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Introduction. Fermat’s Last Theorem surely was mathematics’ most celebrated and
notorious open problem. Its investigation sparked fundamental advances in the
mathematical sciences.

Fermat’s Last Theorem states that there are no positive integer x, y and z so that

xn + yn = zn

if n is an integer greater than 2.

For n = 2 there is an infinity of solutions

32 + 42 = 52, 52 + 122 = 132, 82 + 152 = 172, . . .

the Pythagorean triples. However, in 1637 or so, the French jurist Pierre de Fermat
wrote in the margin of his copy of the Arithmetica of Diophantus, at problem 8 in
Book II, at which it is asked to split a square into squares that, on the other hand:

Cubum autem in duos cubos, aut quadrato-quadratum in duos quadrato-
quadratos, et generaliter nullam in infinitum ultra quadratum potestatem
in duos ejusdem nominis fas est dividere; cujus rei demonstrationem
mirabilem sane detexi. Hanc marginis exiguitas non caperet.

That is: “To split a cube into two cubes, or a fourth (biquadratic) power into two
fourth powers, or indeed any higher power unto infinity into two like powers, is
impossible; and I have a marvellous proof for this. But the margin is too narrow
to contain it.”

On Fermat’s death in 1665 his son Samuel proceeded to collect Fermat’s mathemat-
ical correspondence. That, and a reprint of the Diophantus, together with Fermat’s
marginal notes, was published in 1670. By the end of the eighteenth century all
of Fermat’s other remarks had been dealt with, one way or the other: either prop-
erly proved or shown to be false. Only this one remark, hence the last theorem,
remained.

When Fermat died in 1665 he was one of the most famous mathematicians in
Europe. But he did not publish. His reputation grew out of his correspondence
with other scholars and out of a number of works which circulated in manuscript
form. Incidentally, it’s quite absurd to suppose that Fermat had a proof of the
‘Last Theorem’. Indeed, it seems plain that he did not continue to believe that he
had one much beyond the moment he scribbled the claim in that notorious margin.
Other than for the exponents 3, and 4, which were within his reach and which are
mentioned as challenge problems in his letters, Fermat never boasted about the
matter in his correspondence in the thirty or so remaining years of his life.

Nowadays, one thinks of Fermat principally as a number theorist. But at the time
his work in number theory was so revolutionary and so much ahead of its time
that its value was poorly understood. His work then most celebrated included
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his contributions to optics, particularly his principle of least time and thus the
law of reflection; to analytic geometry (which he had developed independent of
Descartes); and his theory of tangents, quadrature, and of maxima and minima —
the beginning of calculus. Those contributions are now mostly forgotten, perhaps
because they were just the first steps in matters now much better understood. On
the other hand, Fermat’s work in number theory, as interpreted a century and more
later by Euler and subsequent originators of modern mathematics, remains fresh
and inspiring.

To prove Fermat’s Last Theorem one need only show that no fourth power is a sum
of two fourth powers, and — for all odd primes p — no p-th power is a sum of two
p-th powers. That these cases suffice is clear, because any integer n �= 2 is either a
power of two, and so divisible by 4, or n is divisible by some odd prime p. So an
n-th power (other than a square) plainly is also either a fourth power, or it is also
a p-th power for some odd prime p.

In one of the few actual proofs he left behind, Fermat himself had dealt with case
n = 4. Specifically, Fermat shows that a right-angled triangle with integer sides
cannot have area the square of an integer. One recalls that primitive Pythagorean
triples x2 + y2 = z2 are all of the shape x = 2uv, y = u2 − v2, z = u2 + v2 for
coprime integers u and v not both odd. It’s then an interesting, and not quite a
trivial, exercise to notice that the nonexistence of the right-angled triangle entails
that a difference of two fourth powers cannot even be a square, let alone a fourth
power.

It was a century later, in 1753, that Euler dealt with the case n = 3. There was an
apparent omission in the argument, later filled in by Gauss. Dirichlet and Legendre
proved the case n = 5 in 1825 and Lamé settled the case n = 7 in 1839; Dirichlet
had proved the case n = 14 in 1832.

