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Abstract 

The snake-in-the-box problem is a difficult problem in 
mathematics and computer science that was first described 
by Kautz in the late 1950’s (Kautz 1958).  Snake-in-the-box 
codes have many applications in electrical engineering, 
coding theory, and computer network topologies.  
Generally, the longer the snake for a given dimension, the 
more useful it is in these applications (Klee 1970).  By 
applying a relatively recent evolutionary search algorithm 
known as a population-based stochastic hill-climber, new 
lower bounds were achieved for the longest snake in each 
of the dimensions nine through twelve and the longest coil 
in each of the dimensions nine through eleven. 

 

Introduction 

Hunting for ‘snakes,’ or achordal induced paths in an n-
dimensional hypercube deals with finding the longest path, 
following the edges of the hypercube, that obeys certain 
constraints.  First, every two nodes, or vertices that are 
consecutive in the path must be adjacent to each other in 
the hypercube, and second, every two nodes that are not 
consecutive in the path must not be adjacent to each other 
in the hypercube.  A third constraint, whether the first node 
in the path is adjacent or non-adjacent to the last node in 
the path, determines if the path is a ‘coil’ or a ‘snake.’  
While coils have received the most attention in the 
literature (Harary, Hayes, and Wu 1988), both snakes and 
coils have useful applications.  This paper deals primarily 
with searching for open paths, or snakes, where the start 
node is not adjacent to the end node.  

 An n-dimensional hypercube contains 2n nodes that can 
be represented by the 2n n-tuples of binary digits of the 

                                                           
 Copyright © 2004, American Association for Artificial Intelligence 
(www.aaai.org).  All rights reserved. 

hypercube’s Gray code.  By labeling each node of the 
hypercube with its Gray code representation, adjacencies 
between nodes can be detected by the fact that their binary 
representations differ by exactly one coordinate.  Using this 
fact, one can immediately detect if any two nodes in the 
hypercube are adjacent by performing an exclusive-or, 
hereafter referred to as XOR, operation on them and 
confirming that the result is an integer power of two.  
Using this information, a strategy for detecting, as well as 
generating, node adjacencies can be generalized to any 
dimension.  In Figure 1, a path through the three-
dimensional hypercube is highlighted.  This path, {0, 1, 3, 
7, 6} in integer representation and {000, 001, 011, 111, 
110} in binary representation, is one specific example of a 
longest-possible snake for a three-dimensional hypercube.  
The length of this snake is four, as the length of a snake or 
coil always refers to the number of transitions, or edges, in 
the path. 

 

 
 



Figure 1: A Three-Dimension Hypercube with 
Embedded Snake 

Approaches 

Traditionally, mathematical approaches to the snake-in-
the-box, hereafter referred to as SIB, problem have 
involved two fundamental strategies.  The first is a method 
of construction utilizing the tools of logic, discrete 
mathematics, and graph theory, while the second strategy  
uses mathematical analysis to reduce the search-space 
followed by a computationally exhaustive search of the 
remaining, tractable,  search-space.  These techniques have 
been successful in determining the longest-possible snakes 
for hypercubes of dimensions one through seven as shown 
in Table 1.  For dimension seven, the lower bound for 
longest-possible snake (Potter et. al. 1994) was found 
independently using both a genetic algorithm and an 
exhaustive search, while the lower bound for longest-
possible coil (Kochut 1996) was found using only an 
exhaustive search. 

 
DIM SNAKE COIL 

1 1 0 
2 2 4 
3 4 6 
4 7 8 
5 13 14 
6 26 26 
7 50 48 

Table 1: Maximum Lengths of Snakes and Coils 

 

But even as mathematical approaches to solving this 
problem have been strengthened through the use of 
computational techniques, the combinatorial explosion in 
the size of the search-space as the dimension number 
increases has become a barrier for these methods.  For 
dimensions eight and above, even with currently available 
hardware, an exhaustive search remains impractical.  This 
has opened the door for less-traditional, heuristic-based 
computational search techniques.  One increasingly 
popular branch of these search techniques is known as 
stochastic search algorithms.  This area includes stochastic 
hill-climbers, tabu search, simulated annealing, 
evolutionary strategies, genetic algorithms, and hybrids of 
these particular types such as memetic algorithms. 

