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On Number Theory and Kustaa Inkeri

Alfred J. van der Poorten

Of course, I too was fascinated by Fermat’s Last Theorem as a teenager. I read
‘The Last Theorem’ of E. T. Bell — I had found it in my local library — and
loved ‘The Devil and Simon Flagg’, by Arthur Porges∗. Curiously, perhaps, it was
not these things that made me decide to study mathematics rather than physics
at university. In 1960, during the year I spent in Israel after finishing high school,
I found I could not afford to buy science fiction books — which I might finish
in an hour and could not reread more than four or five times. Instead, I bought
the Dover edition of Konrad Knopp’s Function Theory . Its three volumes, and
two additional volumes of problems, kept me happily occupied for many months.
I decided I wanted to be taught some of the background mathematics. But I
remained too sensible, perhaps too conservative, to spend serious time on Fermat’s
Last Theorem. I knew only amateurs did that.

Sure, I gave the FLT a month of my time each year. I still believe — well, sort
of — that it must be possible to prove directly that n

√
1 − xn takes a rational value

for rational x �= 0 only if n = 1 or 2. But my first noteworthy mathematical contact
with Fermat’s Last Theorem surely came from reading Kustaa Inkeri’s ‘A note on
Fermat’s conjecture’ [13]. I wrote to Inkeri, explaining that the implications of
Baker’s inequalities now were known to include a control on the exponent, in the
sense of Tijdeman and Schinzel [26], and consequently [25].

In his foreword ‘Kustaa Inkeri: Portrait of a Mathematician’ to the collected
papers of Kustaa Inkeri [21], Tauno Metsänkylä writes: “For the mathematical
community, Kustaa Inkeri is the author of significant papers on number theory,
especially on topics related to Fermat’s Last Theorem. Finnish mathematicians
know Inkeri as the founder of the school of number theory in Finland. At the
University of Turku, many of us still think of Inkeri as the Head of the Mathematics
Department, a position he held for about 20 years.”

For me, Kustaa Inkeri was a generous correspondent who promptly invited
me to join him as co-author in a paper he drafted based in part on my letter

∗To earn my pocket money I worked for a local pharmacy 1956–58 delivering orders. To my
great fortune, the pharmacist was a science fiction reader who subscribed to all the science fiction
magazines. That’s how I met Simon Flagg, in the British edition of the Magazine of Fantasy and
Science Fiction. Actually, that’s also how I learned about E. T. Bell. I first read several of John
Taine’s science fiction novels (Seeds of Life, and The Greatest Adventure), and then discovered
that Taine also wrote about mathematics, under his real name, Eric Temple Bell.



282 Alf van der Poorten

to him [16]†. Then, moreover, it happened that ICM’78, about to take place in
Helsinki, brought me to Finland. My family and I were invited to spend a week
in Turku. We first met Tauno, who looked after us at Inkeri’s behest, we renewed
acquaintance with Matti Jutila — whom we had first met in Debrecen in 1974
— and we were entertained everywhere, including an evening with Veikko Ennola,
and a delightful lunch with Inkeri hosted by his daughter‡. I also recall that ‘public
demand’ — more precisely, Kustaa Inkeri’s urgings — required me to give the very
first of what eventually became some four dozen lectures on Apéry’s proof of the
irrationality of ζ(3); see [23].

Twenty-one years later, my wife, Joy, and I are honoured and delighted to be
invited back to Turku for the present meeting.

