ON A THEOREM OF JORDAN

JEAN-PIERRE SERRE

Abstract

The theorem of Jordan which I want to discuss here dates from 1872. It is an elementary result on finite groups of permutations. I shall first present its translations in Number Theory and Topology.

1. Statements

1.1. Number theory. Let $f=\sum_{m=0}^{n} a_{m} x^{m}$ be a polynomial of degree n, with coefficients in \mathbf{Z}. If p is prime, let $N_{p}(f)$ be the number of zeros of f in $\mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z}$.

Theorem 1. Assume
(i) $n \geq 2$,
(ii) f is irreducible in $\mathbf{Q}[x]$.

Then
(a) There are infinitely many p 's with $N_{p}(f)=0$.
(b) The set $P_{0}(f)$ of p 's with $N_{p}(f)=0$ has a density $c_{0}=c_{0}(f)$ which is >0.
[Recall that a subset P of the set of primes has density c if

$$
\lim _{X \rightarrow \infty} \frac{\text { number of } p \in P \text { with } p \leq X}{\pi(X)}=c
$$

where $\pi(X)$ is as usual the number of primes $\leq X$.
Moreover,
Theorem 2. With the notation of Theorem 1, one has $c_{0}(f) \geq \frac{1}{n}$, with strict inequality if n is not a power of a prime.
Example. Let $f=x^{2}+1$. One has $p \in P_{0}(f)$ if and only if $p \equiv-1(\bmod 4)$; this set is well-known to have density $1 / 2$. We shall see more interesting examples in §5

1.2. Topology. Let \mathbf{S}_{1} be a circle.

Let $f: T \rightarrow S$ be a finite covering of a topological space S. Assume:
(i) f has degree n (i.e. every fiber of f has n elements), with $n \geq 2$,
(ii) T is arcwise connected and not empty.

Theorem 3. There exists a continuous map $\varphi: \mathbf{S}_{1} \rightarrow S$ which cannot be lifted to the covering T (i.e. there does not exist any continuous map $\psi: \mathbf{S}_{1} \rightarrow T$ such that $\varphi=f \circ \psi$).

[^0]1.3. Finite groups. Let G be a group acting on a finite set X. Put $n=|X| \frac{1}{1}$

Theorem 4 (Jordan [9]). Assume that
(i) $n \geq 2$,
(ii) G acts transitively on X.

Then there exists $g \in G$ which acts on X without fixed point.
Assume that G is finite (which is the case if G acts faithfully on X). Let G_{0} be the set of $g \in G$ with no fixed point. Call c_{0} the ratio $\frac{\left|G_{0}\right|}{|G|}$.
Theorem 5 (Cameron-Cohen [4]). One has $c_{0} \geq \frac{1}{n}$. Moreover, if n is not a power of a prime, $c_{0}>\frac{1}{n}$.

2. Proofs of the group theoretical statements

2.1. Burnside's Lemma. Let G be a finite group acting on a finite set X. If $g \in G$, let $\chi(g)$ be the number of fixed points of g on X, i.e. $\chi(g)=\left|X^{g}\right|$.

Burnside's Lemma (cf. [6, §4.2], [3, §145]). The number of orbits of G in X is equal to

$$
\langle\chi, 1\rangle=\frac{1}{|G|} \sum_{g \in G} \chi(g)=\int \chi
$$

(If φ is a function on G, and S is a subset of G, we denote by $\int_{S} \varphi$ the number $\frac{1}{|G|} \sum_{g \in S} \varphi(g)$. When $S=G$, we write $\int \varphi$ instead of $\int_{G} \varphi$.)

By decomposing X into orbits, it is enough to prove the lemma for $X \neq \emptyset$ and G transitive on X, i.e. $X \simeq G / H$ for some subgroup H of G.

We give three proofs, in different styles.
First Proof: "Analytic Number Theory Style".

$$
\begin{aligned}
\sum_{g \in G} \chi(g) & =\sum_{g \in G} \sum_{\substack{x \in X \\
g \cdot x=x}} 1 \\
& =\sum_{x \in X} \sum_{\substack{g \in G \\
g \cdot x=x}} 1 \\
& =\sum_{x \in X}|H|=|H| \cdot|X|=|G| .
\end{aligned}
$$

Second Proof: "Combinatorics Style". Let $\Omega \subset G \times X$ be the set of pairs (g, x) with $g \cdot x=x$. We compute $|\Omega|$ by projecting on each factor. In the projection $\Omega \rightarrow G$, the fiber of $g \in G$ has $\chi(g)$ elements and hence

$$
|\Omega|=\sum_{g \in G} \chi(g)
$$

On the other hand, in the projection $\Omega \rightarrow X$, the fiber of $x \in X$ is a conjugate of H and hence

$$
|\Omega|=\sum_{x \in X}|H|=|H| \cdot|G / H|=|G|
$$

[^1]Third Proof: "Algebra Style". The function χ is the character of the permutation representation defined by X. Hence, $\langle\chi, 1\rangle$ is the dimension of the space of G-invariant elements of that representation, which is obviously 1.

