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of quadratic integers.

The elementary nature and simplicity of the theory of continued fractions is mostly well
disguised in the literature. This makes one reluctant to quote sources when making
a remark on the subject and seems to necessitate redeveloping the theory ab initio.
That had best be done succinctly. I do so here and retrieve some amusing results on
pattern in the period of the continued fraction expansion of quadratic integers.

1. A Fundamental Correspondence

A continued fraction is an expression of the shape

a0 + 1
a1 + 1

a2 + 1
a3 + .. .

which we denote in a space-saving flat notation by

[a0 , a1 , a2 , a3 , . . . . . . ] .
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Proposition 1.

(
a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)
=

(
pn pn−1

qn qn−1

)
for n = 0 , 1 , 2 , . . . . . .

if and only if
pn

qn
= [a0 , a1 , . . . . . . , an] for n = 0 , 1 , 2 , . . . . . . , .

Proof. This formal correspondence is easily established by a thoughtful inductive ar-
gument on the number of matrices, using

[a0 , a1 , . . . . . . , an] = a0 +
1

[a1 , a2 , . . . . . . , an]
.

We will not need to be reminded of the approximation properties of continued fractions
for the present discussion. I shall remark, however, that these properties follow readily
from taking determinants in the correspondence, thus seeing that

pnqn−1 − pn−1qn = (−1)n+1 whence
pn

qn
=

pn−1

qn−1
+

(−1)n−1

qn−1qn
.

If
γ = [a0 , a1 , a2 , . . . . . .] ,

I write
pn

qn
= [a0 , a1 , . . . . . . , an]

to denote the convergents pn/qn of γ . The an are known as the partial quotients of
γ and the quantities γn defined by

γ = [a0 , a1 , . . . . . . , an−1, γn]

are called its complete quotients.
Below, almost invariably, but not always — many of the arguments are formal — the
partial quotients (other than a0 ) will be positive integers. This, the case of admissible
partial quotients, and thence of regular continued fractions (we omit the qualifying
adjective in the sequel), is our principal concern.
It is an interesting exercise to apply the correspondence and to see that the complete
quotients have an expansion given by

−γn+1 =
qn−1γ − pn−1

qnγ − pn
= [0 , an , an−1 , . . . . . . , a1 , a0 − γ] .

It will be convenient to note that a periodic expansion

γ = [a0 , a1 , . . . . . . , ar−1 , ar ]

is just
γ = [a0 , a1 , . . . . . . , ar−1 , ar + γ − a0] .
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2. Continued Fractions of Real Quadratic Irrationals

In the sequel γ denotes a real quadratic irrational with conjugate γ′ .

Proposition 2. ‘Pell’s Equation’

Norm(X − γY ) = (X − γY )(X − γ′Y ) = X2 − (γ + γ′)XY + γγ′Y 2 = 1

has solutions in nonzero integers (X, Y ) .

Proof. There is some integer d so that dγ is an algebraic integer; hence we may
suppose that γ is an integer and afterwards replace Y by dY . Recall that by the box
principle one readily sees that there are infinitely many (x, y) ∈ Z2 so that |x− γy| <
1/y , and therefore

|(x − γy)(x − γ′y)| <
|x − γ′y|

y
< γ − γ′ + 1 .

Thus there is an integer k with |k| < γ−γ′+1 so that Norm(x−γy) = k has infinitely
many solutions and, again by the box principle, that equation has pairs of solutions
(x, y) and (x′, y′) so that x ≡ x′ , y ≡ y′ mod k .

Then

1 = Norm
( x − γy

x′ − γy′
)

= Norm
(xx′ − xy′(γ + γ′) + yy′γγ′

k
− xy′ − x′y

k
γ
)

= Norm(X − γY ) ,

where the congruences

xx′ − xy′(γ + γ′) + yy′γγ′ ≡ Norm(x − γy) and xy′ − x′y ≡ 0 mod k

entail that X and Y are integers as required.

Proposition 3 (Continued fraction algorithm). A unimodular matrix

U =
(

a b
c d

)

with nonnegative integer entries satisfying a ≥ b and a ≥ c has a unique decomposition

U =
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
an 1
1 0

)

with positive integers a0 , a1 , . . . , an .

Proof. Either U = I (and the product is empty); or, as is easily seen, ad−bc = ±1 and
a ≥ c entails that b ≥ d (dually, a ≥ b entails c ≥ d). Thus the top row dominates
the other and since that property persists in the course of applying the Euclidean
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algorithm to the rows of a unimodular matrix — until the process terminates — we
obtain the decomposition as asserted.

