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Though my travels took a long t̆ıme,

I hope Paulo will think it is f̆ıne

For my remarks to be short;

‘Cause the point is the thought

That I write this for P. Ribenboim

1 Introduction

I will discuss continued fractions of formal power series, not for their own
sake, but in terms of their use in obtaining explicit continued fraction
expansions of classes of numbers. As we will see, the approach I outline
accounts for essentially all the interesting examples of the past dozen years.

2 First principles

My viewpoint is formal. A continued fraction is an expression of the shape

a0 + 1
a1 + 1

a2 + 1
a3 + .. .

which one denotes in a space-saving flat notation by

[a0 , a1 , a2 , a3 , . . . . . .] .

Everything follows from the correspondence whereby we have for h = 0, 1,
2, . . . (

a0 1
1 0

) (
a1 1
1 0

)
· · · · · ·

(
ah 1
1 0

)
=

(
ph ph−1

qh qh−1

)

if and only if
ph

qh
= [a0 , a1 , . . . . . . , ah] for h = 0, 1, 2, . . . .
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216092 Continued fractions of formal power series

I was first motivated to observe this useful relationship in [10] by remarks
of Stark [15]. It goes back at least to [5].

Of course, a quotient p/q defines p and q only up to common factors;
our correspondence can only refer to some appropriate choice of p and q.

Taking the transpose in the correspondence we see that

[ah , ah−1 , . . . , a1] =
qh

qh−1

and, taking determinants, that

phqh−1 − ph−1qh = (−1)h+1 so
ph

qh
=

ph−1

qh−1
+ (−1)h−1 1

qh−1qh
,

whence
ph

qh
= a0 +

1
q0q1

− 1
q1q2

+ · · ·+ (−1)h−1 1
qh−1qh

.

The regular continued fraction expansion of a real number has partial quo-
tients ah that are positive integers (other than perhaps for a0 which may
take any integer value); zero, negative and fractional partial quotients are
termed inadmissible. Similarly, the admissible partial quotients ah of a
formal series in X−1 are polynomials of degree at least 1 (except perhaps
for a0 which may be constant).

If a1, a2, . . . are positive integers then qh+1 = ah+1qh +qh−1 (and q−1 =
0, q−2 = 1) entails that the sequence (qh) is increasing, so it follows that
for a regular continued fraction expansion ph/qh −→ α ∈ R with

α− ph

qh
= (−1)h

( 1
qhqh+1

− 1
qh+1qh+2

+ · · · · · ·
)

.

Similarly, if the partial quotients ah are polynomials of degree at least 1
then the convergents ph/qh converge to a formal series in X−1. To see that
momentarily surprising fact, just notice that

ph

qh
= a0 +

x−(deg q0+deg q1)

x−(deg q0+deg q1)q0q1
− x−(deg q1+deg q2)

x−(deg q1+deg q2)q1q2
+ · · ·

+ (−1)h−1 x−(deg qh−1+deg qh)

x−(deg qh−1+deg qh)qh−1qh
.

Let L = K((X−1)) denote the field of formal Laurent series in X−1 over a
field K. Then f ∈ L has a continued fraction expansion

[a0 , a1 , . . . , ah−1 , fh] ,

with fh the h-th complete quotient in L. The continued fraction algorithm
proceeds by taking the next partial quotient ah to be the ‘polynomial part’
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of fh, to wit those terms in X (rather than in X−1) — including the
constant term — and one defines fh+1 = (fh − ah)−1, observing that it is
again an element of L. We have seen above that

qhf − ph = qh(−1)h

(
1

qhqh+1
− · · ·

)
,

which ensures that

deg(qhf − ph) = −deg qh+1 < −deg qh .

In fact, the convergents ph/qh are characterised by the ‘locally best ap-
proximation property’: if deg s < deg qh then deg(qhf − ph) < deg(sf − r)
for all r ∈ K[X]. To see this, suppose without loss of generality that
deg qh−1 < deg s < deg qh and note that, because the matrix(

ph ph−1

qh qh−1

)

is unimodular, there are polynomials a and b so that

s = aqh + bqh−1

r = aph + bph−1 .

