

��

�
���� � �A��� ��

Proof of ����� Sitaramachandrarao ���� notes that A��� �� is related to a quantity already considered by
Ramanujan and can be expressed with the tetralogarithm of argument ��� and ����� De Doelder ��� p� ����
provides the explicit integral manipulations needed to reduce A��� �� to ���� and Li
������ which starts from
the integral representation

A��� ��� ���� � ��

�

Z �

�

log t log��� ! t�
dt

t
�

and gives

A��� �� � � �

��
���� !

�

�
���� log���� ��

��
�log��� !

�

��
�log ��
 ! Li
�

�

�
��

Since the expression ���� of � involves A��� ��� this eventually relates our constant to the tetralogarithm�
Finally� the numerical form is easily obtained �in polynomial time� since the tetralogarithm series converges
geometrically�

��



Probability distribution� The probability distribution of the Gaussian algorithm can be expressed in terms
of complicated series involving the zeta function� the resulting expressions being especially useful for small
values of k�

Theorem��� The probability distribution of the number of iterations of the Gaussian algorithm has initial
values� �� �� Pr�L � �� � �	 and

�� �� Pr�L � �� �
��

�
� ��

�� �� Pr�L � �� � �� ! ���

�
� ����� ! �

�X
n��

����n�n! ����n! �����n! ��� ���

In general	 each �k � PrfL � k ! �g lies in the class P of polynomial time computable constants�

The proof is based on the fact that summations of suitable analytic functions at integer points can be
computed in polynomial time via representations in terms of zeta function series� The following proposition
summarizes the general process�

Proposition��� Let F �z�� z�� � � � � zk� be a rational function of Q�z�� � � � � zk� such that

F �z�� z�� � � � � zk� � z��z
�
� � � �z�k f�z�� � � � � zk��

where f�z�� � � � � zk� is analytic at all points of the product domain � de�ned by � � ��zi� � �	 ��zi� � ��
Then the constant

� �
�X

n������nk��

F �
�

n�
�
�

n�
� � � �

�

nk
� ����

is polynomial time computable�

Proof� Univariate case� We 
rst treat the case of one complex variable �k � �� and set z � z�� A discussion
of the basic technique is given for instance in Vardi�s entertaining book ����� The sum de
ning � converges
as F �z� � O�z�� for z near �� Let M be an integer such that F �z� is analytic for jzj � �

M � The summation
domain in ���� is split according to

� �
MX
n��

F �
�

n
� !

�X
n�M��

F �
�

n
��

and we let �� and �
 denote the two partial sums�

The sum �� requires a 
nite number of evaluations of F at rational points� and thus it lies in P � The
sum �
 is evaluated by means of the Taylor expansion of F at the origin�

F �z� �
�X
r��

frz
r�

De
ne the truncated zeta function as

�M �s� �
�X

n�M��

�

ns
� ��s� �

MX
n��

�

ns
�

Then using the Taylor expansion of F and interchanging summations in the de
nition of �
� one gets

�
 �
�X

n�M��

�X
r��

fr�
�

nr
� �

�X
r��

fr�M �r��

��



The given series exhibits geometric convergence since �M �r� � O��M ! ���r� and it is in P since the value
of ��r� can be computed uniformly in time polynomial in r and the number d of digits required� as e�ects
from standard algorithms based on Euler�Maclaurin summation ��� ����

Multivariate case� By compacity of the analyticity domain of F � there exists a 
xed real number 
 such that
F is analytic in the polydisc j�i � zij � 
 for each �z�� � � � � zk� � �� In particular� the Taylor expansion of F
has radius of convergence � 
 at each point of �� We then choose an integer cut point M such that �

