SOME RESULTS ON PARTITIONS

MATEJA PRESERN

The word ”partition” has numerous meanings in mathematics. Any time a di-
vision of some objects into subobjects is undertaken, the word partition is likely to
pop up. For the purposes of this article a ”partition of n” is a nonincreasing finite
sequence of positive integers whose sum is n.

The theory of partitions has an interesting history. Certain special problems in
partitions certainly date back to the Middle Ages; however, the first discoveries of
any depth were made in the eighteenth century when L. Euler proved many beautiful
and significant partition theorems. Euler indeed laid the foundations of the theory
of partitions. Many of other great mathematicians — Cayley, Gauss, Hardy, Jacobi,
Lagrange, Legendre, Littlewood, Rademacher, Ramanujan, Schur and Sylvester —
have contributed to the development of the theory.

1 Introduction

Definition 1.1. A partition of a positive integer n is a finite nonincreasing sequence
of positive integers \i, Xa,..., \. such that

i=1

The X\; are called the parts of the partition. Many times the partition is also denoted
as A = ()\1,)\2, . .,)\7«).

Example 1.1. The number 27 can be written as a sum:
20=T+5+4+3+3+3+2
and we denote that partition: X = (7,5,4,3,3,3,2).

Also u = (11,4,4,3,2,1,1,1) is a partition of 27, because
21=11+44+44+34+2+1+1+1.

Example 1.2. All the partitions of 8 are:

(8), (7,1), (6,2),(6,1,1) (5,3), (5,2,1), (5,1,1,1), (4,4), (4,3,1), ( ,2,2), (4,2,1,1),
<471717 17 1)7 ( ) 7 )7 ( 737 17 1) (37 27 b ) (37 27 17171) ( ) 71 1 ) (27 27272)
(27 27 27 ]‘7 1)7 ( ) 717 7]‘>7 (27 717 ]‘7 1)7 (]'7 ]‘7 171717]‘ 1 1)
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Remark. We notice, that for every partition (Aj, Ag, . ..
Vied{l,2,...,

1<

a)

b)) 1<

2 The number of partitions

r<n.

n},

, Ar) of n:

Definition 2.1. The partition function p(n) is the number of partitions of n.

Example 2.1.
p(l)=1:
p(2)=2:
p(3) =3:
p(4) =5
p(b) =T7:

U W N =

+1+1+1

1+1
2+1
3+1
4+1

1+1+1
242 = 2+141 = 14+1+1+1
342 = 34141 = 242+1

I1+1+1+1+1

Remark. It is useful to define p(n) for all integers n. We shall set p(0) = 1 with
the observation that the empty sequence forms the only partition of zero. For n < 0

it is obviously

p(n) =0.

The partition function increases quite rapidly with n. For example:
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204226
966467
4087968
15796476
56634173
190569292
607163746
1844349560
5371315400
15065878135
40853235313
107438159466
274768617130
684957390936
1667727404093
3972999029388

0

(250) =
(300) =
(350) =
(400) =
(450) =
(500) =
(550) =
p(600) =
(650) =
(700) =
(750) =
(800) =
(850) =
(900) =
(950) =
)=

p
(900

(950
p(1000

230793554364681
9253082936723602
279363328483702152
6727090051741041926
134508188001572923840
2300165032574323995027
34403115367205050943160
458004788008144308553622
5503637762499727151307095
60378285202834474611028659
610450747117966916191771809
5733052172321422504456911979
50349216918401212177548479675

415873681190459054784114365430
3246724928206047105940972859506

24061467864032622473692149727991
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We can calculate the number of partitions of n in several ways. We can determine
p(n) by listing all the partitions of n and counting them (as we did in the example
2.1) or we can use some recurrence furmulas (we’ll talk about them later), but both
ways soon become impractical. Therefore we usualy use the computer to calculate
the p(n). Mathematica! already has a built in function: PartitionsP[n], where n is
a concrete positive integer.

But we are not always interested in calculating the number of all partitions of an
integer n; instead of the set of all partitions we often observe just one of its subsets.

Let £ denote any partition property. The number of partitions of n, having the
property L is then denoted p(n|L). In the case of observing all the partitions of n
to exactly k parts we usually write pg(n).

Remark. It is obviously px(n) =0 za k < 0 ali k > n.

Example 2.2. In the example 1.2 we have listed all the 22 partitions of the integer
8. Now lets take a look how many are the partitions of 8, which correspond to some
restrictions.

p(8|every part is odd) = 6 :
p(8]all the parts are distinct) =6 :

p3(8) = 5 .

We notice, that p(8|every part is odd) = p(8|all the parts are distinct). Later, in the
theorem 3.2, we are going to show thathis relation is valid for every integer, not only

8.