One example of a stochastic search algorithm that has 
been used to hunt for snakes in dimension eight is the 

genetic algorithm, hereafter referred to as GA.  Developed 
by John Holland (Holland 1975), the GA is based on the 
simulation of Darwinian evolution and uses an 
evolutionary loop composed of fitness-based selection of 
individuals from a population, crossover of these 
individuals’ genetic material, and mutation of these 
individuals’ genes.  The GA performs a search-space 
reduction through the use of a heuristic in determining the 
fitness of an individual within the population and through 
the inherent parallelism of a population-based approach.  
This technique has met with success and, by finding, what 
was at that time, a record-breaking snake in dimension 
eight (Potter et. al. 1994), proved its effectiveness for snake 
hunting. 

Another stochastic search algorithm that has proven 
successful in traveling salesperson-type problems, such as 
the SIB problem, is the stochastic hill-climber (Kingdon 
and Dekker 1995).  A population-based stochastic hill-
climber, hereafter referred to as PBSHC, is very similar in 
structure and operation to the simple GA with a few key 
differences in the evolutionary cycle.  The first difference 
is the absence of a crossover operator.  Where the GA 
models sexual reproduction, the PBSHC models asexual 
reproduction in that the children in each generation are 
created directly from the parents of the previous generation 
without the exchange of genetic material between them.  
The second difference is the addition of a growth operator.  
The growth operator is the component that does the actual 
‘hill-climbing’ as it chooses randomly from the nodes 
available to extend each snake’s path by one edge along the 
hypercube.  The absence of crossover, broadly considered 
the most important operator of a GA, can sometimes leave 
the PBSHC at a relative disadvantage.  However, due to the 
trouble most crossover schemes have in dealing with 
adjacencies, the lack of crossover did not seriously degrade 
the PBSHC’s performance, relative to the GA, in the case 
of the SIB problem. 

 

The Evolutionary Cycle 

Each individual in the population consists of a sequence of 
integers that represents the node sequence of a snake, or 
valid path through the hypercube, in the dimension being 
searched.  These individuals are initialized as either a snake 
of length zero, that is consisting of only the zero node, or 
seeded with a pre-existing snake of choice.  Following 
initialization, the evolutionary cycle begins its first 
generation.  Each generation begins with a fitness 
evaluation.  The fitness function used is based on both the 
length of the snake and the ‘tightness’ of the snake.  The 
tightness of a snake is a measure of how many nodes are 
left available in the hypercube after subtracting all those 



nodes that are disqualified either by already being in the 
snake or by being adjacent to a node, other than the start 
node or the end node, that is already in the snake.  The 
choice of tightness as a component of the fitness function 
was inspired by the idea that tighter snakes might tend to 
be longer snakes.  Since all snakes that were able to grow 
in the previous generation have the same length, tightness 
becomes the only distinguishing factor of the fitness 
function. 

After the individual fitness of each of the snakes in the 
population is determined, the population is subjected to 
selection based upon each snake’s fitness.  Three 
fundamental selection types were considered.  Preliminary 
trials were conducted using roulette-wheel, tournament, 
and rank-based selection methods.  Roulette-wheel, or 
probabilistic selection, proved the least effective, and most 
computationally expensive.  Tournament selection was 
more effective than roulette-wheel at producing longer 
snakes, on average, over multiple runs.  Rank-based 
selection out-performed both roulette-wheel and 
tournament selection, by maintaining a more diverse 
population throughout the evolutionary cycle.  In rank-
based selection, after first ranking the population by 
fitness, selection takes place based on a set percentage of 
the population. 