M � 
�

The summation domain of ���� subdivides as

Nk �

	
�� � �M �
 �M ! � � � !��


k
�

which induces a splitting of the sum giving � into �k subregions� The sum taken over �� � �M �k is a 
nite one
that requires only a 
xed number of rational function evaluations� and thus it is in P � The k�fold in
nite
sum is transformed by a process similar to the univariate case intoX

r������rk

fr������rk�M �r�� � � ��M �rk�� ����

which still exhibits geometric convergence and thus lies in P � as the Taylor coe#cients of F are polynomial
time computable� The remaining �k � � sums are lower dimensional sums that are computable by the same
process as ���� with some variables instantiated to values of the form �

nj
� Geometric convergence is ensured

by the choice of M dictated by the compacity argument given above�

The proof also entails a representation of � in the form

� � c��� !
X
r�
M

c���r� �M �r�� ! � � � !
X

r������rk
M

cr������rk�M �r�� � � ��M �rk��

where the c�coe#cients are rational numbers that are easily computable�

A version of Proposition �� is clearly valid for larger classes of analytic functions provided they are both
computable and expandable in polynomial time� Theorem �� directly results from the proposition�

Proof of Theorem �	� The two cases of �� and �� give the idea of the general strategy� First� from the
de
nition of continuants Q�� Q�� we have

�� �
X
m���

�

m�
��m� ! ���

�

and� from the partial fraction decomposition of m��
� �m� ! ����� we get �� � ����� � ��

Similarly� when k � �� we have

�� �
X

m��m���

�

�m�m� ! ����m�m� !m� ! ���
�

The partial fraction expansion of the general term �taken with respect to m��

�

m�
� �m�m� ! ���

!
�

m�
� �m�m� !m� ! ���

� �

m�
� �m�m� ! ��

!
�

m�
� �m�m� !m� ! ��

can be subjected to summation� the contributions of the last two terms telescope� the 
rst � terms� upon
factoring out �m�m���� and �m��m�m�!����� and using the Taylor series of ��!y���� can then be expanded
in terms of zeta functions�

��



The fact that each �k for k � � belongs to P results from Proposition ��� For instance� when k � �� we
have

�� �
�X

n��n��n���

F �
�

n�
�
�

n�
�
�

n�
�

with

F �z�� z�� z�� �
z
�z



�z



�

�� ! z�z� ! z�z����� ! z� ! z�z� ! z�z� ! z�z�z���
�

which satis
es the conditions of Proposition ���

The following values have been determined in this way to great accuracy�

�� � ������� �
��� ����� �����
�� � ������� ���
� ����� �����
�� � ���
��� �
��� ����� ������

Notice however that the computational complexity has an exponent that increases with k�

Trace formul� The traces of powers of G contain informations on the eigenvalues since they are nothing
but power sums of the eigenvalues� A computational process very similar to the one employed for determining
the �k applies here� First� we state a trace formula originally due to Babenko and Meyer�

Theorem��� �i� The trace of the operator Gks satis�es

Tr Gks �
X
i

�
k
i�s �

X
jhj�k

��h
�s


� ��

k��h
��
� with ��h
 �

�Qk � Pk��
 �
p
�Qk � Pk��
� � ���

k

�
� ���


�ii� For s � �	 each Tr Gk is in the class P of constants computable in polynomial time� For instance	
Tr G admits the explicit form

Tr G �
�

�
� �p

�
� �p

�
!

�

�

�X
n��

����nn� �

n! �

	
�n

n



����n�� �� �

��n
��

Proof 
Sketch�� We follow ���� p� ����� From ����� the operator Gks satis
es

Gks �f ��z� �
X
jhj�k

eh�z�sf � h�z��
where eh�z� is the holomorphic function that coincides with

p
jh��z�j on the interval J � The operator Gks is

thus an in
nite sum of operators each of the general form

L����f ��z� � ��z� f � ��z��
with � and � belonging to A��V� � Here� the functions � map the domain V strictly inside itself� then� they
have exactly one 
xed point z� in V for which one has j���z��j � � and ��z�� 	� �� Thus� the spectrum of
L��� is exactly a geometric progression of the form

f��z�����z��ng�n��� ����

as is shown by a direct construction� Then� the corresponding trace is

TrL��� �
��z��

�� ���z��
�

��



The quantity Tr Gks is the sum of the TrL��� where the component operators L��� are taken with � � h

and � � ehs� as follows from �extended� additivity of the trace� A simple computation of the 
xed point of a
homography h then yields the result stated in �i��

Next� we have

P� !Q� � m�� P� !Q� � m�m� ! �� P� !Q� � m�m�m� !m� !m� !m��

The special formula for the trace of G
 results from the identity

Tr G
 �
X
m��

��

m

� ! ���
m

where �m �� � �h� for h�z� �
�

m ! z
�

After expanding the algebraic function that involves

�m �
�

�

�
m !

p
m� ! �

�
�

in inverse powers of m� we perform resummation in terms of zeta functions like in the proof of Theorem ���
The general case results from a simple extension of Proposition �� to algebraic functions �the rational forms
in � �h� that are subjected to summation��

In this way� the trace Tr G is found to be

Tr G � ������� ���������� ����� ����� ���������� ������ ���
��

and one determines
Tr G� � ������� ����� ���������� ����� ������ ������

a value that is especially precious for numerical checks �see below��

Eigenvalues and test functions� The last numerical task is to estimate the dominant and subdominant
eigenvalues� �
 and �
 that characterize the rate of the geometric decay of the probabilities �k�

The general approach to determining the dominant eigenvalue uses a method already employed by Wirsing
���� in the analysis of the Euclidean algorithm� It is based on the positivity of the operator Gs for real s 	 ��
valid in particular for s � �� and is summarized by the following proposition�

Proposition�	� Let f be a function that is analytic and strictly positive on the interval ��� ��� Assume that
there exist two constants �� � with � � � � � such that

� �
G�f ��x�
f�x�

� �� ����

for all x � ��� ��� Then the dominant eigenvalue �
 of G satis�es

� � �
 � ��

Proof� If f satis
es the assumptions� it satis
es similar assumptions in an open rectangle of the form R ��
� � �� � ! ����� � ��!�� with � 	 � and � 	 � su#ciently small� If eV is the disk of diameter � � �� � ! ����
there exists an integer k� such that �

jhj�k

h�eV� � R� for all k � k��

Then� the iterate g �� Gk� �f� is an element of A��eV�� and� from the remark in the beginning of Section ��
we can adapt all the properties of Section � to such a space� When iterating the relation ����� we have

�k �
Gk�g��x�
g�x�

� �k or � �

	Gk�g��x�
g�x�


�	k

� ��

On the other hand� using ����� we deduce that �
 has to be contained in the interval ��� ���

��



Thus� proving e�ective bounds on the dominant eigenvalue reduces to �nding �by whatever means&�
suitable �test functions that satisfy the inequality ����� with � � � su#ciently small�

A 
rst class of bounds is obtained by adapting Wirsing�s approach ���� and introducing a speci
c set of
test functions �a�t� whose transforms have a simple manageable form�


��
��
�a�t� �

�

�� ! at��� ! �a! ��t��� ! �a! ��t��� ! �a! ��t�


a�t� � G��a��t� � �

�

�

�t! a! ���t ! a! ���t! a! ��
�

����

Choosing a � 
	�
����� we discover that the ratio 
a�t���a�t� always lies in the interval ������� ������ for t � ��� ���

�This fact can be checked by purely algebraic computations if desired� since it is only relative to exactly
known rational functions�� We therefore obtain a 
rst proven bound of

���

����
� �
 �

���

����
�

Eigenvalues and truncations� In order to obtain more re
ned estimates on �
� we need to 
nd test
functions that are expected to be �good approximations to the dominant eigenfunctions� while still being
computable e#ciently� The idea is to approximate the e�ect of G on analytic functions represented by their
Taylor expansion at some point a of the interval ��� ���

We thus examine the transforms

hj�x� � G��x� a�j ��x� �
�X
n��

�

�n! x�


	
�

n! x
� a


j
�

By the binomial theorem� we 
nd

hj�x� �

jX
���

	
j

�



��a�j�� ��� ! �� x! ���

where ��s� w� �
P�

n���n ! w��s is the Hurwitz zeta function� The Hurwitz zeta function is itself easily
expanded at any point a�

��s� x ! �� � ��s� a! �� �
	
s

�



��s ! �� a! �� �x� a� !