2.2. Proof of Theorem 5 .

Lemma. $\int \chi^{2} \geq 2$.
First Proof (by Burnside's Lemma). If $g \in G, \chi^{2}(g)$ is the number of points of $X \times X$ fixed by g and $\int \chi^{2}$ is the number of orbits of G on $X \times X$, which is ≥ 2, as one sees by decomposing $X \times X$ into the diagonal and its complement.

This also shows that $\int \chi^{2}=2$ if and only if G is doubly transitive on X.
Second Proof (by Group Representations). We have $\chi=1+\chi^{\prime}$, where χ^{\prime} is a nonzero real character with $\int \chi^{\prime}=0$. Therefore,

$$
\int \chi^{2}=1+\int \chi^{\prime 2} \geq 2
$$

with equality if and only if χ^{\prime} is irreducible.
We now prove Theorem [5. Recall that G_{0} is the set of $g \in G$ with $\chi(g)=0$. If $g \notin G_{0}$, we have $1 \leq \chi(g) \leq n$ and therefore

$$
(\chi(g)-1)(\chi(g)-n) \leq 0
$$

Hence,

$$
\int_{G-G_{0}}(\chi(g)-1)(\chi(g)-n) \leq 0
$$

i.e.,

$$
\int_{G}(\chi(g)-1)(\chi(g)-n) \leq \int_{G_{0}}(\chi(g)-1)(\chi(g)-n)=n \int_{G_{0}} 1 .
$$

The right hand side is

$$
n \int_{G_{0}} 1=n c_{0}
$$

and the left hand side is

$$
\int_{G}\left(\chi^{2}-(n+1) \chi+n\right)
$$

By the lemma, and the fact that $\int \chi=1$, we have

$$
\int_{G}\left(\chi^{2}-(n+1) \chi+n\right) \geq 2-(n+1)+n=1
$$

hence

$$
1 \leq n c_{0}
$$

2.3. Equality in Theorem 5. The proof of Theorem 5 shows that equality holds if and only if $\int \chi^{2}=2$ and $(\chi(g)-1)(\chi(g)-n)=0$ for every $g \in G-G_{0}$, i.e. if and only if G is doubly transitive and no element of $G-\{1\}$ fixes 2 points. By a theorem of Frobenius [8, the set $N=\{1\} \cup G_{0}$ is then a normal subgroup of G, and G is a semidirect product: $G=H \cdot N$. Hence, $|N|=n$, and $(n-1) /|G|=\left|G_{0}\right| /|G|=c_{0}=1 / n$, i.e. $|G|=n(n-1),|H|=n-1$. Moreover, the action of H on $N-\{1\}$ by conjugation is a free action. Since H and $N-\{1\}$ have the same number of elements, one sees that H acts freely and transitively on $N-\{1\}$. This implies that N is a p-group for some prime p (and even more: N is an elementary abelian p-group). Hence, n is a power of a prime.

Remarks.

1. It is only for convenience that we have used Frobenius's Theorem [8]. It is possible to give a direct proof, as was already done in Jordan's paper [9].
2. Conversely, if n is a power of a prime, there exists a pair (G, X) with $|X|=n$ and $c_{0}=1 / n$: take $X=k$, a finite field with n elements, and define G as the group of affine transformations $x \mapsto a x+b$ with $a \in k^{*}, b \in k$.

3. Proof of the covering space statement

With the same notation as in $\S 1.2$, choose a point $s \in S$. Let $X=f^{-1}(s)$ be the fiber of s. Let $G=\pi_{1}(S, s)$ be the fundamental group of S at the point s. There is a natural action of G on X, and the hypothesis that T is arcwise connected implies that every two points in X can be connected by a path and hence G acts transitively on X. Since $n=|X| \geq 2$, Theorem $\square_{\text {shows that there exists } g \in G}$ which has no fixed point on X. If we represent g by a loop

$$
\varphi:\left(\mathbf{S}_{1}, s_{0}\right) \rightarrow(S, s)
$$

where s_{0} is a chosen point in \mathbf{S}_{1}, then φ cannot be lifted to T. Indeed, if $\psi: \mathbf{S}_{1} \rightarrow T$ were a lift of φ, the point $x=\psi\left(s_{0}\right)$ would be a fixed point of g.

