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There are questions about recurrence sequences that seem to crop up again and again.

Plainly, though their answers are well known they are not known well. We endeavour

to explain these answers in context so that they may become more widely known.

The sequence 0, 1,−1, 2,−2, . . . , in which each integer occurs exactly once, is a
recurrence sequence; that is, it satisfies a linear, homogeneous recurrence relation
with constant coefficients, namely,

an = −an−1 + an−2 + an−3.

It is not hard to produce a recurrence sequence in which each integer occurs exactly
twice, or for that matter exactly n times, for any given n—we will show how to do
this later. Can there be a recurrence sequence in which each integer occurs infinitely
often? In which every rational number occurs? Every Gaussian integer? We will
present the theory that enables us to answer these and many other questions about
the range of a recurrence. At the pinnacle of this theory is the beautiful Skolem-
Mahler-Lech Theorem, which deserves to be more widely known.
Let us first make some very general remarks about recurrence sequences. Suppose
that the sequence a0, a1, . . . satisfies the relation

ah+n = s1ah+n−1 + · · · + snah

for some complex numbers s1, . . . , sn and for h = 0, 1, . . . . Taking h = 0, we
see that an is in the ring Z[a0, . . . , an−1, s1, . . . , sn] . An easy induction argument
shows that, in fact, all the terms in the sequence belong to this ring. Thus, the
entire sequence belongs to a ring finitely generated over Z , the integers.
It follows immediately that it is impossible for every rational number to occur in
a recurrence sequence, as the rationals are not contained in any finitely generated
extension of the integers.
A little more is true. If we are dealing with rational (or even algebraic) numbers then
it makes sense to speak of a common denominator d0 for the numbers a0, . . . , an−1

and a common denominator d for s1, . . . , sn . It is clear by induction (or immediate
by what we say below) that then the numbers d0d

hah all are integers.
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1. The Skolem-Mahler-Lech Theorem

To settle the other questions raised in our opening paragraph, we must invoke the
theorem of Skolem, Mahler, and Lech;

Theorem A. If a0, a1, . . . is a recurrence sequence, then the set of all k such that
ak = 0 is the union of a finite (possibly empty) set and a finite number (possibly
zero) of full arithmetic progressions.

Here, a full arithmetic progression means a set of the form { r, r + d, r + 2d, . . . }
with 0 ≤ r < d . To illustrate, consider the sequence given by the recurrence
an+6 = 6an+4−12an+2 +8an , with initial conditions (a0, . . . , a5) = (8, 0, 9, 0, 8, 0);

8, 0, 9, 0, 8, 0, 4, 0, 0, 0, 16, 0, 128, 0, . . . .

The set of k such that ak = 0 is the union of the finite set {8} and the full
arithmetic progression {1, 3, 5, . . . } ; in fact, the sequence is given by an = 0 if n
is odd, an = (n − 8)22(n−6)/2 if n is even.

As so often happens, the proof of the theorem involves notions rather more sophis-
ticated than its statement; so much so, that we can give only the barest sketch here.
We will first tell the story of generalized power sums and make some introductory
remarks about p-adic analysis, two of the important notions underlying the proof
of the Skolem-Mahler-Lech Theorem, and of interest in their own right. The reader
who is willing to accept the theorem on faith and eager to see the solutions of the
problems posed above can read enough of the next section to understand the no-
tation and then skip to Section 6 for the applications. The ambitious reader may
then go on to the more advanced exposition written by the second author [vdP], or
the detailed proof of Theorem A given by Cassels [Cas].

We note in passing that, for our purposes, 7, 0, 0, 0, . . . is not a recurrence sequence;
the recurrence must hold from the start. The reader will experience no difficulty in
extending the results given here to recurrences that only kick in after one or more
terms of a sequence.

2. Generalized power sums

A generalized power sum a(h) , h = 0, 1, 2, . . . is an expression of the shape

(1) a(h) =
m∑

i=1

Ai(h)αh
i , h = 0, 1, 2, . . .

with roots αi , 1 ≤ i ≤ m , which are distinct non-zero quantities, and coefficients
Ai(h) which are polynomials respectively of degree ni −1 , for positive integers ni ,
1 ≤ i ≤ m . The generalized power sum a(h) is said to have order n =

∑m
i=1 ni .