Theorem 2.1. There is only one partition of any positive integer n to exactly n
parts: pp(n) = 1. When n > k, we can calculate the number of partitions of n to
exactly k parts using the recurrence formula

pr(n) = pr(n — k) + pra(n — k) +--- +pi(n — k). (1)

Proof. 1t is obvious, that p,(n) = 1: the only partition of a positive integer n to
exactly n parts is represented by the sum of n ones: 14+ 1+ --- 4 1.

!Mathematica 4, Wolfram Research, Inc.
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Now let be n > k and A = (A, Ao, ..., \x) any partition of a positive integer n to
exactly k parts. Then
n=MA+X+ -+ (2)

is a denotion of n with exactly k positive parts. Therefore

is a denotion of n with k positive parts, where some parts may equal zero since some
A; may equal 1. In another words, (3) represents a sum of at most k positive parts,
which corresponds to the partition of n — k to k or less parts. It is easy to see that
the mapping described above is bijective.

Therefore: py(n) =pr(n — k) + pr—1(n — k) + - + p1(n — k). O

Remark. We calculate the number of all partitions of n as

p(n) = pp(n) + pp_1(n) + -+ + p1(n).

Corrolary 2.1. When n > k, we can calculate the number of partitions of n to
exactly k parts using the formula

pr(n) = pe(n — k) + pr_1(n —1). (4)

Proof. From the theorem 2.1 we know, that px(n) = pr(n — k) +pr_1(n — k) +---+
p1(n — k). We can then write py_1(n — 1) as a sum in the same way:

pr-1(n—=1) = pra(n—1=(k=1)) + pra(n—1—(k=1)) +--- + pr(n—1-(k—1))
= pk,l(n — ]f) +pk,2(n — k) 4+ +p1(n — k)

Instead of the right side of equivalence (4) we can now write
pe(n — k) +pe1(n —k) + pra(n — k) + - +pi(n—k),

and that is (theorem 2.1) exactly px(n). O

The values of pg(n) can be grafically arranged into a triangle, similar to Pascal’s
or Stirling’s triangles. The square table with dimension n, formed in Mathematica
by the command

TableForm|[Table[plj, i, {i,1,n}, {j, 1, n}]],

and preliminary defined
k
plk_,n_] :== Which[k > n,0,k <=n, Zp[i,n — K] in  p[l,1]:=1,

=1

4



Mateja Presern SOME RESULTS ON PARTITIONS

approximates well the above described triangular table. Values, which the triangle
to the square, are zero.

In the first row of the n times n table there are values pg(0), in the second pg(1), ...,
in the n-th py(n — 1). There is 1 < k < n in each row, which generates n columns.
The sum of the values py(i — 1) in i-th row equals p(i — 1).

Example 2.3. For a choice n = 20 Mathematica with the command
TableForm|[Tablelp[j, ], {i, 1,20}, {4, 1,20}]]

forms the table:

1 o o0 0 o0 o o o o o o0 o0 0 0O0O0O0O0O0O0
1 o o0 0 o0 o o o o o o0 o0 0 0O0O0O0O0O0O0
110 o0 O O o o o o o o 0 00 O0O0O0O0O0
111 o0 o o o o o o 0 o0 0 0O0O0O0O0O00
121 1 o0 o0 O O O O O O 0 0O0O0O0OO0O0O0
122 1 1 0 O O O O O O 0 OO0 O0O0OO0 O0O0
13 3 2 1 1 0 O O O O O 0 OO0 O0 O0O0 00
13 4 3 2 1 1 0 O O O O O OO0 O0OO0OO0OO0OO0
14 5 5 3 2 1 1 0 0 O O 0O OO0 O0OO0OO0O0O0
14 7 6 5 3 2 1 1 0 O O 0 O0O0O0OO0OO0OO0OO
158 9 7 5 3 2 1 1 0 0 0 0O0O0O0O0O0O0
1 510 11 10 7 5 3 2 1 1 O O O O 0 O O OO
1 6 12 15 13 11 7 5 3 2 1 1 0O 0 0 O O O O O
1 6 14 18 18 14 11 7 5 3 2 1 1 0 0 0 O O O O
1 716 23 23 20 15 11 7 5 3 2 1 1 0 0O O O O O
1 719 27 30 26 21 15 11 7 5 3 2 1 1 0 0O O O O
1 8 21 34 37 35 28 22 15 11 7 5 3 2 1 1 0 0 0 O
1 8 24 39 47 44 38 29 22 15 11 7 5 3 2 1 1 0 0 O
19 27 47 57 58 49 40 30 22 15 11 7 5 3 2 1 1 0 O
1 9 30 54 70 71 65 52 41 30 22 15 11 7 5 3 2 1 1 O

Another relation to calculate the number of partitions of n is the following:
n-pn)=5Smn)+pl)-Sn—-1)+p2)-Sn—2)+...+pn—1)-5(1),

where S(n) denotes the sum of the divisors of n (for example S(4) = 1+2+4 = 7).
We won’t prove the relationship (see DEBONO, ALBERT N. The partitions of an
integer, http://www.pcworldmalta.com/archive /iss37 /num22.htm), we’ll only do an
example.
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Example 2.4.