4. Proof of the number theoretic statement

We now prove Theorems 1 and 2 with the help of Theorems 4 and 5 Let x_{1}, \ldots, x_{n} be the roots of f in an algebraic closure $\overline{\mathbf{Q}}$ of \mathbf{Q}. Let $E=\mathbf{Q}\left(x_{1}, \ldots, x_{n}\right)$ and let $G=$ Aut $E=$ the Galois group of E / \mathbf{Q}. The action of G on the set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is transitive since f is irreducible over \mathbf{Q}. Let G_{0} be the subset of G having no fixed points. By Theorems 4 and 5, we have

$$
\frac{\left|G_{0}\right|}{|G|} \geq \frac{1}{n}
$$

Let us define a finite set S of "bad" prime numbers, namely, those which divide the discriminant of f or divide the coefficient of x^{n}. Assume now that $p \notin S$. Then the reduction f_{p} of f modulo p is a polynomial of degree n, whose n roots (in an algebraic closure $\overline{\mathbf{F}}_{p}$ of \mathbf{F}_{p}) are distinct. Let X_{p} be the set of such roots. We may identify X_{p} and X in the following way:

Let $R=\mathbf{Z}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ring generated by the x_{i} 's. Choose a homomorphism $\varphi: R \rightarrow \overline{\mathbf{F}}_{p}$ (such a homomorphism exists since $p \nmid a_{0}$, and any other such homomorphism is of the form $\varphi \circ s$, with $s \in G$). Such a φ defines a bijection $\varphi_{p}: X \rightarrow X_{p}$, which is well-defined up to an element of G. Let π_{p} be the Frobenius automorphism of $\overline{\mathbf{F}}_{p}$, i.e., $\lambda \mapsto \lambda^{p}$. The map π_{p} acts on X_{p}. If we identify X_{p} with X via φ_{p}, we get a permutation σ_{p} of X (depending on the choice of φ). One proves that this permutation belongs to G. It is called the Frobenius substitution of p (relative to the choice of φ); it is well-defined up to inner conjugation in G. We have

If $p \notin S, N_{p}$ is the number of $x \in X$ fixed by σ_{p}.
This follows from the corresponding fact for X_{p} and π_{p}. (More generally, if σ_{p} is a product of disjoint cycles of lengths l_{α}, then f_{p} decomposes into a product of \mathbf{F}_{p}-irreducible polynomials of degrees l_{α}.) Hence, $N_{p}=0$ if and only if $\sigma_{p} \in G_{0}$, where G_{0} is the set of $s \in G$ which acts on X without fixed point. Note that G_{0} is stable under conjugation so that " $\sigma_{p} \in G_{0}$ " makes sense.

We now recall Chebotarev's Density Theorem (see Notes for Part 4):
Chebotarev's Density Theorem ([19, [1]). Let C be a subset of G, stable under conjugation (i.e. a union of conjugacy classes). Then the set $P_{C, S}$ of primes $p \notin S$ with $\sigma_{p} \in C$ has a density, which is equal to $\frac{|C|}{|G|}$.

Applying this theorem to the case $C=G_{0}$ shows that the set $P_{0}(f)$ of Theorem 1 has density $c_{0}=\frac{\left|G_{0}\right|}{|G|}$; by Theorems 4 and 5 this completes the proofs of Theorems 1 and 2 .

5. Example: $N_{p}(f)$ FOR $f=x^{n}-x-1$

5.1. In this section, we consider the special case of $f=x^{n}-x-1, n \geq 2$, and we relate the numbers $N_{p}(f)$ to the coefficients of suitable power series. We limit ourselves to stating the results; for the proofs, see the hints given in the Notes.

Here is a small table of $N_{p}(f)$ for $f=x^{n}-x-1, n=2,3,4,5$:

p	$n=2$	$n=3$	$n=4$	$n=5$
2	0	0	0	0
3	0	0	0	0
5	1	1	0	0
7	0	1	1	0
11	2	1	1	0
13	0	0	1	0
17	0	1	2	2
19	2	1	0	1
23	0	2	1	1
\cdots	\cdots	\cdots	\cdots	\cdots
59	2	3	1	0
\cdots	\cdots	\cdots	\cdots	\cdots
83	0	1	4	0

5.2. The case $n=2$. The discriminant of $f=x^{2}-x-1$ is 5 ; the polynomial f has a double root $\bmod 5$; hence $N_{5}(f)=1$. For $p \neq 5$, we have

$$
N_{p}(f)=\left\{\begin{array}{lll}
2 & \text { if } p \equiv \pm 1 \quad(\bmod 5) \\
0 & \text { if } p \equiv \pm 2 \quad(\bmod 5)
\end{array}\right.
$$