Then
sf − r = a(qhf − ph) + b(qh−1f − ph−1) ,

and the evident fact that deg b > deg a (there is, as usual, the forced
convention that the identically zero polynomial has degree −∞) shows
that, indeed

deg(sf − r) > deg(qh−1f − ph−1) > deg(qhf − ph) ,

showing also that only convergents are locally best approximations. We
should also note that if deg s = deg qh, but s is not a constant multiple
of qh, then necessarily deg(sf − r) > deg(qhf − ph). For otherwise there
is a K-linear combination of s and qh of lower degree yielding as good an
approximation of f as does qh. Hence we have:

Criterion. If deg(qf − p) < −deg q then p/q is a convergent of f .

Remark. It is customary, but evidently pleonastic to add the qualification
‘and if p and q are coprime’. I won’t add the qualification but, through-
out, I do of course suppose when referring to convergents that the quoted
numerator and denominator are in fact coprime.

Proof. Suppose deg s < deg q. Then there is a polynomial r so that

0 �= qr − ps = s(qf − p)− q(sf − r) ,

whence deg(sf − r) > 0, so deg(sf − r) ≥ −deg q > deg(qf − p) entails
that p/q is indeed a locally best approximation.
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Central to my subsequent observations is the following invaluable lemma:

Folding formula.

ph

qh
+

(−1)h

xq2
h

= [a0 , −→w , x− qh−1

qh
] = [a0 , −→w , x , −←−w ] .

Here −→w is a convenient abbreviation for the word a1 , a2 , . . . , ah and,
accordingly, −←−w denotes the word −ah , −ah−1 , . . . , −a1.

Proof. Let ←→ denote the correspondence between matrix products and
continued fractions. Then

[a0 , −→w , x− qh−1

qh
]←→

(
ph ph−1

qh qh−1

) (
x− qh−1/qh 1

1 0

)

=
(

xph −
(
phqh−1 − ph−1qh

)
/qh ph

xqh qh

)
←→ ph

qh
+

(−1)h

xq2
h

since
(
phqh−1−ph−1qh

)
= (−1)h−1; and, of course, x−qh−1/qh = [x , −←−w ].

My nomenclature is based on the observation that iterated application
of the formula leads to a pattern of signs corresponding to the creases in
a sheet of paper repeatedly folded in half. For details in context see [11];
paperfolding is surveyed in [4].

3 Folded continued fractions

Because 1 + X−1 = [1 , X], it follows from the folding formula that

1 + X−1 + X−3 = [1 , X] +
(−1)
xX2

,

with x = −X; so

1 + X−1 + X−3 = [1 , X , −X , −X] .

Ultimately,

1 + X−1 + X−3 + X−7 + X−15 + X−31 + · · · =
= [1 , X , −X , −X , −X , X , X , −X , −X , X , −X , −X , X ,

X , X , −X , −X , X , −X , . . .] .

The pattern of signs is exactly that of the pattern of creases in a sheet of
paper folded in half right half under left an appropriate number of times
and finally right half over left.
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Regardless of how one folds (that is, under or over) it is a property
of paper that the creases in the odd-numbered places alternate in sign.
Moreover, changing the fold just changes the sign of the term being added;
it changes the continued fraction expansion to the extent of changing the
sign of the terms marked −X, and those induced from them: but all of
those occur in the even-numbered places. Hence, rather more generally,
we can specialise X to 2, say, and conclude that the uncountably many
numbers 2

∑∞
0 ±2−2n

(where we suppose for convenience that the signs
for n = 0, 1 in the sums both are +) all have continued fraction expansions
of the shape

[1 , 2 , a , −2 , b , 2 , c , −2 , d , 2 , e , −2 , f , . . .] ,

with a, b, c, d, . . . = ±2.
These expansions are severely polluted by inadmissible partial quotients.
However,

−y = 0 +−y

−1/y = −1 + (y − 1)/y

y/(y − 1) = 1 + 1/(y − 1)
y − 1 = −1 + y

1/y = 0 + 1/y

y = y so − y = [0 , 1 , 1 , 1 , 0 , y] .

Here 1 of course means −1. Hence

[. . . , A , −B , C , . . .] = [. . . , A , 0 , 1 , 1 , 1 , 0 , B , −C , − . . .] .

This doesn’t seem an improvement, but easily
(

D 1
1 0

) (
0 1
1 0

) (
E 1
1 0

)
=

(
D + E 1

1 0

)
,

so
[. . . , D , 0 , E , . . .] = [. . . , D + E , . . .] .

