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ABSTRACT

Order types are a means to characterize the combinatorial
properties of a finite point configuration. In particular, the
crossing properties of all straight-line segments spanned by
a planar m-point set are reflected by its order type. We
establish a complete and reliable data base for all possible
order types of size n = 10 or less. The data base includes a
realizing point set for each order type in small integer grid
representation. To our knowledge, no such project has been
carried out before.

We substantiate the usefulness of our data base by ap-
plying it to several problems in computational and combi-
natorial geometry. Problems concerning triangulations, sim-
ple polygonalizations, complete geometric graphs, and k-sets
are addressed. This list of possible applications is not meant
to be exhaustive. We believe our data base to be of value
to many researchers who wish to examine their conjectures
on small point configurations.
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1. INTRODUCTION

Many problems in computational and combinatorial ge-
ometry are based on finite sets of points in the Euclidean
plane. For quite a large subclass, the combinatorial prop-
erties of the underlying point set S rather than its metric
properties already determine the problem. In particular, the
intersection properties of the line segments spanned by the
set S turn out to be of importance. Examples include the
concepts of triangulations, spanning trees, simple polygonal-
izations (crossing-free Hamiltonian cycles), k-sets, and many
others. For several problems, like counting the number of
triangulations of a given point set, no efficient algorithms are
known. For others, like for k-sets, the combinatorial com-
plexity is still unsettled. Sometimes even the existence of a
solution has not yet been established, such as the question
of whether any two given n-point sets (with the same num-
ber of extreme points) can be triangulated in an isomorphic
manner.

To gain insight into the structure of hard problems, exam-
ples that are typical and/or extreme are often very helpful.
To obtain these examples usually complete enumerations on
all possible problem instances are performed. For the prob-
lems mentioned above this means to investigate all ’different’
sets of points, where difference is with respect to the crossing
properties of the complete geometric graph spanned by the
set. To this end it is necessary to have a data base of all dif-
ferent point sets for small size n. The aim of this work is to
provide such a data base for n < 10 which is both complete
and correct, and to describe some improved results obtained
from it. To the knowledge of the authors, no such data base
has been available before.



Figure 1: Two equivalent sets of 5 points

It is well known that crossing properties are exactly re-
flected by the order type of a point set, introduced in Good-
man and Pollack [18]. The order type of a set {p1,...,pn}
of points in general position' is a mapping that assigns to
each ordered triple i, 7,k in {1, ...,n} the orientation (either
clockwise or counter-clockwise) of the point triple p;, pj, pr.
Two point sets Si1 and S> are said to be (combinatorially)
equivalent if they exhibit the same order types. That is,
there is a bijection between S; and S» such that any triple
in S agrees in orientation with the corresponding triple in
S>. (See Figure 1 for an example.) Equivalently, two line
segments spanned by Si cross if and only if the two corre-
sponding segments for S» do. As a consequence, both sets
have the same number of extreme points, any triangulation
of S; is also a valid triangulation of S>, and so on. Thus
for the above-mentioned problems instead of investigating
all (infinitely many) point sets it is sufficient to deal only
with inequivalent sets. Still to enumerate or even to count
these sets is a highly non-trivial task.

Let us point out some situations were the complete enu-
meration of all order types for small n leads to results for
general problem size n.

The obvious case is when a counterexample can be pro-
vided that generalizes to larger n. There might exist coun-
terexamples too large to be found by hand though small
enough to be detected by checking all order types. For in-
stance, a question raised by Arkin et al. [4] asks for how
’convex’ the best polygonalization of an n-point set has to
be in the worst case. More precisely, what is the minimum
number r(n) such that every n-point set admits a crossing-
free (Hamiltonian) cycle with at most r(n) reflex angles?
The best known bounds are § < r(n) < %, and the lower
bound example seems improvable by considering all sets of
up to 10 points.

On the other hand, the non-existence of small counterex-
amples gives some evidence for the truth of a conjecture. For
example, our tests did not lead to a counterexample for the
isomorphism conjecture for triangulations mentioned above.
As a result, any two sets of 8 points (or less) admit an iso-
morphic triangulation provided their number of convex hull
points is the same.

LAll point sets considered in this paper are assumed to be
in general position, i.e., no three points are collinear. In
addition, all line arrangements are assumed to be simple,
i.e., no three lines pass through the same point and no two
lines are parallel.