Remark. Similarly, any unimodular integer matrix has a finite decomposition of the
given shape, but, of course, the ah may not all be positive and the decomposition is
not unique.

Now let M be the matrix of the Q-linear map ‘multiplication by X−γY ’ with respect
to the Q-basis {γ′, 1} of the Q-vector space Q(γ). Then

M =
(

X −γγ′Y
Y X − (γ + γ′)Y

)
.

Set

J =
(

0 1
1 0

)
.

It follows from Proposition 3, and the remark, that we may decompose MJ , obtaining,
say,

MJ ←→ [a0 , a1 , . . . . . . , ar] .

Remark. It is instructive to confirm that if and only if

a0 − γ′ > 1 > γ − a0 ,

we may choose X and Y so that the matrix

(
X − (γ + γ′)Y Y

−γγ′Y + a0(γ + γ′)Y − a0X X − a0Y

)

satisfies the conditions of Proposition 3 and there is a unique decomposition corre-
sponding to a continued fraction with admissible partial quotients.

From this point on we suppose that γ = β =
√

D or γ = α = 1
2 (1 +

√
D), with D a

positive integer ≡ 1 mod 4, and not a square. Then the conditions of Proposition 3
hold for MJ .

Because

MJ.J

(
γ + γ′ 1

1 0

)
=

(
−γγ′Y + (γ + γ′)X X

X Y

)

is symmetric we see (by transposition of the matrix product and uniqueness of the
decomposition) that the word

aoa1. . . . . .ar−1ar
′ with ar

′ = ar + (γ + γ′)

is a palindrome1.

1A palindrome is never even; indeed, it’s never odd or even; it is a toyota.
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Now consider the periodic continued fraction

δ =[a0 , a1 , . . . . . . , ar−1 , 2a0 − (γ + γ′) ]

=[a0 , a1 , . . . . . . , ar−1←−−−−−−−−−−→ , 2a0 − (γ + γ′) + δ − a0 ] .

It corresponds to

MJ.J

(
δ 1
1 0

)
=

(
X −γγ′Y
Y X − (γ + γ′)Y

) (
δ 1
1 0

)
,

so

δ =
δX − γγ′Y

δY + X − (γ + γ′)Y

or δ2 − (γ + γ′)δ + γγ′ = 0 since Y �= 0. Since δ > 0 we have δ = γ . Thus

Proposition 4. If M is unimodular then

MJ =
(

−γγ′Y X
X − (γ + γ′)Y Y

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
ar 1
1 0

)

if and only if
γ = [a0 , a1 , . . . . . . , ar−1←−−−−−−−−−−→ , 2a0 − (γ + γ′)] .

Of course, by the correspondence, [a0 , a1 , . . . . . . , ar−1] = X/Y .

Comment. If we make no special assumption about the real quadratic irrational γ
then the same formal argument — omitting the remarks on symmetry — yields

γ = [a0 , a1 , . . . . . . , ar−1 , ar + a0 − (γ + γ′)] .

It can be shown that a periodic continued fraction can always be transformed to a
periodic continued fraction with admissible partial quotients; so one obtains an ec-
centric proof of Lagrange’s theorem: Every quadratic irrational has a periodic regular
continued fraction expansion. Of course, in general, the transformation to admissible
partial quotients may yield a preperiod of different length and may destroy the sym-
metry of the period. In fact, one obtains a preperiod of length at most 1 if and only if
a0 − γ′ > 1 > a0 − γ and then symmetry as described occurs if and only if γ + γ′ ∈ Z .
One obtains a pure symmetric period

γ = [a0 , a1 , . . . . . . , ar−1 , ar←−−−−−−−−−−−−−−−−→] ,

if and only if γ > 1 and γγ′ = −1.
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3. Half the period

We shall synthesise the period of γ from half its period and detail the nature of the
complete quotients at the centre of the period.

Comment. For γ = β =
√

D this material is well known but in more general cases
it seems only implicit in the literature. We have in mind just the additional case
γ = α = 1

2 (1 +
√

D) but our remarks remain valid whenever the matrices decompose
uniquely to yield admissible partial quotients. In particular, the condition γ + γ′ ∈ Z

is essential.

The following useful lemma plays an important rôle:

Proposition 5. Given [a0 , a1 , . . . . . . , ah] = ph/qh , set

Mh =
(

ph −γγ′qh

qh ph − (γ + γ′)qh

)
.