After selection, the growth operator grows each snake 
in the population by one step each generation, connecting 
each snake’s end node to one of its adjacent nodes that has 
not been disqualified by already being in the snake, or by 
being adjacent to some node that is in the snake.  Both 
unidirectional and bi-directional growth were 
implemented, with bi-directional growth allowing each 
snake to grow from either end.  This operator can be seen 
to perform a stochastic hill-climbing process on each snake 
in the population as the choice of which adjacent node to 
connect to is based on random selection from the available 
nodes.  A choice was made early to grow all snakes in the 
population instead of only the snake of best fitness (note: 
typically, enhancing the best individual in a population is a 
standard approach used in hybrid genetic algorithms 
(Potter et. al. 1992)).  This choice was also based on 
results of a comparison of these two approaches in an 
earlier GA implementation.  Growing all the individuals 
within the population works well in conjunction with the 
fitness function, but does require that all snakes in the 
population be of the same length in order to function 
properly.  The fitness function consists of the sum of the 
snake’s length and normalized tightness.  This results in 
the fitness function simplifying to a function of tightness 
alone as the length component of the fitness value will 
dominate for snakes of different lengths, yet cancel for 
snakes of the same length.  This also results in the 
automatic elimination of snakes that can no longer grow, 

allowing their place in the population to be reallocated to 
other snakes that are still capable of growth. 

After growth, the mutation operator acts on each snake 
in the population.  The mutation operator we experimented 
with is an enhancement of a basic XOR mutation scheme 
(Brown 2004).  In the standard XOR mutation scheme, a 
node is chosen at random from within the snake, excluding 
the start node and the end node.  The chosen node’s 
neighboring nodes are XOR’d and that result is then 
XOR’d with the chosen node in order to exchange it with a 
different node that maintains local adjacency requirements 
with the original node’s neighbors.  The enhancement of 
this operator is referred to as iterative-conditional XOR 
mutation and is somewhat more computationally 
expensive, but also more effective.  Instead of choosing a 
node at random, each node in the snake, with the exception 
of the start node and the end node, is mutated and tested for 
any improvement in fitness within a copy of the original 
snake.  If any improvement is found, that mutation is added 
to a mutation pool.  Upon testing of all nodes within the 
snake, the snake of best fitness from the mutation pool is 
substituted for the original snake.  If any improvement was 
found through mutation, the entire process is repeated until 
no further improvement is found.  This scheme ensures that 
only constructive mutation is allowed, and that undergoing 
mutation can never reduce an individual’s fitness.  By 
making this mutation conditional, it has also become a 
‘hill-climbing’ component of the evolutionary cycle.  
However, left to iterate without bounds this scheme may 
lead to prohibitive runtimes.  Restricting the number of 
iterations for each original snake to five for example keeps 
the advantages of a local hill-climber and also keeps the 
runtime under control.  It turns out that this enhancement 
did not influence our results because the operator was 
turned off in order to prevent changes in the high-quality 
root-snakes used when seeding results from lower to higher 
dimensions. 

 

PBSHC Experimental Setup 

 The choice of parameter settings was found to be of key 
importance to the performance of the PBSHC and these 
settings were tuned extensively in dimension eight before 
modified to run in dimensions nine through twelve.  Our 
previous experience with genetic algorithm snake hunters 
supported the application of lower dimension parameter 
settings to higher dimensions.  The fitness function is set to 
the sum of length and normalized tightness.  Normalized 
tightness was defined as the number of nodes remaining 
available divided by the total number of nodes in the n-
dimensional hypercube.  Rank-based selection was chosen 
in order to maximize diversity within the population.  



