SOLUTIONS TO PROBLEMS IN CHAPTER FOUR

1. Prove that the number of partitions of an integer n is equal
to the number of partitions of n + 1 whose smallest part is 1.

Solution: Given a partition of n, we can produce a partition of n 4 1
by adding a single one; this will produce a partition of n + 1 whose
smallest part is 1, and which possesses one more part than our original
partition. Similarly, given a partition of n 4+ 1 whose smallest part is
1, we remove this one to obtain a partition of n. This is a one-one
correspondence between partitions of n and partitions of n + 1 whose
smallest part is one, and the proof is complete.

2. Let p*(n) denote the number of partitions of n whose sum-
mands all exceed one. Prove that p*(n) = p(n) —p(n — 1)

Solution: We know from the previous problem that p(n — 1) is equal
to the number of partitions of n having one as its smallest part. It
follows that p(n) — p(n — 1) counts the number of partitions of n that
do not have one as their smallest part. Since that is equivalent to our
definition of p* the proof is complete.

3. Recall that we defined the quantity p(n) to be the number of
partitions of n with summands no larger than k. Let £ and n
be integers with 1 < £ < n. Prove that

Pe(n) = pr—1(n) + pr(n — k).

Solution: Let us divide the partitions of n into two sets: those possess-
ing k as a summand and those not possessing k£ as a summand. If we
do not allow k£ as a summand, then we must partition n into summands
not exceeding k — 1. The number of such partitions is py_1(n). If we
do have k as a summand, then the remaining summands constitute a



partition of n — k into parts not exceeding k. There are pi(n — k) such
partitions. Since these correspondences are clearly one-one, we have
Pe(n) = pr—1(n) + pe(n — k) as desired.

. Prove that for any integer n, we have p(n+2)+p(n) > 2p(n+1).

Solution: The inequality
p(n+2)+pn) = 2p(n +1)
is equivalent to

[p(n +2) =p(n+1)] = [p(n + 1) = p(n)] = 0.

But we know from problem two that the quantity in the first set of
brackets is equal to the number of partitions of n + 2 whose summands
all exceed 1, while the quantity in the second set of brackets denotes
the number of partitions of n + 1 whose summands all exceed 1.

Given any partition of n + 1 into parts greater than one, we can add
one to its largest part to obtain a partition of n 4+ 2 into parts greater
than one. Distinct partitions of n+ 1 map to distinct partitions of n+2
in this way. It follows that the number of partitions of n+ 1 into parts
not exceeding one can not be larger than the number of partitions of
n + 2 into parts not exceeding one, and the desired inequality follows.

. In how many ways can 100 idenitical apples be placed into 20
different bags if we require that each bag has at least three
apples? A formula is fine; there is no need to come up with
the exact number.

Solution: We begin by placing three apples into each of the bags. That
accounts for 60 of the apples, leaving 40 left over. Any partition of
40 into no more than 20 summands will correspond to an acceptable
placement of the remaining apples. By the result of problem eight, that
number is precisely (i’g)



6. A given partition of an integer k is said to be self-conjugate if
it is equal to its own conjugate. Prove that the number of self-
conjugate partitions of & is equal to the number of partitions
of k into distinct, odd summands.

Solution: Let P be a partition of k into distinct, odd summands. Then
every summand in P has the form 2r — 1 for some choice of r. We will
construct a Ferrers diagram out of this partition as follows: Arrange
the 2r — 1 squares corresponding to each summand in P into one row
and one column, each of size r, so that the first square in the row
and the first square in the column overlap. For example, given the
partition 9 + 3 + 1 of 13 into distinct, odd summands, construct the
Ferrers diagram:
X X X X X

X H H
X H O
X
X

Here, the squares marked X correspond to the summand 9, the squares
marked H correspond to the summand 3, while the [ corresponds to
the summand 1. The result is the self-conjugate partition 5+343+1+1
of 9.

Given a self-conjugate partition, we could reverse the construction given
above to produce a new partition consisting of distinct odd summands.
It follows that the number of self-conjugate partitions is equal to the
number of partitions into distinct odd summands, and the proof is
complete.

7. Prove that the number of partitions of m is equal to the num-
ber of partitions of 2m into m parts.

Solution: Given a partition of 2m into m parts, we can subtract one
from each part to obtain a partition of m. Conversely, given a partition
of m into k parts, with & < m, we add one to each of the k parts, and
add m — k new parts each of size one. The result is a partition of 2m
into precisely m parts. Since these two operations are inverses of each



other, we have established a one-one correspondence between partitions
of m and partitions of 2m into precisely m parts.

. Prove that the number of partitions of n into exactly r parts
where partitions differing in the order of their summands are

to be considered different is (::11)

Solution: A partition of n into exactly r parts can be viewed in the
following manner: Imagine a row consisting of n ones. We insert r — 1
dividers between some of the ones, thereby producing a partition of n.
For example, the partitions 11/111/1/1111 and 1/1111/111/11 are two
different ways of inserting three slashes to produce a partition into four
parts of the number 10 (in this case, the two partitions are 243+ 144
and 1 + 4 + 3 + 2. These partitions are different according to the
requirements of the problem.)