The first and second cases. From here on p is an odd prime. For symmetry, it is
often convenient — as one may, say, by taking c negative — to consider Fermat’s
equation in the form ap + bp + cp = 0, where, of course, we may suppose that a, b, c
do not share a common factor; so no two have a common factor. One then readily
sees that there are two cases, according as the exponent p divides one of a, b, or c
— say, c; or as not. In the latter case, the First Case of FLT, it’s then easy to show
that there is an integer γ so that a + b = γp. On the other hand, if c is divisible by
p, thus the Second Case, then a + b = pp−1γp.

Sophie Germain, used these ideas to show that there is no First Case solution if
both the exponent n, and kn+1, are primes; here k may take various small values.
It followed from her work as generalised by Legendre that Fermat’s equation has
no First Case solution for exponent n less than 100.

Much more recently, Adleman and Heath-Brown applied a result of Fouvry to
generalise Sophie Germain’s ideas so as to prove that the First Case of Fermat’s
Last Theorem holds for infinitely many prime exponents.

Abel had conjectured that none of x, y or z can be a power of a prime. Using
formulas such as those alluded to above one can show that if in xn + yn = zn, with
0 < x < y < z and n ≥ 3, one of x, y or z is some power qr of a prime q, then
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the exponent n must be some prime p, the prime power must be x = q, z differs
from y by 1, and n divides y(y + 1). However, until the recent proof of Fermat’s
Theorem in general it was not even known that ‘Abel’s equation’ xp +yp = (y+1)p

is impossible in positive integers x and y.

The Barlow–Abel formulæ, as the formulas above may be called, are often re-
discovered. Particularly if the equations are manipulated in their non-symmetric
form, it’s dreadfully easy to make a minor error and thus to obtain a spurious
contradiction ‘proving’ that Fermat’s equation indeed has no integer solutions. It’s
frightening to contemplate the near innumerable hours spent by ‘discoverers’ in
pursuing such dead ends, and irritating to recall the time spent in finding such
errors and explaining to reluctant ‘provers’ that their approach always was hope-
less. Sadly, Wiles’ successful argument has not yet dissuaded these workers from
attempting to discover an ‘elementary argument’ — thus one not involving any
nontrivial mathematics.

Nonetheless, it was not until the seventies that Terjanian remarked, using only
these elementary methods, that if x2p + y2p = z2p has a solution in integers then
2p divides one of x or y.

Kummer’s work. Fermat’s Last Theorem concerns rational integer solutions to an
equation. Yet one seems to simplify study of Fermat’s equation by introducing
generalised integers — the so-called cyclotomic integers involving p-th roots of
unity. The idea is to see that xp + yp = zp is

∏p−1
r=0(x + ζr

py) = zp, where ζp is a
primitive p-th root of unity. One would like to be able to argue that this means
that each linear factor (x + ζr

py) is essentially a p-th power, as would be the case
were we still dealing with rational integers. However, Kummer saw that in general
there is no unique factorisation in domains of cyclotomic integers and, worse, there
are nontrivial units. Kummer attacked those difficulties by introducing the notion
of ideal numbers. Then the principal ideals (x + ζr

py) each are p-th powers of
ideals of the p-th cyclotomic field, indeed p-th powers of principal ideals if the class
number of that field is prime to p. Kummer proved Fermat’s Last Theorem for
such regular primes in 1847. His researches provided a seemingly straightforward
characterisation of regularity in terms of the behaviour of the Bernoulli numbers
mod p, his study of cyclotomic number fields initiated the subject now known as
algebraic number theory, and by dealing with the primes 37, 59 and 67, which are
only ‘a little irregular’, Kummer proved Fermat’s Last Theorem beyond exponent
100 (up to 167, where the calculations became just too burdensome).

In 1850 the Académie des Sciences de Paris offered a golden medal and a prize of
3000 francs to the mathematician who would solve Fermat’s problem. In 1856 it
determined to withdraw the question from competition but to award the medal to
Kummer “for his beautiful researches on the complex numbers composed of roots
of unity and integers”.

Nonetheless, just as Gauss had dismissed Fermat’s equation as one of a multitude
of such diophantine equations, so Kummer made it clear that he valued his work
on the higher reciprocity laws far more than its eventual application to Fermat’s
Last Theorem.
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Until recently. The next 120 years see surprisingly little fundamental advance on
Kummer’s contributions to Fermat’s Last Theorem. Earlier this century the United
States mathematician Vandiver corrected part of Kummer’s work and refined his
criteria for irregularity. By 1993, further such refinements and ingenious computa-
tion had settled Fermat’s Last Theorem for exponents up to four million.