1. Fermat’s Last Theorem

In recent years I have said and written [24] far too much about the FLT to want to
add greatly to it here. So, let me begin my remarks by quoting myself. In Chapter
V of [24] I mention that:

of April 1994, Henri Darmon e-perpetrated the following announcement:

amazing development today on Fermat’s Last Theorem. Noam Elkies has
announced a counterexample, so that FLT is not true after all! He spoke
about this at the Institute today. The solution to Fermat that he
constructs involves an incredibly large prime exponent (larger than 1020),
but it is constructive. The main idea seems to be a kind of Heegner-point
construction, combined with a really ingenious descent for passing from the
modular curves to the Fermat curve. The really difficult part of the
argument seems to be to show that the field of definition of the solution
(which, a priori, is some ring class field of an imaginary quadratic field)
actually descends to Q. I wasn’t able to get all the details, which were quite
intricate . . . .
So it seems that the Shimura–Taniyama Conjecture is not true after all.
The experts think that it can still be salvaged, by extending the concept of

†Notice its date, 1980, of publication. It was this, I think, that led to a later exchange
with Andrzej Schinzel, which I report in Chapter V of Notes on Fermat’s Last Theorem as
follows: “The dates now surprise me and remind me of the extraordinary delays then current in
publication. Some years later John Loxton and I accidentally dedicated our article (‘An awful
problem about integers in base 4’, to Paul Erdős on his 75th birthday, Acta Arith. 49 (1987),
193–203) to the 80th birthday of Paul Erdős (rather than his 75th), leading Schinzel to say
archly that he accepted the paper subject to one change, unless we wanted it kept back for five
years. I was able to retort that my error was understandable given the way that Erdős carried
on about his age — smile from Schinzel — and that, anyhow, given Acta Arithmetica delays, it
was probably spot on — laughter from everyone else.”

‡No, that’s not quite right. Liisa Vainio came as designated driver, and principal English
speaker.
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automorphic representation, and introducing a notion of “anomalous
curves” that would still give rise to a “quasi-automorphic representation”.

I noted that the actual construction of his anomalous solution would have been
quite some feat on Elkies’ part∗, given that such a solution would, according
to Inkeri’s results, necessarily involve numbers at least some 1021 digits long.

When I wrote that retort, I was recalling Inkeri’s striking result [9] to the effect
that, say, y > 1

2p3p−1 in any putative solution of Fermat’s equation with exponent
p. I was also thinking of the computations [5]†, whereby we knew ante Wiles that
in any case p > 4 · 106.

I was particularly intrigued by Inkeri’s mention of Abel’s equation, the special
case of xn + yn = zn when one of x, y, or z is a power of a prime. Supposing
0 < x < y < z, one requires only elementary ideas to find that x must be the
prime power. In fact x must be prime, z = y + 1, the exponent n must be a prime
p, and p

∣∣y(y + 1). Notwithstanding all that, Wiles’s argument remains the only
proof even of this very special case. Mind you, the case z − y = 1 actually is
more difficult than z − y = k > 1. However, back then Inkeri and I could prove
that either y − x is relatively large, both in the ordinary and in the l-adic sense
for every prime l. More specifically, if y − x is bounded in a putative solution to
Fermat’s equation then so is the exponent and each of the variables. All this was
fairly clear to those of us familiar with Baker’s method. Independently, Cameron
Stewart [29] announced similar results.

Inkeri’s careful comments [14] on some of the more detailed erroneous proofs
of Fermat’s Last Theorem will remain of value to those of us still burdened by a
stream of purported ‘simple proofs’ of the FLT.

2. Catalan’s Equation

In [11], Inkeri shows that if xp − yq = 1 in integers x, y and odd primes p and
q, where p ≡ 3 (mod 4) and q does not divide the class number of the quadratic
number field Q(

√−p), then pq−1 ≡ 1 (mod q2), q2
∣∣x and y ≡ −1 (mod q2p−1).