Since we do not allow zero as a summand in a partition, we have n — 1
choices for where to put a divider. Out of these n — 1 choices, we
must select » — 1 of them. It follows that the total number of ordered
partitions of n into exactly r parts is (::11) as desired.

. Find the number of ordered quadruples (x1, 25, z3,24) of posi-
tive odd integers such that z; + x5 + 23 + x4 = 98.

Solution: We can represent each of the (z;)’s in the form z; = 2y; — 1
for some positive integer y;. We then have

4 4
98=> 2 —1=2 (Zy) — 4.
It follows that

i=1
We have thus reduced the problem to that of finding the number of
ordered partitions of 51 into exactly 4 parts. By the result of the
previous problem, we know the number of such partitions is prescisely

(530) and the solution is complete.



Prove that the number of partitions of (a—c) into exactly (b—1)
parts, none of which is larger than ¢, is equal to the number
of partitions of (e —b) into (¢ — 1) parts none of which is larger
than b.

Solution: Let P be a partition of (a —c¢) into exactly (b—1) parts, none
of which is greater than c. If we add one additional part of length ¢ we
obtain a partition of a into exactly b parts, having c as its largest part.
Similarly, given a partition of a into b parts the largest of which is ¢,
we may remove the part of size ¢ to return to a partition of (a — ¢) into
(b — 1) parts none of which is larger than ¢. We have thus established
a one-one correspondence between these two sorts of partitions.

Now, given a partition of a into b parts the largest of which is ¢, we
take the conjugate to obtain a partition of a into ¢ parts the largest of
which is b. Since every partition is the conjugate of precisely one other,
we have established a one-one correspondence between these two sorts
of partitions. It follows that the number of partitions of (a — ¢) into
(b — 1) parts none of which is larger than ¢ is equal to the number of
partitions of a into ¢ parts the largest of which is b.

The final step is to take a given partition of a into ¢ parts the largest
of which is b and remove its largest part (namely b). By doing this we
obtain a partition of (a — b) into (¢ — 1) parts none of which is larger
than b. Once more, we can reverse this operation by taking a partition
of (a —b) into (¢ — 1) parts with no part larger than b and adding a
single part of size b. This results in a partition of a into ¢ parts the
largest of which is b. We thus have a one-one correspondence between
these two sorts of partitions.

Putting everything together establishes a one-one correspondence be-
tween partitions of (a — ¢) into (b — 1) parts none of which is larger
than ¢ and the number of partitions of (a — b) into (¢ — 1) parts none
of which is larger than b, as desired.

Prove that the number of partitions of n with no summand
greater than k is equal to the number of partitions of n + k
with exactly k parts.



Solution: We know from the chapter that the number of partitions of
n with no summand greater than k is equal to the number of partitions
of n with no more than k parts.

Any partition of n+ k with exactly k parts can be viewed as combining
a partition of k£ into k ones with any partition of n into no more than
k parts. Conversely, given a partition of n into no more than k parts,
we obtain a partition of n + k with k parts by adding one to every
part of the partition, and appending as many aditional parts of size
one as we need to give us a partition of n+ k into exactly k parts. This
establishes a one-one correspondence between partitions of n + k into
exactly k parts with partitions of n having no more than k parts.

And since the number of partitions of n into no more than k parts is
equal to the number of partitions of n with no summand greater than
k, the proof is complete.

Notice that problem seven is the special case of this problem where
n=k.

Given a partition P of a positive integer n, we say P is perfect
if it contains precisely one partition of every number less than
n. Prove that the number of perfect partitions of an integer
n is equal to the number of ordered factorizations of n + 1.

Solution: First, notice that any perfect partition P must contain at
least one 1, for otherwise it would be impossible to partition 1 using
elements of P. So let ¢; — 1 denote the number of 1’s in P. It follows
that any number less that ¢ now has one partition in P. Therefore,
the next smallest element of our partition must be ¢;.

Continuing in this vain, we suppose there are ¢; — 1 parts of P equal
to q;. We can now partition any number between 1 and ¢;qo — 1 in
exactly one way using only the numbers 1 and ¢;. Similarly, we would
then have g3 — 1 copies of ¢;¢2, and this would allow us to partition any
number between one and ¢;¢2g3 — 1 in precisely one way using only the
numbers 1, ¢; and g¢s.

Let us suppose that P contains k elements. Then we have that

n=(@—-1)+ql@—1)+agp(—1)+ - (1¢0 - @-1)(q — 1).



This implies that n +1 = ¢1q293---q.. We have thus obtained an
ordered factorization of n+1, and this factorization uniquely determines
the partition P. It follows that the number of perfect partitions is equal
to the number of such factorizations, and the proof is complete.