Figure 2: A wiring diagram that can be stretched

As another example, case analyses for problem instances
of constant size are often encountered when proving some
combinatorial property. This is particularly true for induc-
tion proofs if a sufficiently large induction basis need to be
found. Consider the problem of finding a function ¢(n) such
that every set of n points exhibits (¢(n)) triangulations.
(The general position assumption is crucial here to avoid
trivialities.) For n < 10, the minimum number of triangula-
tions can be determined exactly by counting them for each
possible order type. This serves for obtaining initial val-
ues for a recurrence relation for ¢(n) in Aichholzer et al. [3]
which then evaluates to ¢(n) > 2". This improves the best
known results on ¢(n). The point is that the quality of the
initial values affects the asymptotic behavior of ¢(n).

The recurrence relation itself exploits a new result on
crossing families which has also been obtained from order
types: every set of n > 10 points spans a crossing family of
size 3 (i.e., three pairwise crossing line segments), and this
bound is tight in n. This drastically improves on the previ-
ous best bound n > 37 obtainable from Téth and Valtr’s [24]
formula for the size of subsets in convex position, and is a
result of interest in its own right.

Our approach to generate all order types makes use of the
duality? of point sets (in general position) and (simple) line
arrangements in the Euclidean plane. A line arrangement
is the dissection of the plane induced by a set of n straight
lines. As no direct way to enumerate these structures is
known, we first produce all non-isomorphic arrangements of
so-called pseudolines. A set of pseudolines is a set of simple
curves which pairwise cross at exactly one point. Handling
pseudolines is relatively easy in view of their equivalent de-
scription by wiring diagrams; see, e.g., Goodman [17]. We
can read off a corresponding pseudo order type from each
pseudoline arrangement. (The intersection orders on all the
pseudolines uniquely determine the orientation of all element
triples). Back in the primal setting, this leads to a list of
candidates guaranteed to contain all different order types.

The main problem, however, is to identify all the realiz-
able order types in this list, that is, those which can actually
be realized by a set of points. As a known phenomenon,
a pseudoline arrangement need not be stretchable, i.e., iso-
morphic to some straight line arrangement. There exist non-
stretchable arrangements already for 8 pseudolines; see, e.g.,

2Any of the well-known duality transforms may serve this
purpose, although none of them leads to a bijection in order
type.



Bjorner et al. [8]. As a consequence, our candidate list will
contain non-realizable pseudo order types. Moreover, even
if realizability has been decided for a particular candidate,
how can we find a corresponding point set? We will pro-
vide answers to these questions, and a comparison to known
related results, in the following section.

In some cases there is no need to identify the realizable
order types. For instance, if a particular conjecture for point
sets is true for all pseudo order types then it must be true
for the subset of order types which actually can be realized
by some set of points.

Let us point out that the situation gets conceptually and
computationally easier in the projective plane where — unlike
in the Euclidean plane — inequivalent order types directly
correspond to non-isomorphic line arrangements, and iso-
morphism classes of pseudoline arrangements coincide with
(reorientation classes of) rank 3 oriented matroids. Com-
plete enumerations of the non-realizable classes of these ma-
troids have been done for sizes n < 10; see [8, 17]. The
Euclidean order types can be derived from their projective
counterparts. Combinatorial descriptions of the latter are
not available to us, however. Apart from that, the hard
problem is to construct their geometric realizations.

2. ORDER TYPE ENUMERATION

The first part of this section describes the approach we
chose for generating the order type data base for all point
sets of size n < 10. The second part gives a quick view of
the output and reports on the representation of the realizing
point sets as well as on the reliability of our data base.

2.1 Theapproach

Our strategy for computing all different order types pro-
ceeds in the following three steps. Each step is further de-
tailed and explained below.

o Generating a candidate list C which is guaranteed to
contain each pseudo order type — and thus each re-
alizable order type — exactly once. We utilize wiring
diagrams to calculate a unique representation (by a
A-matrix) for each order type.

e Grouping the members of C into equivalence classes by
correspondence to the same projective order type. In
every class, either each or no order type is realizable.
The numbers P, of realizable projective classes of size
n are known from the literature for n < 10.

e Realizing all realizable order typesin C. For each mem-
ber of C we try to recover a realizing point set from its
A-matrix. A counter is kept for the number of realiz-
able projective classes all of whose members have been
realized already. The process is terminated when this
number reaches P,,.