At the turn of the century, work relying on a complicated analysis of Kummer’s
conditions led to the Wieferich criterion that if there is to be a First Case solution
for exponent p, then p must divide the Fermat quotients (ap − a)/p both for base
a = 2 and a = 3. But we now know, again by computer check, that the only
primes up to 109, say, satisfying the criterion for a = 2 are 1093 and 3511, whilst
for base 3 there are just 11 and 1006002. By 1993, Granville had proved the First
Case criterion to be necessary for all bases up to a = 89, settling the First Case of
Fermat’s Last Theorem beyond exponent 1014.

By also applying techniques from transcendence theory and diophantine approxi-
mation, the Finnish mathematician Inkeri had shown that a putative solution in
the case of exponent p would have x, say, larger than pp, or so. Thus it was known
that one could not possibly actually state any counterexample to Fermat’s claim,
for if there were one it would involve integers millions of digits long. In that spirit,
application of Baker’s method showed that in xp + yp = zp, with 0 < x < y < z, in
any case y−x is nearly as large as x, and z−y is either similarly large, or z−y = 1.
So these highly sophisticated methods could not even settle Abel’s conjecture.

Catalan’s Conjecture, whereby the equation xu − yv = 1 has 32 − 23 = 1 as its only
nontrivial solution in integers, had been supposed more difficult than Fermat’s Last
Theorem. Yet, in the mid-seventies, Tijdeman refined Baker’s inequalities and
showed they imply that Catalan’s equation has at most finitely many solutions.
More recent improvements in the numerical Baker bounds and applications inter
alia of class field theoretic results of Inkeri have by now considerably narrowed the
range in which further solutions might occur.

In 1983 Faltings proved Mordell’s Conjecture to the effect that a curve of genus
greater than 1 has at most finitely many rational points. This fundamental advance
in arithmetic geometry implies that each Fermat equation has at most finitely many
solutions, because an integer solution to the Fermat equation provides a rational
point on the curve xp + yp = 1 (here we’ve replaced x/z by x, and y/z by y). For
p > 3 those curves have genus more than one. It’s a simple application to show
that Fermat’s Last Theorem holds for almost all exponents n; that is, that the
probability of any given exponent providing a counterexample is zero.

In 1908 the Königliche Gesellschaft der Wissenschaften in Göttingen had announced
the Wolfskehl Prize, providing 100 000 Reichsmark “to be given to the person who
will be first to prove the Great Theorem of Fermat”. The adjective ‘great’ contrasts
the result with the far more important ‘Fermat’s Little Theorem’ according to which
a prime p divides ap − a for all integers a. The ‘little theorem’ is fundamental to
modern public key cryptography.

The Wolfskehl Prize provoked a flood of purported proofs, and rumours of its value,
notwithstanding that having been grossly depleted by hyperinflation, undoubtedly
remained responsible for the notoriety of Fermat’s Last Theorem. To the despair
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of amateurs, Andrew Wiles has now been formally awarded the Wolfskehl Prize,
now again worth some 50 000DM, for his proof.

However, as already said, in the 120 years following Kummer’s monumental contri-
bution, there was little fundamental advance on that work. In particular, it can still
not be proved that there are infinitely many regular primes — though one safely
conjectures that a little more than 70% of primes are regular, and it’s easy to prove
that there are infinitely many irregular primes. It was still not known whether the
Second Case of Fermat’s Last Theorem holds for infinitely many prime exponents.
It seemed that a quite new idea was needed. The new idea came from a seemingly
quite different area of mathematics.

Recently . . . . Number theory was strong in antiquity. But the books of Diophantus
were lost in the burning of the library of Alexandria and had little influence on
mathematics until the seventeenth century, when Fermat was inspired by Bachet’s
then recent translation. The ideas underlying the solutions to the problems in the
Arithmetica were substantially in advance of those then current in the West.