Set

(2) s(X) =
m∏

i=1

(1 − αiX)ni = 1 − s1X − · · · − snXn .
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Then the sequence (ah) with ah = a(h) , h = 0, 1, 2, . . . satisfies the recurrence
relation

(3) ah+n = s1ah+n−1 + · · · + snah , h = 0, 1, 2, . . . .

To see this let E : f(h) �→ f(h + 1) be the shift operator. Its properties include:
(i) En

(
f(h)

)
= f(n + h),

(ii) E(f + g) = E(f) + E(g), and
(iii) for all complex α and β ,

(E − α)(E − β) = (E − β)(E − α) = E2 − (α + β)E + αβ .

We have

(E − αi)
(
Ai(h)αh

i

)
= Ai(h + 1)αh+1

i − Ai(h)αh+1
i =

(
∆Ai(h)

)
αh+1

i ,

where ∆Ai(h) = Ai(h + 1) − Ai(h) is a polynomial of lower degree than that of
Ai . By induction, (E − αi)ni

(
Ai(h)αh

i

)
is identically zero. Let P be the operator

given by P =
∏m

i=1(E − αi)ni . It follows that

P
(
a(h)

)
= P

m∑
j=1

Aj(h)αh
j =

m∑
j=1

P
(
Aj(h)αh

j

)
= 0.

But

P
(
a(h)

)
= (En − s1E

n−1 −· · ·− sn)a(h) = a(h+n)− s1a(h+n−1)−· · ·− sna(h).

Thus generalized power sums correspond to the sequences satisfying the recurrence
relations (3). They also correspond to the Taylor coefficients of power series ex-
pansions of rational functions. Indeed, it follows from the above that there is a
polynomial r(x) , of degree less than n , so that the power series

(4)
∞∑

h=0

ahXh =
r(X)
s(X)

is a rational function; to see this multiply by s(X) and note the recurrence rela-
tion (3).

Conversely, suppose we are given a rational function (4) as above, and suppose
deg r < deg s . A partial fraction expansion, together with the well-known identity

(1 − Y )−j =
∞∑

h=0

(
h + j − 1

j − 1

)
Y h,

yields

r(X)
s(X)

=
m∑

i=1

ni∑
j=1

rij

(1 − αiX)j
=

∞∑
h=0


 m∑

i=1

ni∑
j=1

rij

(
h + j − 1

j − 1

)
αh

i


 Xh.
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The combinatorial symbols displayed are polynomials of degree j − 1 in h , so the
coefficients of Xh , h = 0, 1, 2, . . . are indeed the values of a generalized power sum
as described.
Accordingly, results on generalized power sums are equivalent to corresponding
results on the Taylor coefficients of power series expansions of rational functions.
Later, we will need to deal with exponential polynomials

(5) a(z) =
m∑

i=1

Ai(z) exp(z log αi) ,

the continuations to C of generalized power sums. These are the solutions of linear
differential equations with constant coefficients. To be precise, with D = d/dz ,
(5) is annihilated by the differential operator

∏m
i=1(D− log αi)ni . The order of the

exponential polynomial (5) is n , as for the corresponding generalized power sum.
It is plain that an exponential polynomial vanishes identically if and only if all
its coefficients vanish. We see this readily by induction on the order. Indeed, a
one term exponential polynomial A(z) exp(z log α) obviously vanishes identically
if and only if A(z) vanishes identically. If (5) vanishes identically, then so does
(D − log α1)a(z), which has order n− 1. By the induction hypothesis all its poly-
nomial coefficients vanish; that is for all i the polynomials (D−log α1+log αi)Ai(z)
vanish identically. Then, with the exception of the constant coefficient of A1 , all the
polynomials Ai must vanish identically. Our remark about a one term exponential
polynomial guarantees that also that coefficient vanishes, and we are done.