If one defines a power series $F(q)=\sum_{m=0}^{\infty} a_{m} q^{m}$ by

$$
F=\frac{q-q^{2}-q^{3}+q^{4}}{1-q^{5}}=q-q^{2}-q^{3}+q^{4}+q^{6}-q^{7}-q^{8}+q^{9}+\cdots
$$

the above formula can be restated as

$$
N_{p}(f)=a_{p}+1 \quad \text { for all primes } p
$$

Note that the coefficients of F are strongly multiplicative: one has $a_{m m^{\prime}}=a_{m} a_{m^{\prime}}$ for every $m, m^{\prime} \geq 1$. The corresponding Dirichlet series $\sum_{m=1}^{\infty} a_{m} m^{-s}$ is the L-series $\prod_{p}\left(1-\left(\frac{p}{5}\right) p^{-s}\right)^{-1}$.
5.3. The case $n=3$. The discriminant of $f=x^{3}-x-1$ is -23 ; the polynomial f has a double root and a simple root $\bmod 23$; hence $N_{23}(f)=2$. For $p \neq 23$, one has:

$$
N_{p}(f)= \begin{cases}0 \text { or } 3 & \text { if }\left(\frac{p}{23}\right)=1 \\ 1 & \text { if }\left(\frac{p}{23}\right)=-1\end{cases}
$$

Moreover, in the ambiguous case where $\left(\frac{p}{23}\right)=1, p$ can be written either as $x^{2}+$ $x y+6 y^{2}$ or as $2 x^{2}+x y+3 y^{2}$ with $x, y \in \mathbf{Z}$; in the first case, one has $N_{p}(f)=3$; in the second case, one has $N_{p}(f)=0$. (The smallest p of the form $x^{2}+x y+6 y^{2}$ is $59=5^{2}+5 \cdot 2+6 \cdot 2^{2}$, hence $N_{59}(f)=3$; cf. table above.)

Let us define a power series $F=\sum_{m=0}^{\infty} a_{m} q^{m}$ by the formula

$$
\begin{aligned}
F & =q \prod_{k=1}^{\infty}\left(1-q^{k}\right)\left(1-q^{23 k}\right) \\
& =\frac{1}{2}\left(\sum_{x, y \in \mathbf{Z}} q^{x^{2}+x y+6 y^{2}}-\sum_{x, y \in \mathbf{Z}} q^{2 x^{2}+x y+3 y^{2}}\right) \\
& =q-q^{2}-q^{3}+q^{6}+q^{8}-q^{13}-q^{16}+q^{23}-q^{24}+\cdots .
\end{aligned}
$$

The formula for $N_{p}(f)$ given above can be reformulated as:

$$
N_{p}(f)=a_{p}+1 \quad \text { for all primes } p
$$

Note that the coefficients of F are multiplicative: one has $a_{m m^{\prime}}=a_{m} a_{m^{\prime}}$ if m and m^{\prime} are relatively prime. The q-series F is a newform of weight 1 and level 23 . The associated Dirichlet series is

$$
\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}=\prod_{p}\left(1-\frac{a_{p}}{p^{s}}+\left(\frac{p}{23}\right) \frac{1}{p^{2 s}}\right)^{-1}
$$

5.4. The case $n=4$. The discriminant of $f=x^{4}-x-1$ is -283 . The polynomial f has two simple roots and one double root $\bmod 283$, hence $N_{283}(f)=3$. If $p \neq 283$, one has

$$
N_{p}(f)= \begin{cases}0 \text { or } 4 & \text { if } p \text { can be written as } x^{2}+x y+71 y^{2} \\ 1 & \text { if } p \text { can be written as } 7 x^{2}+5 x y+11 y^{2} \\ 0 \text { or } 2 & \text { if }\left(\frac{p}{283}\right)=-1\end{cases}
$$

(These cases correspond to the Frobenius substitution of p being conjugate in S_{4} to $(12)(34)$ or $1,(123),(1234)$ or (12) respectively.)

A complete determination of $N_{p}(f)$ can be obtained via a newform $F=$ $\sum_{m=0}^{\infty} a_{m} q^{m}$ of weight 1 and level 283 given in [5], p. 80, example 2]:
$F=q+\sqrt{-2} q^{2}-\sqrt{-2} q^{3}-q^{4}-\sqrt{-2} q^{5}+2 q^{6}-q^{7}-q^{9}+2 q^{10}+q^{11}+\sqrt{-2} q^{12}+\cdots$.
One has:

$$
N_{p}(f)=1+\left(a_{p}\right)^{2}-\left(\frac{p}{283}\right) \quad \text { for all primes } p \neq 283
$$

I do not know any closed formula for F, but one can give one for its reduction $\bmod 283$; see Notes. This is more than enough to determine the integers $N_{p}(f)$, since they are equal to $0,1,2$ or 4 .
5.5. The case $n \geq 5$. Here the only known result seems to be that $f=x^{n}-x-1$ is irreducible (Selmer [15]) and that its Galois group is the symmetric group S_{n}. No explicit connection with modular forms (or modular representations) is known, although some must exist because of the Langlands program.