While both unidirectional and bi-directional growth were 
used in the dimension-eight trials, the relatively memory-
conservative unidirectional implementation was chosen for 
these experiments in order to maximize potential 
population sizes for dimensions nine through twelve.  
Because this particular implementation’s chromosome size 
is constant, the use of unidirectional growth instead of bi-
directional growth allowed the required memory for each 
population size to be reduced by half..  Population sizes 
from one hundred through ten thousand were run in trials 
using mutation.  Larger populations were prohibitively 
time-consuming using mutation, especially for dimensions 
eleven and twelve. 

 

Results 

 The best results to date were achieved using 
populations of ten thousand, a selection percentage of 
ninety percent, and by seeding each population at startup.  
Using a technique where the best snakes found in each 
dimension were used as seeds for the next higher 
dimension (Potter et. al. 1994), the PBSHC was able to 
find snakes longer than the previously known longest 
snakes for dimensions nine through twelve.  However, to 
generate good seeds for dimension nine, a bootstrap 
solution was used.  This method involved cutting a 
dimension-eight, length-97 snake (Rajan and Shende 1999) 
back to its length-50 root, corresponding to the longest 
snake in dimension seven, and running an exhaustive 
search on that snake to generate a pool of seventeen 
distinct length-97 snakes.  These snakes were then used to 
seed the dimension-nine runs.  Subsequently, the best 
snakes found in each dimension were used as seeds for the 
next dimension’s runs.  In conjunction with this technique, 
mutation was shut off in order to preserve the high-quality 
seeds generated from each previous dimension.  This also 
reduced the runtime allowing larger populations to be run 
over a much shorter time-frame. 

 
DIM PREVIOUS BEST PBSHC 

8 97 97 
9 168 186 

10 338 358 
11 618 680 
12 1236 1260 

 

Table 2: Comparison of Best-Known Lower Bounds for 
Snakes 

 

 In Table 2, for dimension eight, the lower bound for 
longest-known snake (Rajan and Shende 1999) was found 
using traditional mathematical proof and construction 
techniques aided by computational search (i.e., 
construction based on lower dimension long snake 
characteristics).  For dimensions nine through twelve, the 
previous best-known lower bounds were derived by 
calculation from the lower bounds for longest-known coils 
in each dimension.  Any coil can be converted to a snake 
by removing one node.  This results in a snake whose 
length is two less than the original coil, as removing one 
node removes the two edges connecting it within the coil.  
The previous best-known lower bounds were 168 for 
dimension nine (Abbott and Katchalski 1991), and 338, 
618, and 1236 for dimensions ten through twelve, 
respectively (Paterson and Tuliani 1998).  The transition 
sequences representing the new lower bounds for longest-
known snakes in dimensions nine through twelve are listed 
here. 

 
dim 9 : 186 
0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 
3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 3 7 2 0 5 2 4 1 3 0 1 5 2 0 1 
3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 
2 8 7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 
5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4 3 5 1 3 2 5 3 0 1 3 5 6 2 
5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 
 
dim 10 : 358 
0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 
3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 
3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 
2 8 7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 
5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4 3 5 1 3 2 5 3 0 1 3 5 6 2 
5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 5 1 0 7 8 
0 5 2 1 0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 
1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2 5 4 3 5 1 3 2 5 3 0 1 
5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 
5 4 3 5 2 0 3 6 5 0 4 5 3 2 5 1 3 5 0 2 3 5 4 0 8 2 1 3 4 5 0 3 
1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2 1 0 5 2 0 3 1 2 0 
5 4 2 8 5 6 
 
dim 11 : 680 
0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 
3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 
3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 
2 8 7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 
5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4 3 5 1 3 2 5 3 0 1 3 5 6 2 
5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 5 1 0 7 8 
0 5 2 1 0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 
1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 3 2 5 4 3 5 1 3 2 5 3 0 1 
5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 3 4 2 1 3 0 1 5 2 0 1 3 0 
5 4 3 5 2 0 3 6 5 0 4 5 3 2 5 1 3 5 0 2 3 5 4 0 8 2 1 3 4 5 0 3 
1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 3 1 4 2 1 0 5 2 0 3 1 2 0 
5 4 2 8 5 6 10 8 7 9 3 2 0 5 2 1 0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 