3. An application to recurrence sequences

Let us use the equivalence of recurrence relations and rational functions to produce
a recurrence sequence in which each integer occurs exactly k times. We write c(k)

for the block c, c, . . . , c of length k . The sequence 0(k), 1(k),−1(k), 2(k),−2(k), . . .
clearly contains each integer exactly k times. The corresponding power series is

f(x) = xk + · · · + x2k−1 − x2k − · · · − x3k−1 + 2x3k + . . . ,

which factors as

xk(1 + x + · · · + xk−1 − xk − · · · − x2k−1)(1 + 2x2k + 3x4k + . . . ).

This is a rational function, since 1 + 2x2k + 3x4k + · · · = (1 − x2k)−2 . Thus, the
original sequence is a recurrence sequence. With a bit more algebra, we see

f(x) =
xk

(1 − x)(1 + xk)2
=

xk

1 − x + 2xk − 2xk+1 + x2k − x2k+1
,

so the sequence satisfies the relation

ah+2k+1 = ah+2k − 2ah+k+1 + 2ah+k − ah+1 + ah,

together with the initial conditions a0 = · · · = ak−1 = 0, ak = · · · = a2k−1 = 1,
a2k = −1.
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4. An introduction to p-Adic analysis

The absolute value function defined on the integers has the following properties;
(i) |x| ≥ 0 for all x ,
(ii) |x| = 0 if and only if x = 0,
(iii) |xy| = |x| · |y| for all x and y , and
(iv) |x + y| ≤ |x| + |y| for all x and y .

There are other functions that have the same properties. Given any non-zero inte-
ger n , and any prime number p , we can write n = pam with a and m integers,
a ≥ 0, and p and m relatively prime. Moreover, this expression is unique. Define
the function | |p by |n|p = p−a . Thus, for example, |35|7 = 1

7 , |36|7 = 1, and
|36|3 = 1

9 . If by convention we take |0|p = 0 for all p , then it is not hard to see
that all the properties of | | listed above hold for | |p , for each p . In fact, the last
property holds in a stronger form, namely,

(iv’) |x + y|p ≤ max( |x|p, |y|p).

We call | |p the p-adic absolute value. Thinking about convergence with respect to
this absolute value leads to some peculiar-looking formulas. For example, for the
geometric series with first term 6 and common ratio 7, the equation

6 + 42 + 294 + 2058 + · · · = −1

is a blunder in the usual run of things, but quite correct in the 7-adics.

The p -adic absolute value is easily continued to a function on the rational numbers,
enjoying properties (i) through (iv’); any rational x can be written as x = pa r

s with
a , r , and s integers, and r and s both relatively prime to p . Thus, | 3536 |7 = 1

7 ,
and | 3536 |3 = 9.

Any rational x has a unique decimal expansion, x =
∑∞

j=m aj10−j with aj

in { 0, 1, . . . , 9 } , the series converging in the usual absolute value. So, too, for
each p , any rational x has a unique p -adic expansion x =

∑∞
j=m ajp

j with aj

in { 0, 1, . . . , p − 1 } , converging in the p -adic absolute value. For example, in the
7-adics we have

17
98

= 7−2 · 17
2

= 7−2

(
9 +

3
1 − 7

)
= 7−2(2 + 1 · 7 + 3 + 3 · 7 + 3 · 72 + . . . )

= 5 · 7−2 + 4 · 7−1 + 3 + 3 · 7 + 3 · 72 + . . . ,

where we have used the geometric series expansion 1
1−7 = 1 + 7 + 72 + . . . .

Now consider the sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . of decimal approximations
to the square root of two. If m is less than n , then the mth and nth terms of this
sequence differ by less than 10−m , a quantity which goes to zero as m increases.
Such a sequence is called a Cauchy sequence (with respect to the usual absolute
value). You can’t help feeling such a sequence ought to have a limit, but this one
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doesn’t—if you confine yourself to the rationals [Euc]. In analysis, it is useful for
Cauchy sequences to have limits, so we embed the rationals in the larger set called
the reals. Every real number has a decimal expansion, and every Cauchy sequence
converges—we say the reals are complete. The details of the completion process
can be found in many introductory analysis texts, for example [Gle].