2.1.1 Generating the candidate list

Let S be a set of n points in the Euclidean plane. It is
well known that the order type of S can be encoded by a
so-called A-matriz. For some fixed labelling of S, each entry
A(i, 7) of this matrix gives the number of points in S which
lie to the left of the directed line ¢;; through points i and
j- Goodman and Pollack [18] introduced A-matrices and
showed that they are valid representations of order types:

to know how many points lie on a fixed side of each line ¢;;
is sufficient for knowing which points these are.

As the Ad-matrix (but not the order type) of a set S de-
pends on its labelling, attention may be restricted to a fixed
one. For technical reasons, the smallest A-matrix of S in
lexicographical order is chosen. We call the corresponding
labelling p1, ... ,pn of S a natural ordering, because p; then
is a point on the convex hull of S and p»,...,p, appear
in clockwise order as seen from p;. For a point set in gen-
eral position (and we only consider such sets in this paper)
its natural ordering is unique — up to self-symmetry of the
point set. Our first aim is to generate the A-matrices for all
naturally ordered sets of fixed size n < 10.

Using a suitable point-line duality, any naturally ordered
set {p1,...,pn} can be transformed into an ordered set
{g1,... ,g9n} of directed lines with the following properties.
(a) No line crossings lie to the left of g1. (b) Each line g; for
1 > 1 crosses g; from left to right. (c) For 1 <i < j < n, the
number of lines which have the crossing g; N g; to their left
is exactly A(i, 7), the corresponding entry in the A-matrix of
{p1,... ,pn}. As a consequence, this A\-matrix can be read
off the line arrangement formed by {g1,...,gn}.

More precisely, the order o; in which each directed line g;
crosses all other lines already determines the A-matrix. Note
that for g1 this order is fixed, o1 = 2,3, ... ,n. (This follows
from properties (a) to (c)). So, in order to generate all de-
sired A-matrices for n points, it mainly suffices to generate
all arrangements of n — 1 directed lines which exhibit differ-
ent crossing orders oa,... ,0,. A superset thereof, namely
all arrangements of n — 1 directed pseudolines with different
crossing orders, can be computed relatively easily by means
of their equivalent representation as wiring diagrams. We
omit precise definitions of these concepts and refer to [18]
and Figure 2 instead. Note that a pseudoline arrangement
may as well be represented by a A-matrix by using property
(c) above.

In summary, unique A-matrix representations for all
pseudo order types of size n are obtained efficiently in this
way.

2.1.2 Grouping into projective classes

Given some point set realization on the sphere of a pro-
jective order type, a realizing point set for each Euclidean
order type which belongs to that projective class can be ob-
tained by rotation of the sphere and central projection on
the plane. To group our order type list C into projective
classes we use a combinatorial simulation of this process.

To this end, a rotation of a given (Euclidean) order type
T is defined for each index ¢ that corresponds to an extreme
point for T. A rotation for ¢ simply reverses the orienta-
tion of all index triples that contain ¢. Its implementation
in A-matrix representation is straightforward. To be able to
recognize identity of order types we lexicographically mini-
mize each A-matrix obtained from a rotation. Comparison
of A-matrices for identity then can be done quickly for each
pair. All order types belonging to the same projective class
can be obtained by rotation from each other. We use back-
tracking to ensure an exhaustive enumeration within each
class. In this way, each member of the list C is assigned to
its projective class by comparison of A-matrices.

These classes exactly correspond to the (reorientation
classes of) rank 3 oriented matroids whose number is known
for sizes n < 10; see Table 1. Let us mention at this place



| n [4f5[6] 7 [ 8] 9| 10|
Projective Pseudo Order Types || 1 | 1 4 11 135 4 382 312 356
— thereof non-realizable 1 242
= Projective Order Types 1 4 11 135 4 381 312 114
Euclidean Pseudo Order Types || 2 | 3 | 16 | 135 | 3 315 | 158 830 | 14 320 182
— thereof non-realizable 13 10 635
= Euclidean Order Types 23|16 | 135 | 3315 | 158 817 | 14 309 547

Table 1: Number of different order types of size n

that several multiple purpose methods for generating ori-
ented matroids have been developed, the most recent ones
being by Bokowski and Guedes de Oliveira [9] and by Fin-
schi and Fukuda [14]. The advantages of the method we
chose are its simplicity, transparency, and efficiency.

2.1.3 Findingtherealizing point sets

Realizing a given order type means reconstructing a point
set from a given A-matrix that represents this order type.
Deciding realizability (for order types in particular and ori-
ented matroids in general) is an intriguing problem which
is known to be NP-hard. Several heuristics have been de-
veloped; see [17] and references therein. For our case (rank
3 oriented matroids) a singly exponential algorithm exists
but turned out to be too slow for our purposes. Instead, we
used the following combination of methods with success.