Hence

[. . . , A , −B , C , . . .] = [. . . , A− 1 , 1 , B − 1 , −C , − . . .]
= [. . . , A− 1 , 1 , B − 1 , 0 , 1 , 1 , 1 , 0 , C , . . .] =

= [. . . , A− 1 , 1 , B − 2 , 1 , C − 1 , . . .] .

Thus

[. . . , y , −2 , z , . . .] = [. . . , y − 1 , 1 , 0 , 1 , z − 1 , . . .] =
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= [. . . , y − 1 , 2 , z − 1 , . . .] ,

and we see that

2
∞∑
0

±2−2n

=

= [1 , 2 , a− 1 , 2 , b− 1 , 2 , c− 1 , 2 , d− 1 , 2 , e− 1 , 2 , f − 1 , . . .] .

We are not done yet, because a partial quotient y−1 = −3 is inadmissible.
However,

[. . . , 2 , −3 , 2 , . . .] = [. . . , 2− 1 , 1 , 1 , 1 , 2− 1 , . . .] ,

whilst a further −3 yields

[. . . , 1 , 1 , −3 , 2 , . . .]
= [. . . , 1 , 1− 1 , 1 , 1 , 1 , 1 , . . .] = [. . . , 2 , 1 , 1 , 1 , . . .] .

Thus, remarkably, all the numbers 2
∑
±2−2n

have regular continued frac-
tion expansions requiring the partial quotients 1 and 2 alone. In [11] Shallit
and I give a precise description of these expansions as folded sequences of
words for all choices of sign in the series.

The first examples of explicit continued fraction expansions with bounded
partial quotients were noticed independently by Kmos̆ek [6] and by Shallit
[14] some dozen years ago. Indeed, by precisely the argument just sketched,
the sums

∑∞
0 ±x−2n

all have expansions of the shape

[0 , x , a , −x , b , x , c , −x , d , x , e , −x , . . .] ,

with a, b, c, d, . . . = ±1. It is now not difficult to verify that only a small
number of different partial quotients appear once we make the partial quo-
tients admissible. Some details, arising from a slightly different viewpoint,
appear at §2.3 of the survey [4] whilst at §6 of [11] we explain that it is
practicable, using an idea of Raney [13], explicitly to divide the expansions
of the numbers x

∑∞
0 ±x−2n

by x to obtain those earlier results. Mendès
France and Shallit [9] provide yet a different context in which these con-
tinued fractions appear.

4 Specialisation

From my viewpoint, the genesis of the ideas just sketched is an observa-
tion of Blanchard and Mendès France [3] to the effect that if E is the
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set {0, 1, 4, 5, 16, 17, . . .} of nonnegative integers which are sums of distinct
powers of 4 then

χ = 3
∑
h∈E

10−h entails χ−1 = 3
∑

h∈2E

10−h−1 .

This is remarkable since, generally speaking, given an irrational real number
represented by its decimal expansion, it is not practicable to explicitly
represent its reciprocal.

It is easy to see that

χ = 3
∞∏

n=0

(1 + 10−4n

)

and one then notices that the partial products yield every second conver-
gent of χ. That readily yields an explicit continued fraction expansion.
In [8] Mendès France and I ask, and answer, just which formal products∏∞

n=0(1 + X−λn) share the property that their truncations yield exactly
every second convergent. We find that inter alia the cases λn = kn be-
have that way, provided that k > 2 is even, and that then the partial
quotients are polynomials with integer coefficients. That means that we
can reduce the continued fraction expansions modulo p at every prime and
obtain the expansion for the formal product defined over the finite field
Fp. Alternatively, we may substitute an integer x ≥ 2 for X and obtain
the regular continued fraction expansion of the product; in other words, we
can specialise. The polynomial partial quotients appearing for k even are
of increasing degree.

It is of course exactly the phenomenon of specialisability, equivalently
that of good reduction everywhere, that allows the approach described in
the previous section.
It was momentarily a surprise to discover that the product

∏∞
n=0(1+X−3n

)
studied in [7] has a continued fraction expansion that has good reduction
almost nowhere, the exception being p = 3, when the product in fact
reduces to the quadratic irrational (1 + X−1)−1/2.
Explicit computation in characteristic zero yields

∞∏
h=0

(
1 + X−3h)

= [1 , X , −X + 1 , − 1
2X − 1

4 , 8X + 4 , 1
16X − 1

16 , −16X + 16 ,

− 1
32X − 1

16 , 32X − 32 , 1
64X + 5

256 , 1024
5 X − 256

5 ,

− 25
2048X + 25

2048 , − 2048
35 X − 4096

245 , 343
4096X + 245

4096 , . . . . . . ] .