In [15], Inkeri deals with arbitrary odd prime exponents. He shows that if q does
not divide class number hp of the cyclotomic number field Q(ζp) generated by a
primitive p-th root of unity, then q2

∣∣x and pq−1 ≡ 1 (mod q2). There’s of course
a little more to it than just this, but it remains instructive to see that in a certain
sense the most sophisticated fact we need to know is that gcd

(
x−y, (xp−yp)/(x−

y)
)

= 1 or p.
In 1974, Tijdeman [31] proved that Catalan’s equation has at most finitely

many solutions by providing explicit upper bounds for the exponents (and thence
∗Incidentally, Elkies was just an innocent bystander in this affair, with his prowess borrowed

to lend credence to the claims.
†In [24] a mispaste led me to omit to mention Reijo Ernvall as a co-author
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for |x|, and |y|). Those bounds have been considerably sharpened since, but are still
somewhat too large to allow Inkeri’s results finally to verify Catalan’s suggestion
that 32 − 23 = 1 displays the only case of ‘perfect powers’ differing by 1.

In curious contrast, the equation xu − yv = k with k different from ±1 has
remained inaccessible. I could prove [22], using a p-adic variant of Tijdeman’s
argument that, given the prime factors of k, all solutions to xu − yv = kuv are
bounded; but that’s just the p-adic variant of Catalan’s equation.

We now know that Inkeri’s criteria are of real value in the efforts to complete the
proof of Catalan’s conjecture, that is in filling the gap between the case 23 − 32 =
1 and the bound on the exponents in xp − yq = 1 entailed by sharpenings of
Tijdeman’s argument. I expect that Yann Bugeaud and/or Maurice Mignotte will
report on recent advances in that work.

3. Irrationality of e and π

Elementary books often make rather a fuss about the irrationality of numbers such
as

√
2. But their irrationality really is a trivial matter. If a number α is known

to be algebraic, then presumably one knows that it is a zero of some polynomial
sXn + a1X

n−1 + · · · + an−1X + an with integer coefficients. Then α is rational
if and only if sα is a rational integer. For example, 3

√
2 is irrational just because

plainly 1 < 3
√

2 < 2, so 3
√

2 is not a rational integer.
However, suppose the given number is not obviously algebraic. Then one can

do little better than remark that if α is rational then there is some integer s > 0
so that for all integers q the distance ‖qα‖ of qα from the nearest integer is either
zero or is at least 1/s. It may be quite difficult to decide whether a given number
is, or is not, rational. The most interesting cases of course are π, and e.

As it happens one can show that e has a Hurwitz-periodic, and thus a nonter-
minating continued fraction

e − 1 = [ 1 , 1 , 2h ] = [1 , 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , . . . ]

so e is indeed irrational. However, we don’t need all that.
Notice that the sum

e−1 =
∑

h≥2
(−1)h/h!

is alternating with terms of decreasing size. Hence (−1)n+1n!/e differs by an
integer from

1/(n + 1) −
(
1/(n + 1)(n + 2) − 1/(n + 1)(n + 2)(n + 3)

)
− · · ·

=
(
1/(n + 1) − 1/(n + 1)(n + 2)

)
+ · · · .
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It follows that 1/(n + 1) >
∥∥n! e−1

∥∥ > 0, so, §??, e−1 and thus also e is irrational.
It also follows that

∥∥n! e−1
∥∥ > 1/(n + 2) for all positive integers n, so yet more

obviously 1/e cannot be rational.
As for π, the most immediate argument I remember [27] is less straightforward.

Set

n!Jn =
∫ π

0

(πx − x2)n sinx dx.

Then integration by parts yields the recurrence relation

Jn+2 = (4n + 6)Jn+1 − π2Jn

whence the supposition that π2 = r/s plainly implies the integrality of snJn for
all n ≥ 0. However, easily, 0 < snJn ≤ π(r/4)n/n!. The two facts just cited are
plainly incompatible for sufficiently large n. Thus π2 is irrational, and that entails
that also π is irrational.

An interesting note [10] ‘The irrationality of π2’ by Inkeri recalls Hermite’s
argument; the above is an elegant variant of that.

I do not recall any proof of the transcendence of e or π that seems quite as
accessible as these irrationality proofs; an arguable exception is that of Niven [20],
Chapter 9. The difficulty is, I think, that elegant transcendence proofs rely on
implicit constructions. That notion is somehow more sophisticated than anything
in the above arguments.