In a first step, we applied an insertion strategy to obtain
realizations of size n from realizations of size n — 1, for n <
10. Suppose that, for each (realizable) order type T of size
n —1, a corresponding point set S(T') is available. Consider
the arrangement A(T) formed by (") lines, each passing
through a pair of points in S(T). Point sets of size n are now
generated from S(T') by placing an additional point in a cell
of A(T), for all possible cells. Carrying out this process for
all order types of size n — 1 leads to realizations for certain
order types of size n. It is well known [8] that, in general, not
all desired realizations are obtainable in this way; a principal
difficulty with this approach is that the geometry of an (n —
1)-point set S(T') critically affects the set of order types of
size n which actually get realized. To increase effectiveness
we restarted the insertion method after random (but order
type preserving) perturbations of the (n — 1)-point sets.

We continue with scanning through the projective classes
our candidate list C has been grouped into. If the number
of classes having got at least one member realized coincides
with P, (the number of realizable projective classes) we con-
tinue to the next step. Else we decide upon each completely
unrealized class by a different method: we try to realize
one of its members directly, starting from scratch with a
simulated annealing method. (Only the case n = 10, and
there only a very small fraction of classes — including the
non-realizable ones, of course — needed this treatment; see
Subsection 2.2.) Moreover, and most important, we realized
at least one member for each of the P, realizable classes in
one or the other way, and thus succeeded in distinguishing
them from the non-realizable ones.

Finally, for each projective class T° found to be realizable
but still containing unrealized members, we do the follow-
ing. There is a member T of T° whose realizing point set
S(T) has been computed. We calculate from S(7) a spher-
ical point set S(7°) realizing T, and derive realizing point

sets for the yet unrealized members of T° by rotation and
projection of S(7°).

2.2 Output and reliability

Table 1 gives a quick overview of our results in comparison
with known other results. Lines 1 to 3 were taken from [17].
Order types that are reorientations of each other (that is, ob-
tainable from each other by reversing the orientation for all
index triples) are counted only once. Recall that the num-
ber of projective (pseudo) order types is just the number
of isomorphism classes of projective (pseudo)line arrange-
ments. The tremendous growth of Euclidean order types
can be read off the lower part of the table. By the nature
of our approach, we computed a combinatorial description
for each of the objects counted in Table 1, along with a
geometric representation of the object if it is realizable.

Table 2 lists the numbers of Euclidean order types accord-
ing to the size h of the convex hull of the realizing point sets.
The last line coincides with the respective line in Table 1.
Table 3 refers to counting each reorientation pair of order
types twice. Note that reorientation of an order type may or
may not lead to its identical copy; thus reorientation leads
to an increase only in the latter case.

It took 17 minutes on a 500 MHz Pentium III to gener-
ate all Euclidean pseudo order types of size n = 9, and to
find realizing point sets for all but 13 of them, by using the
insertion strategy followed by rotation within each projec-
tive class. The remaining 13 candidates turned out to be-
long to the same projective class (which therefore has to be
the only existing non-realizable projective class), witness-
ing completeness of the task. As had to be expected, the
situation turned out to be more complex for size n = 10.
Generation of all pseudo order types plus partial realization
by means of insertion took about 36 hours and left some
200.000 Euclidean pseudo order types unrealized. Most of
the corresponding projective classes got some member real-
ized, however, and could be completed quickly by applying
rotation. In particular, only 251 projective classes remained
without any realized member. To try to realize a first mem-
ber, we had to invoke our simulated annealing routine for
all these classes, as we had no information on which are
the 242 classes known to be non-realizable from theory. We
were successful for 9 classes within 60 hours which finally
completed this task.