Diophantus is largely concerned with the problem of finding a rational solution to
various equations; we now recognise his methods as geometrical. Dealing with the
Pythagorean triples, he considers the equation x2 + y2 = 1 in rationals x and y;
which we well know to be a circle. An obvious, albeit trivial, point on this locus
is (−1, 0). A typical line through that point is parametrised by x = u − 1, y = tu.
This line intersects the circle when u2 − 2u + 1 + t2u2 = 1; and happily we can
cancel the known solution u = 0 to obtain u = 2/(1 + t2), yielding a new point
x = (1 − t2)/(1 + t2), y = 2t/(1 + t2). This is of course essentially the solution
already mentioned above, now illustrating that the circle may be parametrised by
rational functions. In this case we get infinitely many solutions, given by a simple
formula. Different problems might have infinitely many solutions not given by a
rational formula, or just finitely many solutions, or none at all.

Problem 24 of Book IV of Diophantus suggests that we split a given number, say
6, into two parts so that their product is a cube minus its cube root. That is,
y(6− y) = x3 −x. Once again, (−1, 0) provides a trivial solution but now when we
try x = u − 1, y = tu we get, after cancelling the known solution u = 0,

t(6 − tu) = (u − 1)(u − 2) or u2 − (3 − t2)u + (2 − 6t) = 0 .

In general, this leads to irrational values for u. However, on selecting the slope
t = 1

3 , we may cancel once more to obtain u = 26
9 whence x = 17

9 , y = 26
27 is a

new solution. The fun thing is that we can now construct the tangent at this new
solution to find a further solution, and so on. In general, given two solutions, the
secant yields a third solution. Of course the complexity of the solutions threatens
to increase dramatically.

For example, writing in 1643, Fermat asks for right-angled triangles so that both the
hypotenuse and the sum of the two sides are squares. Taking the sides as 1

2 (1 ± y)
and the hypotenuse as x2, we of course have y2 = 2x4 − 1 by Pythagoras. Fermat
can compute the basic solution P (13, 239). But the geometrical problem requires
that the sides of a triangle be positive numbers, so −1 < y < 1. The tangent at P
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provides a further solution 2P
(

1525
1343 , 2750257

1803649

)
. This still won’t do. Finally, we get

3P
(

2165017
2372159 , 3503833734241

5627138321281

)
from the secant through two solutions, corresponding to

a triangle with sides:

a = 1061652293520 , b = 4565486027761 , c = 4687298610289 .

Not only is this a solution, but the method guarantees that this is the smallest
solution!
With yet higher-degree equations these methods fail in general. The upshot is that
given a polynomial equation f(x, y) = 0 with integer coefficients, there are three
cases, seemingly depending on the (total) degree of f . Namely, if f is of degree at
most two, we have none or infinitely many solutions — these cases are parametrised
by rational functions. This is the case of rational curves — curves of genus 0. If f
is of degree 3 we may have finitely many — the method of infinite ascent of the last
examples may cycle, or infinitely many solutions. This is the case of elliptic curves;
that is, curves of genus 1. These curves do not, of course have anything to do with
ellipses — those are conics and may be parametrised by rational functions. Rather,
the point is that these curves are parametrised by the so-called elliptic functions.
Finally, there are curves of general type, of genus g ≥ 2, which seem only to have
sporadic rational points, thus Mordell’s Conjecture ultimately proved by Faltings.
In summary, the interesting case — where it’s not clear whether a curve has in-
finitely many rational points or not — is the case of elliptic curves. In this sense
the study of the collection of equations comprising Fermat’s Last Theorem is of no
interest at all.
Our understanding of the arithmetic of elliptic curves had advanced remarkably
in the past 50 or so years. Computation and analogy with known results for
algebraic number fields had motivated the remarkable conjectures of Birch and
Swinnerton-Dyer, and work of Eichler and of Shimura had given body to a sugges-
tion of Taniyama to the effect that elliptic curves defined over the rationals are also
parametrised by modular functions. Some instances of the Birch–Swinnerton-Dyer
Conjectures had been proved, the simplest case established by Coates and Wiles.
Then, in the mid-eighties, there came a remarkable connection between this funda-
mental work and Fermat’s Last Theorem. The context of that relationship arose in
part from a study of the so-called ABC–conjecture according to which an equation
A + B = C in positive integers A, B and C entails that C is no larger than a small
power of the product of the distinct primes dividing the product ABC.
Consider the cubic curve Ea,b,c : y2 = x(x − a)(x + b), where a + b = c in distinct
integers. With that condition on a, b and c we have a ‘Frey curve’ Ea,b,c, an
elliptic curve with discriminant essentially abc. In 1985 Frey had remarked that,
for uvw �= 0 and p ≥ 5, if 2