4. Perfect Powers with Identical Digits

The diophantine equation yq = a(xn − 1)/(x − 1) has long been the subject of
study, not least by Kustaa Inkeri [12]. For a = 1, Ljunggren [18] had dealt with
the case q = 2 and Nagell [19] with the cases 3

∣∣n and 4
∣∣n. Here, a longstanding

conjecture suggests that there are only finitely many solutions; likely just those
given by

35 − 1
3 − 1

= 112,
74 − 1
7 − 1

= 202 and
183 − 1
18 − 1

= 73.

Yann Bugeaud and Maurice Mignotte combine several methods in diophantine
approximation (see also [4]), including a useful new lower bound for linear forms
in two p-adic logarithms [3], together with extensive computer calculations to make
very considerable impact on the problem. In particular they settle the conjecture
for an extended range of small integers x, and, in effect, for x a power of a prime.
These results solve an old problem in showing in particular that

x = 11 . . . 11 ,

with all its digits equal to 1 in base 10, cannot be a pure power, other than for
the trivial case x = 1.
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5. Representation of Integers in the Form
Ax2 + 2Bxy + Cy2

The matter of representation of integers by quadratic forms is one of the oldest
problems of number theory. Of course, the real issue is to explain just which
integers are represented, and why, but it certainly is also of interest actually to find
representations. My following remarks are a minor variant on known algorithms for
determining representations by definite forms. The idea is conveniently illustrated
by a toy example.

Consider the problem of finding nonnegative integers x and y so that

173 = 2x2 + 3y2 .

We first solve the congruence z2 ≡ −3 · 2 (mod 173). Indeed 722 = 30 · 173 − 6.
Accordingly we study the matrix

M =
(

173 72
72 30

)
=

(
2 1
1 0

) (
2 1
1 0

) (
2 1
1 0

) (
14 1
1 0

) (
1 0
0 6

)
.

Here I have effected the decomposition by the Euclidean algorithm on the rows of
M , with the details given by the array

173 72
2 72 30
2 29 12
2 14 6
14 1 0

0 6

Dually, we might have performed the Euclidean algorithm on the columns of M ,
obtaining

2 2 2 14

173 72 29 14 1 0
72 30 12 6 0 6

It yields the transpose of the previous decomposition, namely

M =
(

173 72
72 30

)
=

(
1 0
0 6

) (
14 1
1 0

) (
2 1
1 0

) (
2 1
1 0

) (
2 1
1 0

)
.

But something is clearly wrong here. M is a symmetric matrix, yet our methods
of decomposition destroy that symmetry. So we try again, working symmetrically
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both by row and by column. Our working begins with the two steps

2

173 72
2 72 30 12

29 12 5

reporting that

M =
(

173 72
72 30

)
=

(
2 1
1 0

) (
30 12
12 5

) (
2 1
1 0

)
.

Ultimately, we have

2 2 1

173 72
2 72 30 12
2 29 12 5 2
1 6 2 2 0

3 0 3

showing that

M =
(

173 72
72 30

)
=

(
2 1
1 0

) (
2 1
1 0

) (
1 1
1 0

) (
2 0
0 3

) (
1 1
1 0

) (
2 1
1 0

) (
2 1
1 0

)
.

The array

2 2 1
0 1 2 5 7
1 0 1 2 3

details the computation(
2 1
1 0

) (
2 1
1 0

) (
1 1
1 0

)
=

(
7 5
3 2

)
.

So we have

M =
(

173 72
72 30

)
=

(
7 5
3 2

) (
2 0
0 3

) (
7 3
5 2

)

and, indeed,

2 · 72 + 3 · 52 = 173 .