Notes

1.1. Here is another interpretation of $c_{0}(f)$. Let $K=\mathbf{Q}[x] /(f)$ be the number field defined by f. We have $[K: \mathbf{Q}]=n \geq 2$. For every $d \geq 1$, let $a_{d}(K)$ be the number of the ideals \mathfrak{a} of the ring of integers of K with $N(\mathfrak{a})=d$. The zeta function of K is the Dirichlet series

$$
\zeta_{K}(s)=\sum_{d \geq 1} \frac{a_{d}(K)}{d^{s}}
$$

Using standard recipes in analytic number theory, one can show that Theorem $\mathbb{1}$ is equivalent to saying that ζ_{K} is lacunary: most of its coefficients are zero. More precisely, if we denote by $N_{K}(X)$ the number of $d \leq X$ with $a_{d}(K) \neq 0$, one has

$$
N_{K}(X) \sim c_{K} \frac{X}{(\log X)^{c_{0}(f)}} \quad \text { for } X \rightarrow \infty
$$

where c_{K} is a strictly positive constant (cf. Odoni [13] and Serre [16, §3.5]). As for Theorem 2, it can be reformulated as

$$
N_{K}(X)=O\left(\frac{X}{(\log X)^{1 / n}}\right) \quad \text { for } X \rightarrow \infty
$$

with " O " replaced by " o " if n is not a power of a prime.
1.2. Jordan's Theorem (Theorem (4). The standard proof of Theorem 4 relies on the fact that the stabilizer H_{x} of a point x of X has $|G| / n$ elements, since $X \simeq G / H_{x}$. When x runs through the n points of X, the subgroups H_{x} have at least one point in common, namely the element 1. Hence, their union has at most $n \cdot\left|H_{x}\right|-(n-1)$ elements, i.e. at most $|G|-(n-1)$ elements. This shows that there are at least $n-1$ elements of G which do not belong to any H_{x}, i.e. which have no fixed point. The interest of Theorem 5 is that it replaces the crude lower bound $n-1$ by $|G| / n$, which is close to being optimal.

Remark. Another way of stating Theorem 4 is:
Theorem 4^{\prime}. If H is a proper subgroup of a finite group G, there is a conjugacy class of G which does not meet H.

In group-character language, this can be restated as:
Theorem $4^{\prime \prime}$. There exist two characters of G which are distinct but have the same restriction to H.

In other words, the characters of G cannot be detected by their restriction to a proper subgroup of G. One needs at least two such subgroups (such as, for $\mathbf{G L}_{2}\left(\mathbf{F}_{q}\right)$, a Borel subgroup and a non-split Cartan subgroup). This is quite different from the case of compact connected Lie groups, where just one maximal torus is enough.
1.3. Theorem 5. Theorem 5 originated with a question of Lenstra, in relation with Theorem [2. See Boston et al. [2] for more on this story.
2. Burnside's Lemma. The first two proofs we offer are basically the same. Only their styles are different: analytic number theorists love to write $\sum 1$ and to permute summations, while combinatorists are fond of counting the elements of a set by mapping it into another one.

Note that Burnside's Lemma implies directly the weak form of Jordan's Theorem (Theorem 4 above). Indeed, since the mean value of $\chi(g)$ is 1 , and the element $g=1$ contributes $n>1$, there has to be some $g \in G$ with $\chi(g)<1$, hence $\chi(g)=0$.

Note also that Burnside's Lemma, combined with Chebotarev's Density Theorem, gives the following result:

If f is as in §1.1, the mean value of $N_{p}(f)$ for $p \rightarrow \infty$ is equal to 1 . In other words:

$$
\sum_{p \leq X} N_{p}(f) \sim \pi(X) \quad \text { for } X \rightarrow \infty
$$

This is due to Kronecker [10] and Frobenius [7], in the slightly weaker form where "natural density" is replaced by "analytic density".
3. Lifting circles to coverings. Theorem 3 does not extend to infinite coverings. Indeed, it is easy to construct an infinite free group G having a subgroup H of infinite index such that $\cup g \mathrm{Hg}^{-1}=G$. If one chooses a connected graph S with fundamental group isomorphic to G, the covering $T \rightarrow S$ associated with H has the property that every continuous map $\mathbf{S}_{1} \rightarrow S$ can be lifted to T.
4. Chebotarev Density Theorem. The original proof can be found in [19] ; it uses "analytic density" instead of "natural density". The more precise form we give was pointed out by Artin [1], even before Chebotarev's Theorem was proved.

For the history of this theorem, see [11, which also includes a sketch of a proof. For applications, see for instance [16] or [18].