The partial quotients all appear to be linear, but their coefficients grow in
complexity at a furious rate — the 30th partial quotient is
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− 1374389534720
15737111 X − 13743895347200

456376219

— and seem quite intractable. Nevertheless, Allouche, Mendès France and
I [1] prove that these partial quotients are indeed all linear and, implicitly,
we give a relatively easy technique for the recursive computation of the
coefficients. We also notice that our argument shows that in general for odd
k, 2 of every 3 partial quotients are of degree 1, and that those expansions
too have good reduction almost nowhere, with exception, to our continuing
surprise, again at p = 3 and, seemingly, nowhere else.

A few moments thought shows that the continued fraction expansion of
almost every formal power series (defined over Z, say) fails to have good
reduction anywhere and has almost all its partial quotients of degree 1. It
is thus our results for even k > 2 that are truly surprising.

5 A specialised continued fraction

A dozen or so years ago, Jeff Shallit, evidently in thrall to Fibonacci, no-
ticed the continued fraction expansion

2−1 + 2−2 + 2−3 + 2−5 + · · ·+ 2−Fh + · · ·
= [0 , 1 , 10 , 6 , 1 , 6 , 2 , 14 , 4 , 124 , 2 , 1 , 2 , 2039 , 1 , 9 , 1 , 1 ,

1 , 262111 , 2 , 8 , 1 , 1 , 1 , 3 , 1 , 536870655 , 4 , 16 , 3 ,

1 , 3 , 7 , 1 , 140737488347135 , . . .] .

The increasing sequence of very large partial quotients demands explana-
tion; the truncations of the sum do not yield convergents and the shape
of the very good approximations is not immediately obvious. However, it
turns out that a correct context for the cited expansion can be discovered
in the remarks of mine and Mendès France [8] summarised above, wherein
we consider continued fractions of formal Laurent series and then specialise
the variable to an appropriate integer. Indeed, at the time we were finding
the arguments detailed in [11], we noticed experimentally that

X−1 + X−2 + X−3 + X−5 + . . . + X−Fh + . . .

= [0 , X − 1 , X2 + 2X + 2 , X3 −X2 + 2X − 1 , −X3 + X − 1 , −X ,

−X4 + X , −X2 , −X7 + X2 , −X − 1 , X2 −X + 1 , X11 −X3 ,

−X3 −X , −X , X , X18 −X5 , −X , X3 + 1 , X , −X , −X − 1 ,

−X + 1 , −X29 + X8 , X − 1 , . . .] .

The limited number of shapes for the partial quotients, the phenomenon of
self-similarity whereby bits and pieces from early in the sequence of partial
quotients reappear subsequently, and of most importance the fact that
all of the partial quotients have rational integer coefficients, all demand
explanation and generalisation. Shallit and I provide that in [12] .
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Above, and in the sequel, (Fh) denotes the popular sequence of Fi-
bonacci numbers defined by the recurrence relation Fh+2 = Fh+1 +Fh and
the initial values F0 = 0, F1 = 1.

We did not find it easy to find an explanation for the phenomena just
observed, until we accepted the fact that all we knew was the folding for-
mula. Setting sh = X−1+X−2+X−3+X−5+ . . .+X−Fh and sh = [0 , fh]
we have

sh+1 = sh + X−Fh+1 = [0 , fh] +
1

X−Fh−2q2
.

We use the identity Fh+1 = 2Fh − Fh−2, whilst q = XFh denotes the de-
nominator of the final partial quotient of sh. Let q′ denote the denominator
of the next to last partial quotient. Then, supposing that |fh| is even, the
formula states that

sh+1 = [0 , fh , X−Fh−2 − q′/q] .