Theorem 5.1. Let m be a positive integer, and suppose that z2 ≡ −m (mod n).
Set k = (z2+m)/n. Then there is a unimodular nonnegative integer matrix

(
x x′

y y′

)
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and integers a, b and c satisfying 0 ≤ b < a, 0 ≤ b < c and ac − b2 = m, so that

M =
(

n z
z k

)
=

(
x y
x′ y′

) (
a b
b c

) (
x x′

y y′

)
,

and plainly

n = ax2 + 2bxy + cy2 .

Conversely, every such representation of n is obtained from a solution of z2 ≡ −m
(mod n) in the manner just detailed.

There’s nothing much to prove here except perhaps some trite lemmas on row and
column decomposition of positive integer matrices.

Nonetheless, to add some conviction, let me detail the case 83 = 2x2+2xy+3y2.
Here m = 5 and 592 + 5 = 42 · 83. Indeed

1 2 1

83 59
1 59 42 17
2 24 17 7 3
1 8 3 2 1

4 1 3

and the continued fraction [1 , 2 , 1 ] is 4/3 whilst [1 , 2 ] = 3/2. Hence

2 · 42 + 2 · 4 · 3 + 3 · 32 = 83 .

My one innovation, if there is one at all, is the idea of symmetric decomposition
of symmetric integer matrices. Otherwise, I describe the well known algorithm
sometimes attributed∗ to Cornacchio; an allusion to the contribution of Serret
and Hermite might also be appropriate. In the particular case m = 1, thus the
case of representation as a sum of two squares, the matrix M is unimodular and
its symmetry is precisely the symmetry of the continued fraction expansion of
n/z. In [28], H. J. S. Smith gives a cute proof that there is a z so that p/z has a
symmetric continued fraction expansion whenever p is a prime ≡ 1 (mod 4); we
repeat that delightful story in [7]. The general algorithm is analysed in [8]; this
is also a good source for references. Those include [32], which makes fairly heavy
weather of precisely the issues exposed by my present remarks.

Of course, I hide the real problem, namely that of finding a square root of −m
mod n. Nonetheless, it seems worth emphasising that if one has chanced upon a
solution of that congruence then of course the symmetric decomposition displays
a representation by some quadratic form of appropriate discriminant.

∗For example in the fine text: Frits Beukers, Getaltheorie voor Beginners, Epsilon Uitgaven,
Utrecht, 1999, which provoked my present remarks.
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I conclude with some useful small examples to assist the reader in convincing
her friends of the practicality of my remarks:

5442 ≡ −6 (mod 4054) with 5442 = 4054 · 73 − 6
532 = 134 · 21 − 5
1102 = 269 · 45 − 5
112 = 61 · 2 − 1.

6. An Extraordinary Integral

It is, at first glance, a startling suggestion that
∫

6x dx√
x4 + 4x3 − 6x2 + 4x + 1

= log
(
x6 + 12x5 + 45x4 + 44x3 − 33x2 + 43

+ (x4 + 10x3 + 30x2 + 22x − 11)
√

x4 + 4x3 − 6x2 + 4x + 1
)
.

However, differentiating both sides of the allegation readily confirms the claim.
Specifically, denote by a(x), b(x), and D(x) the polynomials so that a + b

√
D

denotes the argument of the logarithm above. The claim is then equivalent to

6x/
√

D =
(
(2b′D + bD′) + 2a′√D

)
/2
√

D(a + b
√

D) .

But, a′/b = 6x. Thus it suffices that also (2b′D+bD′)/2a = 6x, and this is readily
confirmed.

The argument just given is a fine example of a valid proof that is nonetheless
utterly valueless — it explains nothing. We do a little better on noting that the
last fact we were to show is

(2b′D + bD′)/2a = a′/b, or 2a′a − (2b′bD + b2D′) = 0 .

It is then plain that necessarily b
∣∣a′a in the appropriate polynomial ring, and that

a2 − Db2 = (x6 + 12x5 + 45x4 + 44x3 − 33x2 + 43)2

− (x4 + 4x3 − 6x2 + 4x + 1) · (x4 + 10x3 + 30x2 + 22x − 11)2

must be a constant, namely 432 − 112 = 26 · 33. It follows that b
∣∣a′.