Whenever computing realizing point sets, care was taken
to avoid large coordinates. In addition, emphasis was laid on
finding point coordinate descriptions more handsome than
being calculated by the basic algorithm. In particular, the
simulated annealing routine was used to post-process the
point sets. In their final form, our point sets enjoy the fol-
lowing properties.



h/n][4]5] 6] 7 8 9 10
3 |[T|T] 6] 491178 | 55235 | 4876476
4 |1[1] 6] 591468 70475 | 6319 019
5 1] 3] 22| 570 28232 2628738
6 1| 4| 90| 4552 450176
7 1 8 311 33 969
8 1 11 1146
9 1 22
10 1
[ = [[2[3]16] 135 ] 3315 | 158 817 | 14 309 547 |

Table 2: Number of Euclidean order types classified by extreme points

h/n[[4]5] 6] 7 8 9 10
3 ||T[1] 8| 922296 110336 | 9 750 002
4 [[1[1| 8| 107 | 2862 | 140 593 | 12 633 467
5 1] 3| 371081 56300 5254263
6 1] 5| 156 8973 | 898682
7 1 9 591 67 400
8 1 15 2 186
9 1 29
10 1
[ [[2[3]20] 2426405 | 316 809 | 28 606 030 |

Table 3: As Table 2, but respecting reorientation

o Compact grid representation. For n < 8 all point sets
are expressed with 1 byte coordinates, and for n = 9
and n = 10 with 16 bit (unsigned) integer coordinates.
This should be contrasted with known negative results
on the efficient grid embeddability of order types; see
Goodman et al. [19]. Small integer coordinates ensure
the efficiency and numerical stability of calculations
based on our data base.

o Coordinate uniqueness. No two points in a set share
the same z-coordinate or the same y-coordinate. Thus
sorting the points by one of their coordinates is easy
and unique. Moreover, the application of common du-
ality transforms will not create parallel lines within a
set.

e Resolution. The minimum Euclidean distance between
two points in a set is greater than 4.

e ’Very’ general position. Apart from being in general
position, every set guarantees a normal distance of at
least 1 between each point and each line through two
other points. Thus any circle passing through three
points in a set will have a small radius.

e No cocircularities. No four points in a set lie on a
common circle. Therefore, in-circle tests as, e.g., being
used for Delaunay triangulation based algorithms, can
be carried out uniquely.

We close this section by addressing the issue of reliability
of our data base. The theoretical correctness of our approach
has been argued for already. This raises the question of
how reliable are our implementations. The algorithms used
in Subsections 2.1.1 and 2.1.2 for generating all Euclidean
pseudo order types, and for grouping them into projective
classes respectively, are of purely combinatorial nature. Ev-
idence for their correct implementation is gained from the

correctly computed total numbers of projective pseudo or-
der types (which have been known before; see Table 1). Asa
byproduct, the size (number of members) of each projective
class is computed in a reliable way.

The critical part are the geometric computations in Sub-
section 2.1.3. We checked their correctness as follows. For
each point set in its final grid form, we recalculated its A-
matrix and minimized it lexicographically. (In fact, we con-
sidered both the set and its reflected counterpart, and se-
lected the smaller one of the two minimized matrices.) This
involves only numerically reliable integer manipulations. By
sorting the obtained matrices lexicographically, and check-
ing for identity of neighbors, we ensured that our point sets
represent pairwise different order types. Finally, we checked
that the number of Euclidean order types we have realized
is correct, i.e., that no order type is missing. To this end,
we added up the sizes (pre-computed as mentioned before)
of all projective classes which have some member realized as
a grid point set.

In summary a complete, user-friendly, and reliable
data base for all order types of sizes n < 10 has been
obtained. @ The data base is made public on the web
at  http://wuw.igi.TUGraz.at/oaich/triangulations/
ordertypes.html. Due to space limitations, the grid point
sets of size 10 are not accessible on-line but rather have
been stored on a CD which is available from us upon
request.

3. APPLICATIONSAND FIRST RESULTS

The present section reports on applications and first re-
sults obtained from our order type data base. The problems
addressed are mostly related to triangulations but the list
may easily be extended to questions of a different flavour
now that the data base is available. We briefly address some
of them at the end of this section.



Figure 3: Edge-isomorphism is not ’hull-honest’

3.1 Isomorphism conjecture for planar
triangulations

Informally speaking, the isomorphism conjecture for tri-
angulations deals with the question of whether two point sets
can be triangulated in the same fashion. Consider two equal-
sized point sets S1 = {p1,...,p=} and S> = {q1,...,qn}
and two triangulations 7'(S:1) and T'(S2) thereof. Then
T(S1) and T'(S>) are called (edge) isomorphic iff for every
edge (pi,p;j) € T(S1) there exists the edge (gi,q;) € T(S2).
Clearly, isomorphic triangulations live on sets with the same
number of extreme points because the number of triangu-
lation edges just depends on the size of the convex hull.
Still, an edge isomorphism may map extreme points to non-
extreme ones, as in Figure 3. (If this effect is undesirable in
a particular application, like morphing, the definition may
be strengthened to an isomorphism between the face lat-
tices formed by the triangles, edges, and vertices of the two
triangulations.)