4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 0 8 1 6 2 3 0 1 
3 2 5 4 3 5 1 3 2 5 3 0 1 5 3 6 0 3 1 0 2 5 0 3 4 2 3 0 1 2 0 7 
3 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 3 1 0 3 4 5 3 1 5 2 
3 5 4 3 1 8 2 1 3 4 5 0 3 1 0 2 3 5 0 2 4 5 2 3 1 0 3 6 2 0 5 2 
3 1 4 2 1 0 5 2 0 3 1 2 0 5 4 2 7 9 1 5 2 0 5 4 3 0 5 2 0 3 6 2 
3 1 0 2 5 3 0 2 4 0 7 4 5 0 2 3 5 2 1 0 5 2 3 5 4 3 0 8 4 0 1 5 
2 0 1 3 2 6 3 0 2 5 0 3 4 2 0 5 2 6 8 0 2 6 3 0 2 5 3 4 5 0 3 1 
0 5 2 1 0 3 1 2 4 3 7 0 5 2 0 6 1 0 2 8 6 2 0 3 6 2 5 4 3 0 1 3 
5 0 2 3 1 0 3 5 4 3 1 0 6 3 2 0 1 4 5 0 3 1 0 2 5 3 7 2 5 0 4 2 
3 0 5 2 6 0 3 4 2 
 