Then

MhJ =
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
ah 1
1 0

) (
Ph+1 1
Qh+1 0

)

where
γ + Ph+1

Qh+1
= γh+1

yields the complete quotient γh+1 defined by γ = [a0 , a1 , . . . . . . , ah , γh+1] .

Remark. Notice that the assertion defines Qh+1 by

Norm(ph − γqh) = (−1)h+1Qh+1 .

Moreover, it is easy to confirm by induction — in effect this is the inversion in the
continued fraction algorithm — that

−Norm(γ + Ph+1) = QhQh+1 .

Proof. The first allegation of the Proposition is

MhJ =
(

ph ph−1

qh qh−1

) (
Ph+1 1
Qh+1 0

)

and that the final matrix in the decomposition is of the alleged shape is now easy to
verify. To see the principal claim multiply MhJ on the right by

Q−1
h+1J

(
γ Qh+1

1 0

)
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and apply the correspondence appropriately: Namely, we obtain

γ ←→
(

γ(ph − qhγ′)/Qh+1 ph

(ph − qhγ′)/Qh+1 qh

)

=
(

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
ah 1
1 0

) (
(γ + Ph+1)/Qh+1 1

1 0

)

←→ [a0 , . . . . . . , ah ,
γ + Ph+1

Qh+1
] .

To compose two initial parts of the period we note that a product MhMk is the matrix
of multiplication by

(ph − γqh)(pk − γqk) = (pkph − γγ′qkqh) − γ(pkqh − phqk − (γ + γ′)qkqh)

and thus, for certain integers x , y the product MhMkJ has shape
(

−γγ′y x
x − (γ + γ′)y y

)
.

In the sequel it will be useful to set

L =
(

1 0
1 1

)
and R =

(
1 1
0 1

)
.

Later, we will need to notice that
(

a 1
1 0

)
= JLa = RaJ .

Multiplication on the right by Lγ+γ′
adds γ + γ′ times the second column of the

multiplicand to its first column. Thus MkJLγ+γ′
is symmetric, which is to say that

it equals its transpose Rγ+γ′
J tMk = JLγ+γ′ tMk . Hence

MhMkJLγ+γ′
= MhJLγ+γ′ tMk

=
(

a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ah 1
1 0

) (
Ph+1 + (γ + γ′) 1

Qh+1 0

) (
1 0

Pk+1 Qk+1

)

×
(

ak 1
1 0

) (
ak−1 1

1 0

)
· · ·

(
a0 1
1 0

)

=
(

a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ah 1
1 0

) (
Ph+1 + Pk+1 + (γ + γ′) Qk+1

Qh+1 0

)

×
(

ak 1
1 0

) (
ak−1 1

1 0

)
· · ·

(
a0 1
1 0

)
.

Now suppose that both

Qh+1 = Qk+1 and Ph+1 + Pk+1 + (γ + γ′) = aQh+1, some integer a .
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Then, and only then, the symmetric matrix Q−1
h+1MhMkJLγ+γ′

is unimodular and
has a decomposition(

a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ah 1
1 0

) (
a 1
1 0

) (
ak 1
1 0

) (
ak−1 1

1 0

)
· · ·

(
a0 1
1 0

)

displaying, according to Proposition 4, the periodic continued fraction

γ = [a0 , a1 , · · · , ah , a , ak , ak−1 , · · · , a1←−−−−−−−−−−−−−−−−−−−−−−−−→ , 2a0 − (γ + γ′)] .

In particular, the word a1 . . . ah a akak−1 . . . a1 is a palindrome.
We denote the length h + k + 2 of the period of γ by l(γ).
The conditions

Qh+1 = Qk+1 and Ph+1 + Pk+1 + (γ + γ′) = aQh+1, some integer a ,

amount to

γh+1 =
γ + Ph+1

Qh+1
= a − γ′ + Pk+1

Qk+1
= a − γ′

k+1 .

But this is just a step in the continued fraction expansion of γ and says both

a = ah+1 and γ′
h+2 = γ′

k+1 .

There are two cases according to the parity of l(γ):
If l(γ) is odd, which is necessarily l(γ) = 2h + 1, then the symmetric part of the
period is of even length 2h so k = h − 1 and the central steps of the period are

γ + Ph

Qh
= ah − γ′ + Ph+1

Qh

and its conjugate equation
γ + Ph+1

Qh
= ah − γ′ + Ph

Qh
.