The point is that in this example we happen to be able to show fairly
readily1 that

q′/q = sh−1 −X−Fh−3 −X−Fh ,

with the critical relationship being 2Fh + Fh−1 = Fh+2. After repeated
application of such facts we ultimately show that, once h ≥ 11,

sh+1 = [0 , fh , 0 , −fh−4 , −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3]

= [0 , gh , XFh−5 ,
←−−
fh−4 , 0 , −fh−4 , −XLh−4 ,

←−−
fh−4 ,

0 , −fh−3 , XFh−4 ,
←−−
fh−3]

= [0 , gh , XFh−5 −XLh−4 ,
←−−
fh−4 , 0 , −fh−3 , XFh−4 ,

←−−
fh−3] =

= [0 , gh+1 , XFh−4 ,
←−−
fh−3] ,

and
s∞ = X−1 + X−2 + X−3 + X−5 + · · · = lim

h→∞
[0 , gh] .

Above, we have replaced fh by

fh−1 , 0 , −fh−5 , −XLh−5 ,
←−−
fh−5 , 0 , −fh−4 , XFh−5 ,

←−−
fh−4 ,

so
gh = fh−1 , 0 , −fh−5 , −XLh−5 ,

←−−
fh−5 , 0 , −fh−4 .

These results explain the experimental data completely. For example, the
large partial quotients in the numerical expansion arise from XFh−5−XLh−4

after making the specialised partial quotients admissible.

1That is, after laboriously discovering the formula from the experimental evidence,
it slowly dawned on us that there is a straightforward argument allowing one to find q′

‘spontaneously’.
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An obstacle to our finding a workable argument was my conviction that
the argument would apply generally as follows: Suppose (Uh) is a integer
recurrence sequence, that is the solution of a linear homogeneous recurrence
relation

Uh+n = s1Uh+n−1 + · · ·+ snUh h = 0, 1, . . . ,

with integer coefficients s1, . . ., sn and integer initial values U0, . . ., Un−1.
Suppose further that the sequence (Uh) is strictly increasing with

lim
h→∞

Uh+1/Uh = ρ > 1 .

I had guessed on the basis of the Fibonacci example that the series

X−U0 + X−U1 + X−U2 + · · ·

is likely to have a specialisable continued fraction expansion.
With ρ > 2 this is trivially true by the folding lemma, perhaps with the

qualification that one must omit some initial terms of the series to ensure
that always Uh+1/Uh ≥ 2 (and then ρ = 2 will do).

However, careful inspection of the arguments of [12] suggests that the
properties of the Fibonacci numbers actually used are that the sequence
(Fh) is strictly increasing with Fh−2 +Fh−1 ≤ Fh and 2Fh−1 = Fh−3 +Fh,
and of course that the initial partial quotients have integer coefficients. It
follows immediately that, subject to that last condition — but it seems to
be satisfied as soon as one chooses an appropriate starting point for the
sequence (in the example we start with F2), the arguments apply to strictly
increasing Lucas sequences generally.

To my chagrin, because, pace Paulo, I shy away from matters Fibonacci,
it seems that the technique Shallit and I discovered applies rather rarely.
When 1 < ρ < 2 we have not as yet noticed any examples, except for cases
relying on the identity 2Uh+n = Uh+n+1 + Uh. I am moved to admit:

I’m allied to one of the factions,

But I cannot accept its distractions

I’m forced to agree

With Fibonacci,

When it’s a matter of continued fractions.

The phenomenon of specialisability seems only to apply to the Polynacci
(sic) series:

Conjecture. Let (Tn) be an increasing sequence of nonnegative integers
satisfying a recurrence relation

Th+d = Th+d−1 + Th+d−2 + · · ·+ Th with d > 1 ,

and set
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sn = X−Td + X−Td+1 + X−Td+2 + · · ·+ X−Tn ; sn = [0, tn] .

Then, subject to appropriate initial conditions on the Th, the words th
consist of polynomials with integer coefficients, which is to say that s∞ has
a specialisable continued fraction expansion.

Remark. The point is that it is easy to see that one has 2Th = Th+1+Th−d

and Th−2 + Th−1 ≤ Th . Moreover, computations Shallit and I carried
out show that for small d = 3, 4, 5, 6, . . . and initial values 0, . . . , 0, 1 the
commencing partial quotients are specialisable.