6-p(6) = S(6)+p(1)-5(5)+p(2)- 5(4) +p(3)-5B3) +p(4) - 5(2) +p(5) - S(1)
6-p(6) = 124+1-6+2-7+3-4+5-34+7-1
p(6) = 11

3 Some interesting results on the partitions

To describe the number of partitions we often use generating functions: the gen-
o0

erating function for the sequence (a,,)2, is the (formal) power series f(q) = Z anq".

n=0

Definition 3.1. Let be H C N. By P(H) we denote the set of all partitions whose
parts lie in H. By p(n|A € P(H)) we denote the number of all partitions of n that
have all their parts in H.

Example 3.1. For any n is p(n|A € P(L)) = p(n|every part is odd), where L is the
set of all odd positive integers.

Definition 3.2. Let be H C N. By P(Hy) we denote the set of all partitions whose
parts lie in H and where no part occures no more than d times.

Example 3.2. For any n is p(n|A € P(Ny)) = p(n|all the parts are distinct).

Theorem 3.1. Let be H C N and let be

flg) = _p(n|x € P(H))q", (5)
n=0
falg) = _p(n|\ € P(Ha))q". (6)
n=0
the generating functions. Then for |q| < 1:
1
fla) = nle_!l A=) (7)
(1- q(d+1)n)

fa@=T[Q+a++¢) =T]

neH neH (1-4q")
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Proof. Let be H = {hy, ha, hs, hy,...} CN. Then we can write

[ - [oererers

neH neH
_ (1+qh1+q2h1+q3h1+'”>
_(1+qh2+q2h2+q3h2+__.)
_(1+qh3+q2h3+q3h3+”_)

We observe that the exponent of ¢ is just the partition: N = ayhy+ashs+aszhg+---.
Hence ¢V will occur in the foregoing summation once for each partition of n into
parts taken from H. Therefore

11 (1_1—(1) =X plalh€ PG

neH

If we are to view the foregoing procedures as operations with convergent infinite
products, then the multiplication of infinitely many series together requires some
justification. The simplest procedure is to truncate the infinite product to

k

1
Hl_qhi'

i=1

This truncated product will generate those partitions whose parts are in H' =
{hy,hs, ..., ht} and we can therefore write it as

Mo = L0 e)

neH’ neH'’
= (Q+¢"+M+PM 4+
.(1_'_qh2_|_q2h2_'_q3h2+'_.)

(L")

0o o oo
— E E . E qa1h1+a2h2+~~+akhk,

a1=0a2=0 ap=0
In this product we multiply only finite number of absolutely convergent series and

we know the result is then a convergent. For g e R, 0 < ¢ <1, hy,he,...,hy € H’,
hi < hy < ... < hy it is:

> pnlre P(H)¢" < [] < I1 < .
n=0 =1 ]

1—qghi —

7
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hi
Thus the sequence of partial sums Z p(n|A € P(H))q¢" is a bounded increasing
n=0

sequence and must therefore converge. Therefore Zp(n|/\ € P(H))q" converges.
n=0

On the other hand

k

in H

k
anMEP H ]HOOH

T l—qh 1 — g
Therefore
= 1
A€ P(H :
Srinne e =TT = T s
Before proving the equivalence (8), let’s show that
(1 _ q(d+1)n)
1+¢"+ - +q¢™) = A A

neH neH

is true. All we have to do is to use the formula for calculating the first  + 1 parts
of geometric series:

1 — xr—i—l
l+a+a’+- 42’ =——
11—z
Proof of the equivalence
(1 _ q(d+1)n)
fald) = 1| 77—
11 (I—q")

neH

is similar to proof of the equivalence (7), only the partial sums of the geometric
series are taken:

H (1 —+ qn + ...+ qdn> — i i i a1h1+a2h2+a3h3+
a1=0a2=0a3=0

neH

= 3" p(nlA € P(H)G"

n=0
Similar justification can be given to the proof of (8). O]
Theorem 3.2 (Euler).
p(n|every part is odd) = p(n|all the parts are distinct) 9)

for all n.
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Proof. Using the theorem 3.1 we can write:

o0 oo 1 ‘
ZP(”P\ € P(L))q" = HW mn
= n=1

anMePNl =H(1+q”)-
n=1 n=1
Since
o0 o0 o0 1
H1+q Hl_q2n—1’
n=1 n=1 n=1
1t 1s
> p(nlr € PMN)g" = p(n| € P(L))q"
n=0 n=0
or, in another form, p(nl|all the parts are distinct) = p(n|every part is odd). O

Definition 3.3. For a,q € C we define:

(), = (;9)n=(1—a)(1—aq)--- (1 — aq”_l) ,
(@)oo = (0;9)0 = lim (a;¢)p, =1 —a)(l —aq)--- (1 — aq”’l) -ozalql < 1,

n—oo

Theorem 3.3. Fora,q € C, |q| <1 and any positive integer n it is

Proof. Let be a,q € C, |¢q| < 1in n € N. Then (definition 3.3) it is

(@oo _ (@i@)oc _ (A1=a)(I—ag)---(1—ag" ") (1 —aq")-(1—ag"")---
(ag")os  (ag";@)oc (1—ag") (1 —ag™)- (1 —ag™™?)- (1 —ag"t®)---

and therefore

(1—a)(1—aq)---(1—ag""),
which (definition 3.3) equals (a),. O
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Without proving them (here) let me introduce you to the following identities.

Lemma 3.1. Forallge R, ¢g# 1, n € N it is
I—q¢* 1

Theorem 3.4 (Cauchy). For all a,q,t € C, |q| <1 in [t| <1 it is:

(1—a)(l— 1—ag" " o 1—atq"
1+Z a) GQ) ( ag"™) :Hﬁ (10)

l-qg)(1—¢*) - (1—q") b1 —tg

Corrolary 3.1 (Euler). Forq,t € C, |t| <1, |q| <1 are true the identities

oo 4 0 1
1+ = and 11
; (@)n EO 1—tq 1
> tnq%n(nfl) O .
n=1 n n=0

Theorem 3.5 (Jacobi triple product identity). For z,q € C, z # 0 and |q| < 1
it 18

nio g = ﬁ {(1 — ") (1+ 2¢*1) (1 + qi“)} . (13)

Corrolary 3.2. Forqe C, |g| <1 is

i (~1yrg T = i(—l)"qw‘m (1—q®  and  (14)
n=-00 n=0
i (_1)nq%—in _ ﬁ (1 _ q(2k+1)(n+1)) (1 _ q(2k+1)n+i) (1 _ q(2k+1)(n+1)—i) .
n=-00 n=0

(15)

Theorem 3.6 (Gordon). Let be 1 < i < k and let By;(n) denote the number of
partitions (by, ba, ..., bs) of n, where b; —bj 1 > 2 forj=1,2,....,s —k+1 and
at most i — 1 of the parts b,, 1 < u < s equal 1.

Let Ag;(n) denote the number of partitions (a1, as, ..., a,) of n, into parts a,, 1 <
v <1 where a, Z 0(mod 2k + 1) and a, # £i(mod 2k + 1).

Then Ay i(n) = Bgi(n) for all n.

10
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Corrolary 3.3 (The first Rogers — Ramanujan identity). The partitions of
an integer n, in which the difference between any two parts is at least 2, are equinu-
merous with the partitions of n into parts aj, a; # 1(mod 5) and a; # 4(mod 5).

Corrolary 3.4 (The second Rogers — Ramanujan identity). The partitions of
an integer n, in which each part exceeds 1 and the difference between any two parts

is at least 2, are equinumerous with the partitions of n into parts a;, a; # 2(mod 5)
and a; # 3(mod 5).

The both Rogers — Ramanujan identities are better known in another form:

o0 qn2 B oo 1
1+ ; 1—q)(1—¢)---(1—qm) o 7H) (1 — g1 (1 — gorn+d) (16)
and
oo qn2+n B o0 1
1+ ; (1-q)(1—¢*)---(1—q") o TH) (1 — g5 +2) (1 — ¢ t3)’ (17)

Further reading:
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Theory, Combinatorics, Physics, and Computer Algebra, American Mathematical Society,
Providence, Rhode Island, 1986.

D. M. Bressoud, Analytic and Combinatorial Generalizations of the Rogers — Ramanu-
jan Identities, American Mathematical Society, Providence, Rhode Island, 1980.

G. H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work,
University Press, Cambridge, 1940.

CHU Wenchang, Basic Almost-Poised Hypergeometric Series, American Mathematical
Society, Providence, Rhode Island, 1998.
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