It is known that for pre-assigned point indices there are
labelled sets S1 and S such that no isomorphic triangula-
tions exist, but it is an open problem whether this can be
decided in polynomial time. See Saalfeld [23] where some
necessary conditions are given. The problem becomes easier
if S1 and S> represent the cyclic order of the vertices of two
simple polygons. In this case, the existence can be decided
in time O(n®), and isomorphic triangulability can be forced
by adding O(n?) extra points in either polygon; see Aronov
et al. [5]. An improved algorithm sensitive to the number
of reflex angles of the polygons is given in Kranakis and
Urrutia [21].

On the other hand, for general point sets S; and S> it is
conjectured that if the order of indices may be rearranged for
one set, then there always exist isomorphic triangulations.
A few results for general n are known. Krasser [22] proved
the conjecture true if the number of non-extreme points in
either set is restricted to three or less. Moreover, it is not
too hard to prove the existence of a wuniversal point set,
which is triangulable isomorphically with respect to every
other set of the same size and hull. A general affirmative
answer would be a deep result, showing that any two point
sets are 'topologically equivalent’ in this sense. For results
on the isomorphism conjecture known so far see Aichholzer
et al. [2].

It is an interesting challenge to investigate the conjecture
for sufficiently small n numerically. We can make use of the
following property: if the sets S; and S» exhibit the same
order type then every triangulation of S; has its counterpart
in S>. In principle, for each pair of order types resp. their
realizations Si, S2 all (exponentially many) possible trian-
gulations have to be computed and tested for isomorphism.
In addition, the point indices have to be varied, which again

gives an exponential growth of possibilities. This is doable
for sizes n < 8 utilizing the results we obtained in Section 2.
For n = 9 we tried out a heuristic for deciding isomorhpic
triangulability but did not obtain complete results yet. For
the moment, we have to content ourselves with the following
result.

OBSERVATION 1. Let S1 and S2 be two n-point sets in
general position in the plane and with the same number of
extreme points. Then for n < 8 there ezist isomorphic tri-
angulations for S1 and S»2. This remains true even if the
cyclic correspondence between the extreme points of S1 and
Sy is prescribed.

3.2 How many triangulations every point set
must have

Efficiently counting the number of triangulations of a
given set of n points in the plane is an interesting open
problem. The currently fastest method for counting is based
on the concept of so-called triangulation paths, recently in-
troduced in Aichholzer [1]. But still the running time shows
exponential growth and computations are limited to n < 30.

On the other hand, no tight asymptotic bounds on the
number of triangulations are known. The best examples for
maximizing this number yield ©(2%") triangulations whereas
the best known upper bound is much larger, approximately
O(2%"); see Denny and Sohler [11].

Even for small values of n no exact numbers have been
known. In view of the fact that point sets of the same or-
der type admit equally many triangulations, we computed
these numbers for all order types of size n < 10, using the
method of [1]. We stress that this method actually needs the
geometry of the realizing point sets (rather than just the \-
matrices) — a fact which is also true for other enumeration
methods like reverse search; see Avis and Fukuda [7].

OBSERVATION 2. Let S be a set of n points in general
position in the plane. From n = 3 to 10, Table 4 gives ex-
act lower and upper bounds on the number of triangulations

of S.

[ 7 [[ minimum | maximum |

3 1 1
4 1 2
5 2 5
6 4 14
7 11 42
8 30 150
9 89 780
10 250 4550

Table 4: Exact extremum numbers of triangulations

So, for example, every set of 8 points must have at least 30
triangulations, and there actually is a set having that few
triangulations. (The general position assumption — which
has been adopted throughout — is crucial here.) This shows
that point sets in convex position, whose number of triangu-
lations is given by the Catalan numbers C(n — 2) (yielding
132 for n = 8), do not lead to the minimum. This conjec-
ture would have been plausible as it is true for crossing-free
matchings and crossing-free spanning trees; see Garcia et



al. [16]. Though the conjecture was known to be false be-
fore, the results in Table 4 may be useful in proving or dis-
proving the extremal behavior of other point configurations.
For instance, we could observe that the point sets leading to
the lower bounds in Table 4 obey a rather special structure.
In fact, and surprisingly, no good general lower bounds
are known. We therefore seek for functions ¢(n) such that
every set of n points exhibits £2(¢(n)) triangulations. A quick
answer is t(n) = 2"~4/6_ This results from the fact that any
triangulation on n points contains at least (n — 4)/6 edges
that can be flipped (i.e., replaced by the other diagonal of
the corresponding convex quadrilateral) in an independent
way; see Galtier et al. [15]. A substantial improvement is
based on the assertion on crossing families below which has
been found by checking all order types for 10 points. A
crossing family of size k of a point set S is a set of k line
segments spanned by S which pairwise cross each other.