We sketch arguments in [12] proving the validity of the conjecture for
d = 3 and d = 4 and suggesting its truth for larger d. And we do not know
what weight to give to our negative evidence as regards further examples
of specialisability. That evidence is not utterly compelling because one
must adjust sequences tested to have them start with some ‘appropriate’
term. However, in any case our arguments partially vindicating the conjec-
ture suggest that our present techniques are not up to constructing further
favourable examples, if there are any.

6 Some symmetric continued fractions

In [16] Jun-Ichi Tamura displays the continued fraction expansions of cer-
tain series ∞∑

h=0

1
f0(x)f1(x) · · · fh(x)

,

with f in Z[X] a polynomial with positive leading coefficient and of de-
gree at least 2; fh denotes the h-th iterate of f : so f0(X) = X and
fh(X) = f(fh−1(X)). The genesis of his observations is apparently the
fact that the case f(x) = x2 − 2 (and x an integer at least 3) yields a
quadratic irrational with a symmetric period. Tamura determines those f
for which the specialisations at x of the truncations of the cited series have
a symmetric continued fraction expansion.

The relevance of the folding formula is manifest. We set

sn =
n∑

h=0

1
f0(X)f1(X) · · · fh(X)

and sn = [0 , gn] ,

with the word gn supposed of odd length and a palindrome2. Then

sn+1 = [0 , gn] +
1

f0(X)f1(X) · · · fn+1(X)

2I have said it before, but once more cannot hurt too much: ‘A palindrome is never
even; it is a toyota’. The second comment I owe to Rick Mollin.
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= [0 , gn , − fn+1(X)
f0(X)f1(X) · · · fn(X)

− q′/q] ,

by the folding formula.
However, we know that p/q = sn = [0 , gn] entails that q′/q = [0 ,←−gn ],

so by symmetry we see that the continued fraction expansion of q′/q is
simply that of sn; that is, q′ = p. So in the formula pq′ − p′q = (−1)k+1,
where k = |gn|, we have p2 − (−1)k+1 = p′q.

It is now convenient to be more explicit, say by setting

sn(X) = An(X)/Bn(X) ;

so p = q′ = An and q = Bn. It is easy to verify that An+1 = fn+1An +
1; of course, Bn+1 = fn+1Bn. Hence, certainly k = |gn| is odd as we
had supposed, for on specialising X to 0 and noting that X

∣∣ Bn we have(
An(0)

)2 − (−1)k+1 = 0; and k even would contradict reality. So the final
formula of the previous paragraph asserts that Bn

∣∣ (A2
n − 1).

Furthermore, A2
n+1 − 1 = fn+1(fn+1A

2
n + 2An). The left hand side is

divisible by Bn+1 = fn+1Bn, so Bn divides fn+1A
2
n + 2An. Since we know

that Bn

∣∣ (A2
n − 1) it follows that in fact q = Bn divides fn+1 + 2An.

We may now return to the folded formula to observe that

sn+1 = [0 , gn , − fn+1(X)
f0(X)f1(X) · · · fn(X)

− q′/q]

= [0 , gn , −fn+1/Bn −An/Bn]
= [0 , gn , −(fn+1 + 2An)/Bn + An/Bn]

= [0 , gn , −(fn+1 + 2An)/Bn , gn] .

It is congenial to remove minus signs that will prove inadmissible after
specialisation. Accordingly, set (fn+1 + 2An)/Bn = dn and note that

[0 , g , −d , g] = [0 , g , 0 , 1 , 1 , d− 2 , 1 , 1 , 0 , g] ,

therewith recovering Tamura’s principal result.
Finally, we ask for conditions on f implied by our assumption of sym-

metry in the formal power series case. We see that Bn

∣∣ (fn+1 + 2An)
is X

∣∣ (f(X) + 2) for n = 0 and entails f(0) = −2. For n = 1 it is
Xf(X)

∣∣ (f(f(X)) + 2f(X) + 2), whence f(−2) = 2; and similarly n = 2
yields Xf(X)f(f(X))

∣∣ (f(f2(X)) + 2f2(X)(f(X) + 1) + 2), which entails
f(2) = 2. So, certainly f is of the shape

f(X) = X(X − 2)(X + 2)g(X) + (X2 − 2)

for some polynomial g ∈ Z[X]. Since Tamura shows that this suffices for
the continued fraction expansions cited here to be symmetric, this shape
for f is equivalent to the symmetry of the continued fraction expansions.
Of course, the cited expansions are specialisable.
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