Symmetry is occasioned by selfconjugacy of the pair of equations, signalled by

Qh+1 = Qh , which is Norm(γ + Ph+1) = −Q2
h .

If l(γ) is even, which is necessarily l(γ) = 2h + 2, then the symmetric part of the
period is of odd length 2h + 1 so k = h and the central step of the period is

γ + Ph+1

Qh+1
= ah+1 −

γ′ + Ph+1

Qh+1
.

Symmetry is occasioned by selfconjugacy of the equation, signalled by

Ph+1 = Ph+2 .

Proposition 6. In the case of period of even length, the partial quotient ah+1 central
to the symmetric portion of the period is odd whenever γ + γ′ is odd.

Proof. We have 2Ph+1 + (γ + γ′) = ah+1Qh+1 .
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4. A third of the period

Recall that we have set

β =
√

D and α = 1
2 (1 +

√
D) ,

where D > 0 is an integer such that D �= � and D ≡ 1 mod 4. We show that
a ‘non-trivial’ solution — that is, one with y odd — to the diophantine equation
x2 −Dy2 = ±4 signals a ‘third’ of the period of β and, in effect, ‘corresponds’ to the
period of α :

If (p, q) ∈ Z2 and Norm(p − αq) = ±1 then

p2 − (α + α′)pq + αα′q2 = ±1 which is (2p − q)2 − Dq2 = ±4 .

Write
x = 2p − q and y = q .

Notice that β + β′ = 0 and ββ′ = −D . Accordingly, set

N =
(

x Dy
y x

)

and recall that detN = ±4. It follows that detN3J = ∓64. Indeed, N3J has shape

N3J = 8
(

DY X
X Y

)
with integers X and Y .

This is clear because (x − βy)3 = x3 + 3Dxy2 + β′(3x2y + Dy3) entails

8X = x(x2 + 3Dy2) = x((x2 − Dy2) + 4Dy2) ≡ 0 mod 8

8Y = y(3x2 + Dy2) = y(3(x2 − Dy2) + 4Dy2) ≡ 0 mod 8 .

Since 1
8N3J is unimodular, by Proposition 4 we have the correspondence

1
8N3J =

(
b0 1
1 0

) (
b1 1
1 0

)
· · ·

(
br 1
1 0

)

←→ β = [b0 , b1 , . . . . . . , br−1 , 2b0 ] .

Suppose now that q = y is odd. Then, by Proposition 5, for some index t and integer
Pt+1 we have

NJ =
(

b0 1
1 0

) (
b1 1
1 0

)
· · ·

(
bt 1
1 0

) (
Pt+1 1

4 0

)
.
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Now, recalling that NJ is symmetric so NJ = J tN , and noting that J2 = I ,

N3J = NJ.JN.J tN =(
b0 1
1 0

) (
b1 1
1 0

)
· · ·

(
bt 1
1 0

) (
Pt+1 1

4 0

) (
y x
x Dy

) (
Pt+1 4

1 0

)

×
(

bt 1
1 0

) (
bt−1 1
1 0

)
· · ·

(
b0 1
1 0

)

=
(

b0 1
1 0

) (
b1 1
1 0

)
· · ·

(
bt 1
1 0

)

×
(

(D − P 2
t+1)y + 2Pt+1(x + Pt+1y) 4(x + Pt+1y)

4(x + Pt+1y) 16y

)

×
(

bt 1
1 0

) (
bt−1 1
1 0

)
· · ·

(
b0 1
1 0

)
.

By previous remarks we know that each element of the central matrix is divisible by
8. We thus see that the central third of the period of β =

√
D is given by

x + Pt+1y

4y
= [bt+1 , bt+2 , · · · , br−t−2] .

One adds Pt+1 to x/y = [b0 , . . . . . . , bt] , divides by 4 (see my notes [4]) and recalls
that by symmetry br−t−1 = bt+1 .
All this becomes trivial if y is even. For then x is also even, NJ is just 2MJ ,
with MJ corresponding to a period of β . So 1

8N3J corresponds to a period of β
comprising three times the given period.
If y is odd then so is x . The equation x2 − Dy2 = ±4 is

(x + y

2
)2 − x + y

2
y − D − 1

4
y2 = ±1

and displays the shorter period of α = 1
2 (1 +

√
D) relative to that of β =

√
D .

I now set

A =
(

2 0
0 1

)
and A′ =

(
1 0
0 2

)
.