Note that, for the application we make to Theorems 1 and 2 a weaker version of the theorem would be enough, namely the one proved by Frobenius [7] (with, once again, the proviso that "analytic density" has to be replaced by the "natural density").
5.1. Computation of $N_{p}(f)$. For a given polynomial f, such as $x^{3}-x-1$, $x^{4}-x-1$, etc., the numerical computation of $N_{p}(f)$ is an interesting question, especially for large values of the prime p. There are essentially two methods:

- The naive one is to try successively all the values of $x \bmod p$, and count those which are zeros of $f \bmod p$. This is slow; it requires exponential time (with respect to the number of digits of p); it is reasonable for very small primes only (up to 5 digits, say).
- The second method is much faster ("P" instead of "NP") and can handle primes of about 100 digits. It relies on the standard fact that computing x^{p} by successive squarings takes about $\log p$ operations. One applies this principle to the finite \mathbf{F}_{p}-algebra $A_{p}=\mathbf{F}_{p}[X] /(f)$,
with x equal to the image of X in A_{p}. Once x^{p} is computed, one gets $N_{p}(f)$ by the formula:
$n-N_{p}(f)=$ rank of the linear endomorphism $u \mapsto\left(x^{p}-x\right) u$ of A_{p}.
Note that a variant of this method is incorporated in programs such as "PARI", where one has only to ask "polrootsmod (f, p) ?" to get the list of the roots of $f \bmod p$.
5.2. $N_{p}(f)$ for $f=x^{2}-x-1$. For $p \neq 2,5$, the roots of f_{p} in $\overline{\mathbf{F}}_{p}$ are $(1 \pm \sqrt{5}) / 2$; hence $N_{p}(f)=2$ if 5 is a square $(\bmod p)$, and $N_{p}(f)=0$ if not. By quadratic reciprocity, the first case occurs if and only if $p \equiv \pm 1(\bmod 5)$. A direct proof is as follows: call z a primitive $5^{\text {th }}$ root of unity in $\overline{\mathbf{F}}_{p}$ and put $x=-\left(z+z^{4}\right), x^{\prime}=-\left(z^{2}+z^{3}\right)$. One has $x+x^{\prime}=1$ and $x x^{\prime}=-1$ because $1+z+z^{2}+z^{3}+z^{4}=0$. Hence, x, x^{\prime} are the zeros of f_{p}. The action of the Frobenius σ_{p} on $X=\left\{x, x^{\prime}\right\}$ is clear: we have $\sigma_{p}(x)=-\left(z^{p}+z^{-p}\right)$. If $p \equiv \pm 1(\bmod 5)$, we have $z^{p}=z^{ \pm 1}$, hence $\sigma_{p}(x)=x, \sigma_{p}\left(x^{\prime}\right)=x^{\prime}$, and $N_{p}(f)=2$; if $p \equiv \pm 2(\bmod 5)$, the same argument shows that σ_{p} permutes x and x^{\prime}, hence $N_{p}(f)=0$.

Remark. Even though the two cases $N_{p}(f)=0$ and $N_{p}(f)=2$ arise "equally often" (in an asymptotic sense, when $p \rightarrow \infty$), yet there is a definite bias towards the first case. This is an example of what Rubinstein and Sarnak call "Chebyshev Bias"; cf. 14.
5.3. $N_{p}(f)$ for $f=x^{3}-x-1$. Let $E=\mathbf{Q}[X] /(f)$ be the cubic field defined by f, and let L be its Galois closure. We have $\operatorname{Gal}(L / \mathbf{Q})=S_{3}$. The field L is a cubic cyclic extension of the quadratic field $K=\mathbf{Q}(\sqrt{-23})$; it is unramified, and, since $h(-23)=3$, it is the Hilbert class field of K, i.e. the maximal unramified abelian extension of K (as a matter of fact, it is also the maximal unramified extension-abelian or not-of K, as follows from the Odlyzko bounds; see e.g. Martinet [12].)

If $p \neq 23$, let σ_{p} be the Frobenius substitution of p in $S_{3}=\operatorname{Gal}(L / \mathbf{Q})$; it is well-defined, up to conjugation. The image of σ_{p} by sgn : $S_{3} \rightarrow\{ \pm 1\}$ is $\epsilon(p)$, where ϵ is the quadratic character associated with K / \mathbf{Q}, i.e., $\epsilon(p)=$ $\left(\frac{p}{23}\right)$. This shows that σ_{p} is a transposition if $\left(\frac{p}{23}\right)=-1$, hence $N_{p}(f)=1$ in that case. When $\left(\frac{p}{23}\right)=1, \sigma_{p}$ is of order 1 or 3 , hence $N_{p}(f)=3$ or $N_{p}(f)=0$. To distinguish between these two cases, one decomposes p in K as $\mathfrak{p} \cdot \overline{\mathfrak{p}}$, and one has to decide whether \mathfrak{p} is principal or not. The standard correspondence between ideal classes and binary quadratic forms shows that \mathfrak{p} is principal is equivalent to p being representable by the form $x^{2}+x y+6 y^{2}$, while \mathfrak{p} is non-principal is equivalent to p being representable by the form $2 x^{2}+x y+3 y^{2}$. This gives the recipe we wanted, namely,

$$
N_{p}(f)= \begin{cases}3 & \text { if } p \text { is representable by } x^{2}+x y+6 y^{2} \\ 0 & \text { if } p \text { is representable by } 2 x^{2}+x y+3 y^{2} \\ 1 & \text { if }\left(\frac{p}{23}\right)=-1\end{cases}
$$