Now consider the sequence 7, 7 + 72, 7 + 72 + 74, 7 + 72 + 74 + 78, . . . . In 7-adic
absolute value, the difference between the mth and nth terms in this sequence is
|72m

+ · · ·+72n−1 |7 = 7−2m

, which goes to zero as m increases. That is to say, this
is a Cauchy sequence—if you view it 7-adically. It ought, then, to have a limit. It
is not a geometric series, so it cannot have a rational limit. By a process formally
identical to the construction of the reals, we embed the rationals in a larger set
we denote Qp , and call the p-adic rationals. Every p -adic rational has a p -adic
expansion, and the p -adic rationals are complete.

Back to the reals. There are non-constant polynomials which have real coefficients
but no real roots, for example, x2 +1. If we extend the reals to a field containing a
root of x2 +1, we obtain the complex numbers. Mirabile dictu, every non-constant
polynomial with complex coefficients has a complex root. We say that the complex
numbers are algebraically closed. The absolute value function is continued to the
complex numbers by |a+bi| = (a2+b2)1/2 . Mirabile squared, the complex numbers
are complete (with respect to this absolute value). The important functions of
calculus (rational, exponential, trigonometric, . . . ) can be continued to functions
of a complex variable, and many problems about real functions become easier to
handle in this larger domain.

Back to the p -adic rationals. They are not algebraically closed. For example, if α
in Q7 were a root of x2 − 7 = 0, we would have |α|7 = 7−1/2 , but if α had the
7-adic expansion α =

∑∞
j=m aj7j , we would have |α|7 = 7−m , with m an integer.

We can embed Qp in an algebraically closed field Qp , although the miracle of “add
one number, get the rest free” does not occur here. We can extend | |p to Qp , but
Qp is not complete. We can complete Qp to a field Cp , and this field is the p -adic
analogue of the complex numbers; it is complete and algebraically closed. There is
a rich theory of analytic functions on Cp , mirroring that on the complex numbers.

This material can be found in less telegraphic form in [Kob].

What is really going on is this: The set of all Cauchy sequences forms a ring once
we define the operations termwise; that the set is closed under the operations is a
consequence of the rules (i)–(iv). One defines the field of reals (respectively p -adic
rationals, according to the particular valuation defining ‘Cauchy’) to be this ring
with sequences ‘with the same limit’ identified. What that means is that we take
the subset of null sequences, those converging to 0, and notice again by the rules
(i)–(iv) that this set is a maximal ideal in the ring of Cauchy sequences. Then the
quotient ring is a field.

The ‘miracle’ of R and C actually is rather special. It turns out that if a field F is
algebraically closed and if L is a subfield of finite codimension in F (in English: if F
is a finite-dimensional vector space over some field L) then necessarily [F : L] = 2
(compare [C : R] = 2) and L is an ordered field . That means that L is the disjoint
union of three sets N , {0} and P with P closed under addition and multiplication
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and N = −P ; P is of course the set of positive elements of L . It turns out that L
can be ordered if and only if −1 is not a sum of squares. A complete orderable field
is known a real field and always is a subfield of codimension 2 in an algebraically
closed field; for all this see for example [L], Chapter XI. By contrast, it is not hard
to see that Qp is not an ordered field.

5. On proving the Skolem-Mahler-Lech Theorem

Recall that the terms of a recurrence are given by a generalized power sum,

(1) a(h) =
m∑

i=1

Ai(h)αh
i , h = 0, 1, 2, . . .

Given a positive number p , every h can be written uniquely as

h = r + (p − 1)t, with r = 0, 1, . . . , p − 2 and t = 0, 1, 2, . . .

If we write ap,r(t) for a(h), we get

(6) ap,r(t) =
∑

Ai

(
r + (p − 1)t

)
αr

i exp(t log αp−1
i ).