We now do glimpse an explanation, because the argument just suggested is re-
versible. Accordingly, let D(x) denote a polynomial in x over some field F of char-
acteristic zero. We will see that we will need to suppose that D is of even degree
2g + 2, some nonnegative g, and that the leading coefficient of D is a square in F.
Then D(x) has a square root in the field F((x−1)) of Laurent series in x−1 over F.
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Theorem 6.1. Suppose there are polynomials p(x) and q(x) so that

p(x)2 − D(x)q(x)2

is a nonzero element of F. Set f(x) = p′(x)/q(x). Then f is a polynomial of
degree g, and ∫

f(x)dx√
D(x)

= log
(
p(x) + q(x)

√
D(x)

)
.

Conversely, given such an indefinite integral, it follows that f(x) is a polynomial
of degree g and that p(x) + q(x)

√
D(x) is a unit in the domain F[x,

√
D(x) ].

Proof. Given that p(x)2 −D(x)q(x)2 is constant, we have p, q are relatively prime
as polynomials so 2p′p − 2q′qD − q2D′ = 0 entails q

∣∣p′, (2q′D + qD′)/2p = p′/q

and so (p(x) + q(x)
√

D(x) )′/(p(x) + q(x)
√

D(x) ) = f(x)/
√

D(x) with f = p′/q.
As for p(x)2 − D(x)q(x)2 having to be a unit, that is of course an of course!

Given the integral, one adds it to its conjugate — thus with
√

D(x) replaced
by −

√
D(x), to see that log

(
p2 − D(x)q2

)
— being an integral of 0 — must be

constant; that is that p(x) + q(x)
√

D(x) is a unit as claimed. ��

Remark. By p(x)2−D(x)q(x)2 constant and deg q(x) = n, say, we have deg p(x) =
n + g + 1, so deg f(x) = deg p′(x) − deg q(x) = g.

The existence of quasi-elliptic integrals goes back at least to work of Abel [1];
later, Chebychev [30] explains the phenomenon in terms of periodic continued
fraction expansion of

√
D(x).

Nowadays, we recognise that the presence of a nontrivial unit p(x)+q(x)
√

D(x),
say of degree s, reports the existence of some principal divisor s(∞+ −∞−). In
other words, the divisor ∞+ − ∞− is a torsion divisor on the Jacobian of the
curve y2 = D(x). Specifically, in the elliptic case g = 1, or deg D(x) = 4, there is
a torsion point ‘at infinity’ on the curve; see [2].

Readers wishing to produce new surprising integrals of their own may be helped
by a sampling of examples of hyperelliptic curves y2 = D(x) provided to me by my
student Xuan Chuong Tran. The integers on the left are the length of the period
of the continued fraction expansion of

√
D(x). Those on the right are the degree

of the first unit produced, and thus the order of the torsion divisor responsible for
the existence of the unit suggested by the number on the left.

6 y2 = x4 + 2x3 + 9x2 + 24x + 16 7
14 y2 = x4 + 2x3 − 11x2 + 12x + 132 8
8 y2 = x4 + 2x3 − 15x2 + 8x + 40 9

18 y2 = x4 + 2x3 − 419x2 + 4332x − 12924 10
22 y2 = x4 + 2x3 − 503x2 + 336x + 81984 12
42 y2 = 4x6 − 60x5 + 249x4 − 192x3 + 90x2 − 36x + 9 27

Notice that when g = 1 and the torsion r is odd one immediately obtains a unit
of norm 1. The final example is one of the many curves produced by Franck
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Leprévost, see [17] and other of his papers, of genus 2 and higher, and with torsion
divisor of high order on its Jacobian. Other examples may be found in [6].

Acknowledgement. This work is in part supported by a Grant from the Aus-
tralian Research Council.
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