The natural embedding ρ of $S_{3}=\operatorname{Gal}(L / \mathbf{Q})$ in $\mathbf{G L}_{2}(\mathbf{C})$ gives rise to an Artin L-function

$$
L(\rho, s)=\sum_{m=1}^{\infty} \frac{a_{m}}{m^{s}}
$$

with coefficients $a_{m} \in \mathbf{Z}$. One may characterize it by

$$
L(\rho, s)=\zeta_{E}(s) / \zeta(s)
$$

where $\zeta_{E}(s)$ is the zeta function of the cubic field E. This is equivalent to saying that the linear representation $\rho \oplus 1$ is isomorphic to the 3 -dimensional permutation representation of S_{3}. By comparing the traces of σ_{p} in both representations, we get $N_{p}(f)=a_{p}+1$ for every prime p (including $p=23$). Since S_{3} is a dihedral group, Hecke's theory applies and shows that the power series $F=\sum_{m=1}^{\infty} a_{m} q^{m}$ with the same coefficients as $L(\rho, s)$ is a cusp form of weight 1 and level 23, with respect to the character ϵ. The explicit expressions of F given in the text can be checked by standard modular methods.
5.4. $N_{p}(f)$ for $f=x^{4}-x-1$. Let E be the quartic field defined by f and L its Galois closure; the Galois $\operatorname{group} G=\operatorname{Gal}(L / \mathbf{Q})$ is isomorphic to S_{4}. Let H be the unique normal $(2,2)$-subgroup of G; the quotient G / H is isomorphic to S_{3}. The field L^{H} is the Hilbert class field of $\mathbf{Q}(\sqrt{-283})$; note that $h(-283)=3$. The same argument as in Note 5.3 gives the image of the Frobenius σ_{p} in G / H in terms of $\left(\frac{p}{283}\right)$ and of the binary forms $x^{2}+x y+71 y^{2}$ and $7 x^{2}+5 x y+11 y^{2}$ with discriminant -283 .

To go further, one needs a result of Tate (reproduced in [17], [12], [5]) which says that the field L has a quadratic extension \widetilde{L} having the following two properties:

- \widetilde{L} is unramified over L (and hence also over $\mathbf{Q}(\sqrt{-283})$);
- \widetilde{L} is a Galois extension of \mathbf{Q}.
(An explicit construction of \widetilde{L}, due to Tate, is: $\widetilde{L}=L\left(\sqrt{4-7 x^{2}}\right)$, where x is a root of f in L; the construction given in Crespo [5] is more complicated.)

Martinet 12 has shown that \widetilde{L} is the maximal unramified extension of $\mathbf{Q}(\sqrt{-283})$; in other words, the fundamental group of the ring $\mathbf{Z}[(1+\sqrt{-283}) / 2]$ is isomorphic to the "binary tetrahedral group" $\widetilde{A_{4}}=$ $\mathbf{S L}_{2}\left(\mathbf{F}_{3}\right)$.

The group $\widetilde{G}=\operatorname{Gal}(\widetilde{L} / \mathbf{Q})$ is isomorphic to $\mathbf{G L}_{2}\left(\mathbf{F}_{3}\right)$; it has a natural embedding ρ in $\mathbf{G L}_{2}(\mathbf{C})$; its character has values in $\mathbf{Z}[\sqrt{-2}]$. By a wellknown theorem of Langlands and Tunnell (see the references in [5]), the L-series attached to ρ corresponds to a modular form $F=\sum_{m=0}^{\infty} a_{m} q^{m}$ of weight 1 and level 283 whose first hundred coefficients are computed in [5]. One checks (by a character computation) that one has

$$
\rho \otimes \rho=\epsilon \oplus(\theta-1)
$$

where θ is the 4-dimensional permutation representation of G and ϵ is the sign character of G. By taking traces, this gives

$$
\left(a_{p}\right)^{2}=\left(\frac{p}{283}\right)+N_{p}(f)-1, \quad \text { for all primes } p \neq 283
$$