Now it can be shown that there exist primes p such that the logarithmic and expo-
nential functions can be continued to analytic functions on Cp —more accurately,
on regions of Cp large enough for the formula above to make p -adic sense for t in
a closed set D containing the integers. Then ap,r(t) is a p -adic analytic function
on D for r = 0, 1, . . . , p − 2.
Suppose that there are infinitely many h such that a(h) = 0. Then there must
be at least one r for which the analytic function ap,r(t) is zero for infinitely many
integers t . Of course, there are complex analytic functions which are zero for
infinitely many integer values of their argument; for example, sinπz . This can
occur because the integers are an unbounded set in C . Things are different in Cp ,
since the integers form a bounded set there; after all, |n|p ≤ 1 for all integers n .
It turns out that a function (whether complex or p -adic) analytic on a closed,
bounded region and with infinitely many zeroes in that region must be identically
zero. Thus, a

(
r + (p − 1)t

)
vanishes identically for all integer t , and in particular

a(h) is zero for all h in an arithmetic progression. This concludes our sketch of the
proof.
It is a little strange that Theorem A should force us to enter the realm of p -adic
analysis. Actually that can sort of (but not really) be avoided. It turns out that p
must be selected so that αp

i ≡ αi mod p for each i . Then (6) has no more than n−1
integer zeroes (so certainly not infinitely many); otherwise it vanishes identically
[RvdP]. The trouble is that there seems only to be a p -adic proof for the bound.

6. Applying the Skolem-Mahler-Lech Theorem

So if there are infinitely many h such that a(h) = 0 then there must be at least
one r for which the analytic function

ap,r(t) =
∑

Ai

(
r + (p − 1)t

)
αr

i exp(t log αp−1
i )
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vanishes identically. So, by our discussion at the end of §2, since the Ai are not
identically zero, the log αp−1

i cannot all be distinct.

Indeed, the numbers αp−1
i must coincide at least in pairs. Plainly p − 1 is not

arbitrary and depends only on the roots αi .

Moreover, we see that the original function

a(z) =
m∑

i=1

Ai(z) exp(z log αi)

vanishes at all z = r + t(p − 1) with t ∈ Z . As an aside we mention that then it
follows that a(z) must be the product of

sin π
p−1 (z − r) = 1

2i

(
e

πi
p−1 (z−r) − e−

πi
p−1 (z−r)

)

with some other exponential polynomial. In that sense a recurrence sequence has
infinitely many zeroes if and only if it is ‘sinful’.

So, in particular (taking l = p − 1, say) we have:

Proposition 1. If a recurrence sequence vanishes infinitely often, then it vanishes
on an arithmetic progression with a common difference l that depends only on the
roots.

Now suppose there is a number k such that a(h) = k for infinitely many h .
Let b(h) = a(h) − k . Then b(h) =

∑m
1 Ai(h)αh

i − k · 1h is a generalized power
sum with the same roots as a(h) (and, possibly, the root 1 if it was not already a
root of a(h)), hence the same l -value as a(h), and b(h) is zero whenever a(h) =
k . Thus, a(h) takes on the value k on an arithmetic progression with common
difference l .

Now there are only l different complete arithmetic progressions of integers with
common difference l . So we have established a principal remark of this note,
namely,

Proposition 2. The number of values that a recurrence sequence can take on
infinitely often is bounded by some integer l that depends only on the roots.

It follows immediately that there is no recurrence sequence in which each integer
occurs infinitely often.

Nor is there a recurrence sequence in which every Gaussian integer occurs. For

suppose ah were such a sequence, and let
∑∞

h=0 ahXh = r(X)
s(X) . Then

∞∑
h=0

Re(ah)Xh = Re
r(X)
s(X)

.

Now it is easy to see that the real part of a rational function is again a rational
function, so Re(ah) is a recurrence sequence, and it takes on every integer infinitely
often. As we have seen, this cannot happen.
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7. Multiplicity: A good question.

We restrict ourselves to recurrence sequences of integers. By the results just ex-
plained an integer recurrence sequence either takes the value 0 infinitely many
times, in which case it has special properties that allow us to say it is degenerate,
or only finitely many times. Is there a bound µ(n) so that a nondegenerate integer
recurrence sequence of order n has at most µ(n) zeroes? Of course any given non-
degenerate integer recurrence sequence has a bound on its number of zeroes. Our
question is whether there is a uniform bound for the multiplicity , depending only
on the order of the sequence.