dim 12 : 1260 
0 1 2 3 4 5 3 2 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 3 2 6 0 5 4 3 0 1 
3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 2 3 7 2 0 5 4 2 1 3 0 1 5 2 0 1 
3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 
2 8 7 3 2 4 5 3 1 0 3 4 5 3 1 5 2 1 0 3 4 5 3 0 1 3 5 6 1 3 0 1 
5 2 0 1 3 0 5 4 3 5 2 0 3 1 7 6 2 5 4 3 5 1 3 2 5 3 0 1 3 5 6 2 
5 4 3 5 0 1 3 5 4 3 0 5 2 0 1 5 4 1 0 3 5 6 2 3 5 0 9 3 5 2 6 3 
0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 1 5 6 2 0 5 3 1 5 2 3 5 4 3 1 0 4 
7 1 3 5 2 3 1 0 2 3 5 4 0 8 3 1 0 3 4 5 3 0 1 3 2 0 5 3 1 0 3 4 
5 3 1 0 2 3 7 2 0 5 4 2 0 3 5 2 0 1 3 0 5 4 3 5 2 0 1 6 4 1 0 2 
5 1 3 5 2 7 3 5 1 0 3 1 2 3 5 1 3 0 5 4 3 5 2 0 3 1 2 8 4 0 5 4 
3 2 1 0 3 2 4 3 0 5 2 0 1 4 6 1 0 2 3 6 2 1 7 5 8 1 5 2 0 3 5 1 
8 3 10 9 4 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 2 5 4 3 0 1 3 
5 0 2 3 1 0 3 5 4 3 0 1 2 5 0 7 4 1 0 3 2 5 3 1 2 3 4 5 2 3 1 0 
3 2 6 0 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 5 9 4 1 3 0 5 4 3 
5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 3 1 0 3 5 4 3 0 1 2 8 9 2 1 0 3 4 
5 3 0 1 3 2 0 5 3 1 0 3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 0 2 5 1 0 3 
1 2 4 5 0 9 6 0 2 3 1 0 2 5 3 4 5 0 3 1 0 2 3 5 6 2 3 1 5 2 3 4 
5 3 0 1 3 8 4 1 3 0 1 5 3 7 2 5 3 1 5 2 0 1 5 4 1 2 5 3 0 2 6 3 
2 5 3 4 5 0 3 1 0 2 5 1 0 3 4 1 0 8 1 4 5 3 2 5 1 3 5 0 2 3 5 4 
1 2 9 0 3 4 5 0 3 1 0 2 5 1 0 3 1 2 4 5 2 3 1 0 3 6 2 0 5 4 3 0 
5 2 0 3 1 2 0 5 4 9 1 4 5 0 3 1 5 3 2 1 3 0 1 4 9 0 2 5 0 9 1 2 
0 3 6 2 0 11 5 0 9 4 3 0 5 10 6 5 0 3 4 5 0 6 1 7 4 0 2 3 1 0 
3 5 4 3 0 1 2 5 1 3 5 4 3 0 1 2 6 1 0 3 1 2 3 5 1 3 0 5 4 3 5 2 
0 3 1 2 8 1 5 4 3 0 5 2 0 1 5 6 1 3 5 2 3 1 0 2 7 6 2 0 1 3 0 5 
4 3 5 2 0 3 6 2 5 4 3 0 1 3 5 0 2 6 10 1 3 0 2 5 0 3 4 5 0 2 6 
3 2 5 3 4 5 0 3 1 5 3 4 5 0 7 4 0 2 3 1 0 3 5 4 3 0 1 2 0 4 1 0 
3 4 5 2 6 3 0 2 5 3 4 5 0 3 1 5 3 2 1 3 0 1 5 3 10 2 5 4 6 1 5 
3 2 0 1 3 5 6 7 2 4 9 10 2 1 3 0 1 5 2 0 1 3 0 5 4 3 5 2 0 3 6 
2 3 5 2 0 3 4 5 3 2 5 1 3 5 0 2 3 5 7 1 3 5 2 0 5 4 3 5 2 0 1 2 
4 0 2 3 5 6 2 3 1 5 2 0 1 3 4 10 1 3 0 2 5 3 4 5 0 3 1 0 2 5 1 
0 3 1 6 5 3 1 0 3 5 4 3 0 1 2 0 4 1 0 3 4 5 1 8 2 3 1 0 2 5 3 4 
5 0 3 1 0 2 3 5 6 2 3 1 5 2 0 3 1 7 6 2 0 5 4 8 1 4 5 0 2 5 3 0 
1 3 5 6 1 3 2 5 0 4 3 5 0 1 9 2 6 5 1 3 0 1 2 5 0 9 4 0 5 8 6 5 
1 3 0 5 4 3 5 2 0 3 6 2 3 5 2 0 3 4 5 3 0 10 9 1 3 2 0 5 4 7 1 
4 5 0 3 1 0 2 3 5 6 2 5 0 2 1 3 0 2 5 0 3 4 5 0 2 6 3 0 1 3 5 1 
4 3 1 6 4 2 5 9 4 1 3 0 5 4 3 5 2 0 3 6 2 3 5 2 0 3 4 5 3 2 5 1 
3 5 0 2 5 6 1 3 0 1 4 8 5 2 3 1 2 5 0 3 2 1 3 10 8 3 2 4 6 1 3 
4 6 0 5 1 10 6 3 2 7 9 0 5 2 1 0 3 4 5 6 2 5 4 3 0 5 4 1 0 5 2 
1 0 3 1 2 4 5 0 9 4 5 2 1 4 3 0 1 3 10 6 9 1 4 5 6 3 1 5 4 1 0 
3 4 1 2 4 3 5 2 10 8 0 2 5 0 3 4 2 6 3 1 0 3 4 

 

Conclusions 

The results of using a PBSHC to search for SIB codes 
are very encouraging.  As computational hardware 
improves over time, this technique should prove useful in 
even higher dimensions.  Further improvements using this 
implementation of the PBSHC are anticipated including the 
return to bi-directional growth, the addition of a mid-snake 
growth operator, and a parallel virtual machine 
implementation of the PBSHC.  Preliminary trials using 
this technique to search for coils, or closed paths, have 
begun and we have already discovered new lower bounds 
for coils in dimensions nine (180), ten (344), and eleven 
(630); details to be reported in a future paper. 
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