∣
∣u and v ≡ 1 mod 4 then the curve Eup,vp,wp is semistable

and its supposed existence seemed likely to contradict the Modularity Conjecture of
Taniyama–Shimura for elliptic curves over the rationals Q. In the language of the
seventies, Eup,vp,wp could apparently not be a Weil curve. A suggestion of Serre,
his ε–Conjecture, was proved by Ribet in 1986, entailing that indeed the truth
of the Modularity Conjecture, and then just for semistable elliptic curves, implies
Fermat’s Last Theorem. At the time, though, it was believed that the Modularity
Conjecture was inaccessible; that its proof was at least a generation away.
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Now. It was therefore an enormous surprise and excitement when, at Cambridge
University in 1993, Andrew Wiles, a British mathematician by then working at
Princeton, announced he had proved Fermat’s Last Theorem by establishing the
Modularity Conjecture for semistable elliptic curves over Q. There followed a year
or so of alarums in which a subtle gap in the argument had to be filled. In 1995
a paper of Wiles, augmented by a further joint note with Richard Taylor, finally
proved Fermat’s allegation.
Fittingly, Fermat’s Last Theorem was proved as a corollary of far more fundamental
results.
The proof of Fermat’s Last Theorem is important. A reasonable comparison is to
suggest that it’s as important to mathematics as the landing on the moon was to
science and technology. The proof is as dramatic as the landing, and as exciting
to the onlookers. Of itself, knowing that Fermat’s claim is true barely advances
mathematics, but then the actual taking of people to the moon did not hugely add
to our scientific knowledge. The moon landing was the corollary, as it were, to
a long and steady scientific and technological advance, punctuated by occasional
dramatic breakthroughs. The landing was not itself such a breakthrough. In that
spirit, Fermat’s Last Theorem is a culmination of some 350 years, well certainly 250
years, of mathematical advance. However, Wiles’ work does constitute a dramatic
advance, one of those special watersheds. The great advance lies in his showing that,
indeed, the Modularity Conjecture of Taniyama–Shimura–Weil is true, at any rate
for semistable elliptic curves. This confirms that the experimental and contextual
evidence had not led mathematics astray. If the “Holy Grail” of Fermat’s Last
Theorem was needed to motivate that advance, well that’s fine. There will have
been worse reasons for advancing mathematics.

The future. So, what remains? At much the time of Wiles’ announcement, Darmon
and Granville had proved that Faltings’ Theorem implies that the equation xr+ys =
zt has at most finitely many solutions in relatively prime integers x, y and z; this
provided that 1/r+1/s+1/t < 1. The case where the sum of the reciprocals of the
exponents is 1 includes Fermat’s Last Theorem with exponents 3, and 4 — the latter
via the case (2, 4, 4). When the sum is greater than 1, Beukers has shown there
are infinitely many solutions parametrised by finitely many sets of polynomials in
several variables. There are ten known solutions in the interesting case, starting
with 32 − 23 = 17, say, and with largest solution 438 + 96 2223 = 30 042 9072. In all
ten solutions at least one of the exponents is 2. So now we may have the Generalised
Fermat Conjecture that the Darmon–Granville equation has no solutions with all
exponents larger than 2. One should not dare suggest that the ten known solutions
are all the primitive solutions. Yet it remains intriguing that these solutions do not
contradict the GFC.
The worthwhile question for mathematics however is the ABC-conjecture. There
is growing indication that it implies just those facts one would conjecture anyhow
on more reliable grounds. Moreover, here we can prove an analogue in function
fields. Though such arguments are not transferable to the arithmetic case, they
have proved most reliable in suggesting what is the truth in that case.

References. For the legends see [A1]; the more recent [A2] also does not involve any
actual mathematics. Kummer’s work is introduced and detailed in [B] at advanced
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undergraduate level, whilst [C] inter alia gives near complete references to work
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