OBSERVATION 3. Ewvery set of n > 10 points in general
position in the plane admits a crossing family of size 3.
There exists a set of 9 points which does not have this prop-
erty.

This result improves over previously known lower and up-
per bounds and seems to be of separate interest. Aronov et
al. [6] proved the existence of crossing families of size /n/12
for every set of n points. This evaluates to n > 108 for size
3. A smaller bound, n > 37, derives from a result by Téth
and Valtr [24]: among any (206:25) +2 points there are at least
¢ points in convex position. Thus there must be a crossing
family of size | £ |.

Observation 3 is exploited in Aichholzer et al. [3] to obtain
the relation t(n) > 3 - t(n1) - t(n2) for n1 +ny = n+ 2. For
any base a, the function t(n) = 3 - a"? is a solution. To
get the recurrence started, values of « as large as possible
are sought by examining all instances of small constant size.
This is done by utilizing Table 4, in combination with other
methods. The best values achieved up to now are a =2 +¢
for € < g5, that is, t(n) > 75 - (2+¢)".

3.3 Some more applications

Applicability of our data base is by no means restricted
to triangulation problems but rather includes various other
questions concerning the crossing properties of a complete
geometric graph. A few are briefly mentioned below. We
plan to elaborate on these and other related questions in
detail in a forthcoming paper.

The crossing number problem asks for the number c(n)
of (straight line edge) crossings every complete geometric
graph K,, on n points in the plane must have. This problem
has been studied first in Erdés and Guy [12]. In particular,
the exact values of c¢(n) have been known for n < 9. We
were able to obtain ¢(10) = 62 which disproves a conjecture
in [12]. Note that each crossing of K, bijectively corre-
sponds to a convex quadrilateral spanned by the underlying
point set. Thus we have found the minimum number of
convex quadrilaterals in an n-point set as well.

Related is the optimal Hamiltonian cycle problem, which
refers to the maximum number h(n) of crossing-free (recti-
linear) Hamiltonian cycles a K, can realize. In other words,
what is the largest number of polygonalizations an n-point
set does allow? Hayward [20] cites prior work on h(n) and
improves the lower bound. However, exact values of h(n)
have been unknown for n > 6. We calculated these values

Figure 4: Order type with no grid representation

for n up to 10 from our data base. As a result, the lower
bounds given in [20] for n = 7,8 were found to be sharp
while the contrary was true for n =9, 10.

A k-set of a planar n-point set S consists of k points which
can be separated from S by a straight line. Finding upper
and lower bounds on the maximum number fi(n) of k-sets
is an intriguing problem which has been studied extensively;
see, e.g., Dey [10] and references therein. It is not hard to
see that point sets of the same order type realize the same
numbers of k-sets. For n < 10 the exact numbers f;(n) can
be computed using the data base. The maximum number
of halving lines (or %-sets) for 10 points, f5(10) = 13, has
recently been determined in Felsner [13].

4. CONCLUDING REMARKS

The goal of this work has been to provide a complete,
valid, and user-friendly data base for order types of n < 10
points in the Euclidean plane, and to substantiate its use-
fulness to problems in computational and combinatorial ge-
ometry. Improved results on triangulation problems and on
other questions have been obtained. We believe our data
base to be of use to many researchers who wish to exam-
ine their conjectures on small point configurations. As in
geometrical algorithms numerical stability is an important
issue, we put particular emphasis on generating small and
nice grid representations of the realizing point sets.

Our approach for computing the data base uses the fact
that, for sizes n < 10, the numbers (though not the combi-
natorial descriptions) of all non-realizable projective pseudo
order types are known from the literature. These numbers
are still unknown for larger n. So, apart from the obvious
time and space limitations, a complete data base for n = 11
currently is out of our reach.

It is for the same reasons that our approach does not work
in case of collinearities, except for very small instances: no
realizability results are known for n > 8, and the number
of possible order types increases tremendously compared to
the case of general position. Moreover, it is theoretically
impossible to obtain integer grid representations for all order
types if the general position assumption is dropped, in view
of the existence of non-rational oriented matroids for sizes
n > 8; see [8] where Figure 4 is taken from.