The relationship between the respective periods of α and of β can then be summarised
by noting that, whilst the unimodular matrix

1
8N3 =

(
X DY
Y X

)
=

(
X −ββ′Y
Y X − (β + β′)Y

)

yields the period of β =
√

D , the unimodular matrix

A−1RNR−1A′−1 =
(

1
2 (x + y) − 1

4 (D − 1)y
y 1

2 (x + y) − y

)
=

(
p −αα′q
q p − (α + α′)q

)

provides the period of α = 1
2 (1 +

√
D).
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5. A sixth of the period

I prove a consequence of the well known identity 2× 3 = 3× 2. The principal result is
an ingenious observation of Kaplan and Williams [1] giving a criterion for the equation
x2 − Dy2 = −4 to have a solution in odd integers x , y given that X2 − DY 2 = −1
has a solution in integers X , Y .

Theorem. Given a quadratic irrational γ , let l(γ) denote the length of the period
of its continued fraction expansion. Let D > 0 be a nonsquare integer ≡ 1 (mod 4) .
Then

l(
√

D) ≡ l( 1
2 (1 +

√
D)) (mod 4)

unless the equation X2 −DY 2 = −1 has a solution in integers X ,Y but the equation
x2 − Dy2 = −4 has no solution in odd integers x ,y .

Proof. As at §3, write

MkJ =
(
− 1

4 (1 − D)qk pk

pk − qk qk

)
=

(
a0 1
1 0

) (
a1 1
1 0

)
· · ·

(
ak 1
1 0

) (
Pk+1 1
Qk+1 0

)

for k = 0, 1, . . . and set

Tk = R−1AMkA′R =
(

2pk − qk Dqk

qk 2pk − qk

)
.

In the sequel it will be useful to recall the following transition formulae:

AR = R2A

AL2 = LA

ALR = RLA′

A′L = L2A′

A′R2 = RA′

A′RL = LRA

Suppose that α has period of odd length l(α) = 2h + 1. Then

ThTh−1J = ThJ tTh−1 = R−1AMhA′R.J.LA′ tMh−1AL−1 = 2R−1AMhJL tMh−1AL−1

= 2Qh+1R
−1AM2hJLAL−1 = 2Qh+1R

−1AM2hA′RJ

= 2Qh+1

(
Dy x
x y

)
= 2Qh+1NJ .

Here we use the easily established identities A′R.J.LA′ = 2JL and JLAL−1 = A′RJ .
Since MhMh−1J produces 2h + 2 partial quotients of α , the matrix ThTh−1J = NJ
produces a unimodular matrix U2h , say, corresponding to 2h + 1 (mod 2) partial
quotients of β and a final factor of the shape

Qh+1

(
P 1
4 0

)
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and it displays a third of a period of β in the sense described at §4 . Namely, N3J is
8 times a unimodular matrix corresponding to a period of β . So much for 3 × 2.

Thus, a period of β corresponds to

8−1N3J = N.N.NJ = N.N.J tN

= (8Qh+1)−1N.R−1AMhJL tMh−1AL−1. tN

= (8Qh+1)−1NJ.JR−1A.MhJL tMh−1.AL−1J.J tN .

But we have just been reminded that the central matrices yield

Mh.JL. tMh−1 = Qh+1Mh
tMh .

Hence the period of β corresponds to

8−1NR−1AMh. tMhAL−1 tN

and is neatly displayed as its apparent halves; this is 2 × 3.

We now study the half period: We have

NJ.JR−1AMh = U2h

(
P 1
4 0

)
.JR−1AMh

= U2h

(
2 P − 1
0 4

)
Mh = 2U2h

(
1 1

2 (P − 1)
0 2

)
Mh ,

noting that P − 1 is even because, as remarked at §3, 4
∣∣ (D − P 2).

It remains to implicitly apply the transition formulae and to write

U2h

(
1 1

2 (P − 1)
0 2

)
Mh

as a product of matrices, W say, corresponding to 3h + 2 (mod 2) partial quotients
and a matrix of determinant 2. By the transition formulae the possibilities for that
last matrix are A , A′ , AL or A′R .

But neither A nor A′ is possible. If, for example, that matrix were A then we would
have the period of β corresponding to

2−1WA.A tW ,

whereas AA is not divisible by 2. Dually, neither is A′A′ . However

AL.RA = RLA′A = 2RL = 2
(

1 1
1 0

) (
1 1
1 0

)

and dually A′R.LA′ = LRAA′ = 2LR yields the same matrices.
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Thus the given period of β corresponds to

W

(
1 1
1 0

)
.

(
1 1
1 0

)
tW .