Remark. One may give an explicit formula for $F(\bmod 283)$ as follows: by a known result [17, 9.3.1] F is congruent $\bmod 283$ to a modular form φ of weight $(283+1) / 2=142$, and of level 1 . Hence, φ can be written as a linear combination, with coefficients in \mathbf{F}_{283}, of the standard basis:

$$
Q R^{23} \Delta, Q R^{21} \Delta^{2}, \ldots, Q R \Delta^{11}
$$

(with Ramanujan's notation:

$$
Q=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}, \quad R=1-504 \sum_{n=1}^{\infty} \frac{n^{5} q^{n}}{1-q^{n}}
$$

and $\left.\Delta=\left(Q^{3}-R^{2}\right) / 1728=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}\right)$.
A computation, using only the first eleven coefficients of F, gives the coefficients of φ in that basis:

$$
[1,24,52,242,40,232,164,217,262,274,128]
$$

In other words, we have

$$
F \equiv Q R^{23} \Delta+24 Q R^{21} \Delta^{2}+\cdots+128 Q R \Delta^{11} \quad(\bmod 283)
$$

(In these computations, I have selected 127 as $" \sqrt{-2} " \bmod 283$.)

References

1. E. Artin, Über eine neue Art von L-Reihen, Hamb. Abh. 3 (1923), 89-108 (= Coll. Papers, 105-124).
2. N. Boston, W. Dabrowski, T. Foguel, P. J. Gies, D. A. Jackson, J. Leavitt and D. T. Ose, The proportion of fixed-point-free elements of a transitive permutation group, Comm. Algebra 21 (1993), 3259-3275. MR 94e:20002
3. W. Burnside, Theory of Groups of Finite Order, 2nd edition, Cambridge Univ. Press, 1911 (= Dover Publ., 1955). MR 16:1086c
4. P. J. Cameron and A. M. Cohen, On the number of fixed point free elements in a permutation group, Discrete Math. 106/107 (1992), 135-138. MR 93f:20004
5. T. Crespo, Galois representations, embedding problems and modular forms, Collectanea Math. 48 (1997), 63-83. MR 98j:11101
6. F. G. Frobenius, Über die Congruenz nach einem aus zwei endlichen Gruppen gebildeten Doppelmodul, J. Crelle 101 (1887), 279-299 (= Ges. Abh., II, 304-330).
7. F. G. Frobenius, Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe, Sitz. Akad. Wiss. Berlin (1896), 689-703 (= Ges. Abh., II, 719-733).
8. F. G. Frobenius, Über auflösbare Gruppen IV, Sitz. Akad. Wiss. Berlin (1901), 1216-1230 (= Ges. Abh., III, 189-203).
9. C. Jordan, Recherches sur les substitutions, J. Liouville 17 (1872), 351-367 (= Oe. I. 52).
10. L. Kronecker, Über die Irreductibilität von Gleichungen, Sitz. Akad. Wiss. Berlin (1880), 155-162 (= Werke, II, 83-93).
11. H. W. Lenstra, Jr., and P. Stevenhagen, Chebotarëv and his density theorem, Math. Intelligencer 18 (1996), 26-37. MR 97e:11144
12. J. Martinet, Petits discriminants des corps de nombres, Journées arithmétiques 1980 (J. V. Armitage, ed.), Cambridge Univ. Press, Cambridge, 1982, pp. 151-193. MR 84g:12009
13. R. W. K. Odoni, On the norms of algebraic integers, Mathematika 22 (1975), 71-80. MR 54:12715
14. M. Rubinstein and P. Sarnak, Chebyshev's Bias, Experiment. Math. 3 (1994), 173-197. MR 96d:11099
15. E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302. MR 19:7f
16. J-P. Serre, Divisibilité de certaines fonctions arithmétiques, L'Ens. Math. 22 (1976), 227-260 (= Oe. 108). MR 55:7958
17. J-P. Serre, Modular forms of weight one and Galois representations, Algebraic Number Fields (A. Fröhlich, ed.), Acad. Press, London, 1977, pp. 193-268 (= Oe. 110). MR 56:8497
18. J-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publ. Math. I.H.E.S. 54 (1981), 123-201 (= Oe. 125). MR 83k:12011
19. N. Tschebotareff (Chebotarev), Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören, Math. Ann. 95 (1925), 191-228.

Collège de France, 3, Rue d'Ulm, Paris, France
E-mail address: serre@dmi.ens.fr

[^0]: Received by the editors March 1, 2003.
 2000 Mathematics Subject Classification. Primary 06-XX, 11-XX, 11F11.
 This text first appeared in Math Medley 29 (2002), 3-18. The writing was done with the help of Heng Huat Chan. (c)2002 Singapore Mathematical Society. Reprinted with permission.

[^1]: ${ }^{1}$ If S is a finite set, we denote by $|S|$ the number of elements of S.