	
s ! �

�



��s ! �� a! �� �x� a�� � � � � �

�
�X
i��

����i
	
s ! i � �

i



��s ! i� � ! a� �x � a�i�

Thus� viewed as acting on series expansions at x � a� the operator G is expressed by an in
nite matrix
M � �Mi�j�� where Mi�j is the coe#cient of �x� a�i in G��x� a�j�� that is

Mi�j � ����i
jX

���

	
j

�


	
i ! � ! �

i



��a�j�� ��� ! �! i� a! ���

For instance� the matrix at a � � assumes the simple form

Mi�j � ����i
	
i ! j ! �

i



��i ! j ! ���

��



In the sequel� guided by numerical experiments� we adopt the value a � ��� that gives faster convergence�
in that case� the quantity ��s� ��� even reduces to the classical Riemann zeta function

��s�
�

�
� � �s

�
�

�s
!

�

�s
! � � �

�
� �s

��� ! ��s��� ! ��s�
�
�

For each m� the 
nite matrix T 
m� is de
ned as the square submatrix obtained from �Mi�j� by restricting
the indices to � � i� j � m� and accordingly it may be viewed as operating on polynomials of degree less
than m� T 
m��f � is the truncated Taylor series at a of the transform by G of the truncated Taylor series of f
at a� For that reason� we refer to the T 
m� as truncated operators�

The T 
m� provide a sequence of approximations to operator G so that their eigenvalues and eigenfunctions
may be expected to provide reasonably good approximations to the corresponding spectral characteristics of

G� We let �
m�

 denote the dominant eigenvalue of T 
m� and p
m� be the corresponding eigenfunction which is

a polynomial of degree at most equal to m � ��

Using computer algebra� we have determined the eigenfunctions of the T 
m� for many values of m � ���
and numerical accuracy up to ��� digits� �The heaviest such computation required about ���� machine cycles�
that is to say at the moment a few hours of computing time�� The dominant eigenfunctions considered
are all positive on the interval ��� �� and thus are good candidates as test functions along the lines of
Proposition ��� In that case� the transforms G�p
m�� are computed numerically by mean of well�known �and
e#cient� algorithms available for the zeta function� We discover that the ratios

�
m��x� �
G�p
m���x�

p
m��x�

have an amplitude of variation�

�
m� � sup
x�
����

�
m��x�� inf
x�
����

�
m��x��

that is very small� For instance� a rationalized form of p

� is

p

��x� � �� ��

��
�x� �

�
� !

���

���
�x� �

�
�� � ����

����
�x� �

�
���

It is seen that �

��x� varies smoothly between ����� and ����� over the interval� so that �

� � ����� and
this provides the bounds

���

����
� �
 � ���

����
�

Moving to higher values of m� we discover that the variation �
��� is less than � � ����� with a pronounced
plateau over ����� ���� suggesting the more precise value

�
 � ������� ����� ������ ������ ����

which is then fully con
rmed by the computation at m � ���

We observe that� if required� such numerical computations can be completely validated by purely algebraic
manipulations only� it su#ces to use truncated Taylor expansions of the Hurwitz zeta function� then rational
coe#cient approximations� and 
nally exact computations with algebraic numbers �for determining the
maximum and minimum of a rational functions with rational coe#cients�� We have not deemed this tedious
veri
cation necessary since the numerical evidence gathered is overwhelming� In addition� a further check is
possible since the traces are known to great accuracy �see below��

Given the approximation ���� and the value of the trace� Tr G� � �������� we easily deduce a bound on
the subdominant eigenvalue� since j�
j � �Tr G� � ��
�

�	� � ���������

��
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Theorem�
� The dominant and subdominant eigenvalues of G satisfy

�
 � ������� ����� ������ ������ j�
j � ������

If we allow ourselves to give up some rigour� it is possible to go much further� Examination of all the
eigenvalues of the truncated operators T 
m� reveals that most of them stabilize to a 
xed set of de
nite
values� with the occasional occurrence of some spurious values that eventually disappear as m increases� It
is then natural to conjecture that the stable limit values do yield the complete spectrum of G� Again a check
via traces is possible and� in this way� we have obtained convincing �but not proven� values for the 
rst ��
eigenvalues of operator G with an accuracy almost certainly better than ������ Here is a listing of our 
rst
estimates�

���

�
� !������� ����� ����� ����������

���

�
� �������� ����� ����� ����������

���

�
� !������� ����� ����� ����������

�
�

�
� �������� ����� ����� ����������

���

�
� !������� ����� ����� �����������

The �� eigenvalues found are all simple and they alternate in sign� this con
rms� two properties that have
been conjectured but not established for all the Gs operators for real values s 	 �� We also observe that the
agreement between the sum of these values and TrG is of the same order as the last eigenvalue found while
the sum of squares agrees to the stated precision of ������ with our earlier computation of Tr G��

Finally� examination of the ratios rj � �j�
��j���
 shows a remarkable stability� for instance

r� � ������� r� � ������� r� � ������� r
 � ������� r� � �������

��



and so on� The spectrum of G is thus very nearly a geometric progression of ratio ������ A simpli
ed model
that we now explain sheds some light on such regularities�

For large enough s� the operator Gs should be dominated by its 
rst term�

Cs�f ��x� � �

�� ! x�s
f�

�

� ! x
��

since the other terms composing Gs are of an exponentially smaller order as a function of s� From con�
siderations recalled above ����� the spectrum of Cs forms a geometric progression determined exactly from
local properties of the operator near the 
xed point of �� ! x���� namely ��
� where 
 � �� !

p
���� is

the golden ratio� Here� the dominant eigenvalue of Cs is b���s � 
�s and the other eigenvalues are given byb�j�s � ����j��
�s��j� This model yields b���
 � 
�
 � �������� and the ratio between successive eigenvalues
is �
� � ��������� This is a fairly good approximation to what is observed for the eigenvalues of G
 and it
provides yet another �plausible con
rmation of our numerical data�

The Gauss�Kuzmin�Wirsing constant� The numerical methods developed here for the G
 operator
apply also to the G� operator that is closely tied with continued fractions and the Euclidean algorithm�
Thus� as a further test� we have applied them to the computation of the Gauss�Kuzmin�Wirsing constant
that is� up to sign� the second eigenvalue ���� of the operator G�� We 
nd to �� digits of accuracy�

���� � �������� ����� ���������� ����� ������
The next eigenvalues of the G� operator determined in this way are

���� � !������� ����� ����� �����
�
�� � �������� ����� ����� �����
���� � !������� ����� ����� �����
���� � �������� ����� ����� �����
���� � !������� ����� ����� �����
�	�� � �������� ����� ����� �����

In particular this computation indicates the presence of a spurious value amongst the ones attributed to
Babenko and printed in ���� p� ����� Scepticism concerning the values given in ���� p� ���� has been expressed
repeatedly� for instance by Mayer� Knuth �private communication� ����� and MacLeod ����� Our computa�
tions that are well validated by trace formul' provide an independent con
rmation of the observations of
these authors�

Conclusion� This paper has demonstrated that the lattice reduction algorithm in dimension � deriving
from Gauss�s scheme is in a strong sense a ��dimensional lifting of the continued fraction algorithm� An
essential r	ole is played by functional analysis methods and dominant spectral properties of Ruelle�Mayer
operators� These operators generalize the Perron�Frobenius operator developed for continued fractions and
the Euclidean algorithm� The methods used lead to a complete analysis of the Gaussian algorithm in the
average case� in probability� and in dynamic behaviour� under either a continuous or a discrete model�

The centered algorithm discussed in Section � is brie$y examined in ��� and further studied in ����� Also�
it has been recently noticed ���� that the methods of this paper apply to the analysis of an old algorithm for
comparing �multiprecision� rationals or equivalently for computing the sign of ��� determinants with integer
entries� Such problems are of general interest in symbolic computation as well as in computational geometry�
The algorithm compares two rationals by computing the corresponding continued fraction expansions on a
call�by�need basis� The analysis of ���� is similar to the ones given here and in ���� except that fundamental
squares take the place of fundamental disks�

In this paper� we have considered the case when the input density is uniform� A wide class of nonuniform
input distributions can be treated by means of generalized Ruelle�Mayer operators� In this way a whole range
of analyses encompassing continued fractions and ��dimensional lattice reduction can be obtained �����

��
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