This period has odd length 2p + 1, say, with the last equation revealing that

p + 1 ≡ 3h + 3 (mod 2) ; thus 2p + 1 ≡ 2h + 1 (mod 4) .

If x2−Dy2 = −4 has a nontrivial solution, that is with y odd, then we have obtained
the primitive period of β and its length l(β) satisfies l(β) = 2p + 1 ≡ 2h + 1 = l(α)
(mod 4).

However, if x2 −Dy2 = ±4 entails y even then we have been dealing with three times
a period and have shown that 3l(β) = 2p + 1. In this case we obtain l(β) ≡ 2p − 1 ≡
(2h + 1) − 2 (mod 4).

If α has only periods of even length then we may apply a similar argument with Mh

replacing Mh−1 . Other than for

Mh.JL. tMh = Qh+1Mh.

(
ah+1 1

1 0

)
. tMh

the argument proceeds as above until we come to determine which of the products

AL

(
ah+1 1

1 0

)
RA = JA′RLah+1RA

and so forth, is divisible by 2. A computation shows that the only admissible config-
uration is:

A

(
ah+1 1

1 0

)
A = JA′Lah+1A = JL2ah+1A′A = 2

(
2ah+1 1

1 0

)
.

Of course we do have

A′
(

ah+1 1
1 0

)
A′ = JALah+1A′ = JL

1
2 ah+1AA′

= 2
(

1
2ah+1 1

1 0

)
;

A′R

(
ah+1 1

1 0

)
LA′ = JALah+1+2A′

= JL
1
2 ah+1+1AA′ = 2

(
1
2ah+1 + 1 1

1 0

)
;
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and

AL

(
ah+1 1

1 0

)
RA = JA′RLah+1RA = JLRALah+1−2LRA

= JLRL
1
2 ah+1−1ALRA = JLRL

1
2 ah+1−1RLA′A

= 2
(

1 1
1 0

) (
1 1
1 0

) (
1
2ah+1 − 1 1

1 0

) (
1 1
1 0

) (
1 1
1 0

)
.

Each of these last three cases is applicable provided that ah+1 is even. But, by
Proposition 6 the central partial quotient is odd. Thus the apparent half period of β ,
which is of length 3h + 3 (mod 2), is not augmented by any partial quotients. We
have

p + 1 ≡ 3h + 3 (mod 4) which is l(β) = 2p + 2 ≡ 2h + 2 = l(α) (mod 4) .

Moreover, it is not now relevant that x2 −Dy2 = ±4 have a solution with y odd. For
if l(β) is even then 3l(β) ≡ l(β) (mod 4).

Remark. The present results are remarkable because one expects to be able to report
at most on the parity, but not on behaviour (mod 4) of periods of continued fractions.
One succeeds here by using symmetry and working with the parity of the half periods.

Confession. It is easy to be sloppy and to presume that it suffices to count the parity of
the apparent half-period, without bothering to perform the transitions and to compute
their consequence. To obtain the Kaplan and Williams [1] result one has to miscount
the parity. I found that no obstacle until a referee detected that my miscounting had
led me to an additional observation that was palpably false. I no longer believe that
the present argument is all that much simpler than that of [1].

6. Comments and Acknowledgments

The bible of the subject is Perron’s Kettenbrüche [2]. Its language makes it inaccessible
to many.

There is little in my remarks that is not well known, but much of it is not widely known.
I hope to have shown that all of it can be known readily from first principles. The
reader will find it of interest to compare the proof in [1] of the Theorem with that given
here. I am indebted to Hugh Williams for challenging me to discover the results of §4-5
armed with no more than an ability to multiply 2 × 2 matrices. Rick Mollin showed
me the symmetry of a toyota. Harold Stark’s treatment [3] of continued fractions
influenced my thinking. I am grateful to P. Majstrenko for some helpful questions
about details in a draft of this note. Ross Talent has helped me to avoid some of the
sloppiness to which I am prone.

It is natural to ask whether one may usefully find yet smaller natural fractions of the
period. I believe that the fractional parts shown are the only ones detectable from the
complete quotients, thus from the Pn and Qn , alone. If one knows the convergents,
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that is: the pn and qn , a little more can be said; I make some labored remarks on
that subject in [4]. I do not think that those results are of computational or algebraic
significance.

This paper is the refined and revised text of a talk given at the 2nd Conference of the
Canadian Number Theory Association, Vancouver, 1989. The author’s attendance at
that meeting was assisted by the University of Calgary.
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