5. REFERENCES

[1] O.Aichholzer, The path of a triangulation. Proc. 15t*
Ann. ACM Sympos. Computational Geometry, Miami
Beach, Florida, USA, 1999, 14-23.

[2] O.Aichholzer, F.Aurenhammer, F.Hurtado, H.Krasser,
Towards compatible triangulations. 7" Ann. Int. Com-



puting and Combinatorics Conf. CoCOON-2001. To be
presented.

[3] O.Aichholzer, F.Hurtado, M.Noy, On the number of
triangulations every planar point set must have.
Manuscript, IGI-TU Graz, Austria, 2000.

[4] E.Arkin, S.Fekete, F.Hurtado, J.Mitchell, M.Noy,
V.Sacristan, S.Sethia, On the reflerivity of point sets,
Proc. 10" Annual Fall Workshop On Computational
Geometry, Stony Brook, NY, 2000.

[6] B.Aronov, R.Seidel, D.Souvaine, On compatible
triangulations of simple polygons. Computational
Geometry: Theory and Applications 3 (1993), 27-35.

[6] B.Aronov, P.Erdés, W.Goddard, D.J.Kleitman,
M.Klugerman, J.Pach, L.J.Schulman, Crossing families.
Combinatorica 14 (1994), 127-134.

[7] D.Avis, K.Fukuda, Reverse search for enumeration.
Discrete Applied Mathematics 65 (1996), 618-632.

[8] A.Bjorner, M.Las Vergnas, B.Sturmfels, N.White,
G.Ziegler, Oriented Matroids. Cambridge University
Press, 1993.

[9] J.Bokowski, A.Guedes de Oliveira, On the generation of
oriented matroids. Discrete & Computational Geometry
24 (2000), 197-208.

[10] T.K.Dey, Improved bounds for planar k-sets and
related problems. Discrete & Computational Geometry
19 (1998), 373-382.

[11] M.Denny, C.Sohler, Encoding a triangulation as a
permutation of its point set. Proc. 9** Canadian
Conference on Computational Geometry, 1997.

[12] P.Erdos, R.K.Guy, Crossing number problems. Amer.
Math. Monthly 88 (1973), 52-58.

[13] S.Felsner, On the number of arrangements of
pseudolines. Discrete & Computational Geometry 18
(1997), 257-267.

[14] L.Finschi, K.Fukuda, Generation of oriented matroids
— a graph theoretical approach. Manuscript, Swiss Federal
Institute of Technology, Zurich, Switzerland, 2000.

[15] J.Galtier, F.Hurtado, M.Noy, S.Perennes, J.Urrutia,
Simultaneous edge flipping in triangulations.
Manuscript, Universitat Politecnica de Catalunya,
Barcelona, Spain, 2000.

[16] A.Garcia, M.Noy, J.Tejel, Lower bounds on the
number of crossing-free subgraphs of K. Computational
Geometry: Theory and Applications 16 (2000), 211-221.

[17] J.E.Goodman, Pseudoline arrangements. In
J.E.Goodman, J.O’Rourke (eds.), Handbook of Discrete
and Computational Geometry. CRC Press LLC, Boca
Raton, NY, 1997.

[18] J.E.Goodman, R.Pollack, Multidimensional sorting.
SIAM J. Computing 12 (1983), 484-507.

[19] J.E.Goodman, R.Pollack, B.Sturmfels, Coordinate
representation of order types requires erponential
storage. Proc. 21°¢ Ann. ACM Sympos. Theory of
Computing, 1989, 405-410.

[20] R.B.Hayward, A lower bound for the optimal
crossing-free Hamiltonian cycle problem. Discrete &
Computational Geometry 2 (1987), 327-343.

[21] E.Kranakis, J.Urrutia, Isomorphic triangulations with
small number of Steiner points. Int’l J. Computational
Geometry & Applications 9 (1999), 171-180.

[22] H.Krasser, Kompatible Triangulierungen ebener
Punktmengen. M.S.Thesis, IGI-TU Graz, Austria, 1999.

[23] A.Saalfeld, Joint triangulations and triangulation
maps. Proc. 3" Ann. ACM Sympos. Computational
Geometry, Waterloo, Canada, 1987, 195-204.

[24] G.Téth, P.Valtr, Note on Erdés-Szekeres theorem.
Discrete & Computational Geometry 19 (1998), 457-459.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