It is obvious that µ(2) = 1. (Truly. Give this a few minutes thought.) The bound
µ(3) = 6 is very much more difficult and has only been confirmed recently [Beu].
The extreme case is

ah+3 = 2ah+2 − 4ah+1 + 4ah , a0 = a1 = 0 , a2 = 1 .

Its six zeroes are a0 = a1 = a4 = a6 = a13 = a52 = 0 .

For larger n there are not even any worthwhile conjectures. The problem deserves
some computer time, say at least so as to guess µ(4) (which is ≥ 9).

8. Recurrence

The question, whether there is a recurrence sequence in which each rational occurs,
was raised in Crux Mathematicorum in October, 1989.

Proposition 2 was published in 1959 by Shapiro [Sha], and again some years later by
Berstel and Mignotte [Ber]. The question, whether there is a recurrence sequence in
which each Gaussian integer occurs infinitely often, was posed in Crux Mathemati-
corum in June, 1988, and repeated in October 1989. These sequences are recurrent
in more ways than one! Indeed, Theorem A for recurrence sequences of algebraic
numbers was first proved by Mahler in the 30’s, based upon an idea of Skolem.
Then, Lech published the result for general recurrence sequences in 1953. In 1956
Mahler published the same result, apparently independently (but later realised to
his chagrin that he had actually reviewed Lech’s paper some years earlier, but had
forgotten it).

References not explicitly given here can be found in the survey [vdP].
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Bull. Soc. Math. France 104 (1976), 175–184, MR 54 #2576.

[Beu] F. Beukers, The zero-multiplicity of ternary recurrences, Compositio Math. 77 (1991),

165-177, MR 92a:11014.

[Cas] J. W. S. Cassels, Local Fields, Cambridge U. Pr., Cambridge, 1986, MR 87i:11172.

[Euc] Euclid, The Thirteen Books of Euclid’s Elements, 2nd ed., T. L. Heath, ed., Dover, New

York, 1956, MR 17-814.



10 Gerry Myerson and Alf van der Poorten

[Gle] A. Gleason, Fundamentals of Abstract Analysis, Addison-Wesley, Reading, 1966, MR 34

#2378.

[Kob] N. Koblitz, p -adic Numbers, p -adic Analysis, and Zeta-Functions, Springer, New York,

1977, MR 57 #5964.

[L] Serge Lang, Algebra, Addison-Wesley, Reading, Mass., 1965, MR33 #5416.

[RvdP] A. J. van der Poorten and R. S. Rumely, Zeros of p -adic exponential polynomials II, J.

London Math. Soc. 36 (1987), 1–15, MR 88m:11103.

[vdP] A. J. van der Poorten, Some facts that should be better known; especially about rational

functions, in Number Theory and Applications ed. Richard A. Mollin, (NATO – Advanced

Study Institute, Banff, 1988), Kluwer Academic Publishers, Dordrecht, 1989, pp. 497-528,

MR 92k:11011.

[Sha] H. N. Shapiro, On a theorem concerning exponential polynomials, Comm. Pure. Appl.

Math. 12 (1959), 487–500, MR 22 #12078.

Alf van der Poorten obtained his various degrees (PhD in Maths, BA (Hons) in
Philosophy, and MBA) at the University of New South Wales, in Sydney [yes, he
was born in Holland, but was transported in 1951]; his PhD was supervised by
George Szekeres, and informally by Kurt Mahler. Alf is now Head of the School
of Mathematics, Physics, Computing and Electronics and Director of ceNTRe, the
Centre for Number Theory Research, at Macquarie University, in Sydney’s northern
suburbs. His interests include science fiction and mystery books; and number theory
and p -adic analysis. As for his colleague’s ‘limerick’, Alf retorts:

The challenge that Gerry presented,
Was one that Alf rather resented;

Alf wanted to write,
In prosaical light,

In the hope it’d mean that he meant ’t.

Centre for Number Theory Research

Macquarie University NSW 2109

Australia

gerry@mpce.mq.edu.au alf@mpce.mq.edu.au


