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Abstract� A set S of positive integers is avoidable if there exists a partition of the positive

integers into two disjoint sets such that no two distinct integers from the same set sum to an

element of S
 Much previous work has focused on proving the avoidability of very special sets

of integers� We vastly broaden the class of avoidable sets by establishing a previously unnoticed

connection with the elementary theory of continued fractions�
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�� Introduction

Many well�known problems in number theory involve studying the set S of numbers that
can be represented as sums of elements of another set A of positive integers� In some
cases� A is sparse and we want to know if S nevertheless contains a lot of integers�e�g��
S may contain all integers �as in Waring�s problem� or all even integers �as in Goldbach�s
conjecture�� In other cases� A is dense and we want to know if S nevertheless avoids a
lot of integers�e�g�� S may avoid long arithmetic progressions or have low natural density
�see� for instance� 	
�� and the references therein��

The problem that we study in this paper is a relatively little�known variation on the
latter theme� A set S � N is said to be avoidable if there exists a partition of N into two
disjoint sets A and B such that no two distinct elements of A sum to an element of S and
no two distinct elements of B sum to an element of S� We say that the partition fA�Bg
avoids S or that S is avoided by fA�Bg� If the pair of sets A and B is unique� then S is






said to be uniquely avoidable� We are interested in the question of which sets are avoidable
�or uniquely avoidable��

The theory of avoidable sets has existed for twenty years� yet surprisingly little is
known� Only a few special sets of integers have been shown to be avoidable� For example�
the following theorem of Evans 	
� is typical�

Theorem � Let S � fsng be a set of positive integers such that s� � s�� �s�� s�� � 
� and
sn � sn�� � sn�� for n � �� Then S is uniquely avoidable�

One might hastily conclude from the scarcity of general theorems in this area that
the topic of avoidable sets is not very fruitful� We hope to show in this paper that in fact
the subject is deeper than it appears at �rst glance and that much more remains to be
discovered� Our main evidence for this claim lies in the following two theorems�

Theorem � Let � be an irrational number between 
 and �� and de�ne

A�
def
� fn � N j the integer multiple of � nearest n is greater than ng�

B�
def
� fn � N j the integer multiple of � nearest n is less than ng�

Let S� be the set of all positive integers avoided by the partition fA�� B�g� Then S�
contains all numerators of continued fraction convergents of ��

Theorem � Let �� A�� B�� and S� be as in Theorem �� Then every element of S� is
either the numerator of a convergent of �� the numerator of an intermediate fraction� or
twice the numerator of a convergent�

In the next three sections we prove these theorems and show how they signi�cantly
generalize many previous results� The reader is expected to be familiar with the elemen�
tary theory of continued fractions as given in� for example� 	�� Chapters I and II� or 	��
Chapter ��� However� we will give explicit references for some of the less trivial facts� We
also use the notation bxc and fxg for the integer and fractional parts of x respectively�

In the remaining sections we investigate some other questions connected with avoidable
sets and present some open problems�

�� Proof of Theorem �

Lemma � Let � be a positive real number and let p�q be a continued fraction convergent
of �� Then bn�c � bnp�qc for all integers n lying strictly between � and q�

Proof� Since p�q is a convergent� j�� p�qj � 
�q� 	�� equation ������ so
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and so bn�c � bnp�qc for � � n � q�

Lemma � Let � be a positive real number and let p�q be a continued fraction convergent
of �� Then for � � n � q�
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Proof� We prove only the �rst implication� the proof of the second implication follows a
similar line of reasoning in reverse�

The lemma is trivial if � � p�q� so assume from now on that � �� p�q�

Assume that fn�g � ���� We wish to show that fnp�qg � p��q� By Lemma 
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If p�q � � then we are done� Otherwise� p�q � � because by assumption � �� p�q� Since
p�q is a convergent of �� we have jp�q � �j � 
�q�� and therefore ����� implies
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We now split into two cases�

Case �� p is even� Since p is even� fnp�qg � p��q if and only if
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and we are done� by ������

Case �� p is odd� Since p is odd� fnp�qg � p��q if and only if
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Hence� in light of ������ it su�ces to show that fnp�qg �� �p� 
���q�

Suppose towards a contradiction that fnp�qg � �p� 
���q� Since p�q � �� p�q must
be the ith convergent of � for some odd number i by 	�� Theorem 
�� Now

pjqj�� � pj��qj � ��
�j��

for all j � 
 by 	�� Theorem ��� By taking j � i we deduce that
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If we multiply this out and reduce modulo q we obtain
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Hence
�n � qi���p� 
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 � qi�� �mod q�






or
�n� 
 � qi�� �mod q��

Since � � n � q� this congruence implies that �n� 
 equals either qi�� or q � qi���

Let ai�� denote the �i � 
�st partial quotient of �� which exists because � �� p�q�
Then qi�� � ai��q � qi�� by 	�� Theorem 
�� and
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by 	�� Theorem ��� Combining these facts with ����� yields
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This contradicts fnp�qg � �p� 
���q� as desired�

Lemma � Let � be an irrational number between 
 and � and let p�q be a convergent of �
that is greater than �� Then fq�g � ��� provided q �� 
�

Proof� We �rst prove the lemma for the case in which p�q is the �rst convergent of ��
Let a� denote the �rst partial quotient of � and let p��q� denote the �rst convergent� We
need to show that p�� q�� � 
����� Since p� � a� �
 and q� � a�� this is equivalent to
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But this holds� because a� � q� � q �� 
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In general� our goal is to show that p� q� � 
����� Now since p�q � �� p�q cannot
be the zeroth convergent� and hence

� � p� q� � p� � q���
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so the general case follows from the special case proved above�

Proof of Theorem �� Fix a convergent p�q of �� We begin by showing that no two
distinct integers in A� sum to p� First� we may assume that q �� 
� since q � 
 and

 � � � � together imply p � 
 or p � �� and no two distinct positive integers can sum to

 or �� For the rest of this proof we assume that q �� 
� p �� 
� and p �� ��

Assume now that x and y are integers in A� that sum to p� we shall show that x � y�
Let m� be the positive integral multiple of � nearest x� Then since x � A�� m� � x� and
moreover m� � x�
 for otherwise �m� 
�� would be closer to x than m�� Therefore we
may write x � bm�c� and similarly we may write y � bn�c for some positive integer n�

We claim that m � q� First of all� m � q� for if m were larger than q then x � bm�c
would be at least p �since jq� � pj � 
�� but x is necessarily less than p since x � y � p�
The remaining possibility is that m � q and x � p � 
� but then Lemma � tells us that
�m� 
�� would be closer to x than m� would be� Thus m � q� and similarly n � q�

By Lemma 
� it follows that x � bmp�qc and y � bnp�qc� Now since � � m � q and
� � n � q� we have �
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for some integers r and s with � � r � q and � � s � q� From x� y � p it follows that
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Multiplying both sides by q� we see that r � s � kp for some positive integer k� Now

 � � � �� so 
 � p�q � �� or q � p � �q� Since � � r � q and � � s � q� it follows that
� � r � s � �q � �p� so k � 
� i�e�� r � s � p�

Now x and y are in A�� so fm�g � ��� and fn�g � ���� By the �rst part of
Lemma �� this implies
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Since r � s � p� these inequalities force r � s � p��� Thus
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so mp � np �mod q�� Since �p� q� � 
� this implies m � n �mod q�� and since � � m � q
and � � n � q� we must have m � n� This proves that x � y� as required�

Now there are exactly b�p � 
���c pairs of distinct positive integers whose sum is p�
To �nish the proof� it su�ces to show that A� contains exactly one integer from each of

�



these pairs �for then B� cannot contain two distinct integers that sum to p�� To show this�
it su�ces to show that A� contains b�p�
���c integers other than p�� that are less than p�
since we have already shown that A� cannot contain both integers from a �bad� pair�

The arguments we gave for showing that x � bm�c for some m with � � m � q show
that the elements of A� less than p are in one�to�one correspondence with integers n in
the range � � n � q such that fn�g � ���� Thus� from the second part of Lemma �� it
su�ces to �nd b�p� 
���c integers n in the range � � n � q such that
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Let np mod q denote the remainder when np is divided by q� We are seeking integers
n such that � � n � q and
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The left�hand side lies between � and q and it is congruent to np modulo q� so it equals
np mod q� Now p and q are relatively prime� so as n ranges from 
 to q� 
� np mod q also
takes on each value from 
 to q� 
 exactly once� Therefore we can indeed �nd b�p� 
���c
integers n with the desired property� simply take the b�p � 
���c integers n such that
np mod q � p��� It remains only to show that for no such n can bn�c equal p���

Suppose to the contrary that some such n satis�es bn�c � p��� By Lemma 
� bn�c �
bnp�qc� Therefore

np� qp
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��� or n � �q � 
���� We therefore have
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or p � �q � 
��� which is not possible�

Remark� Michael Bennett �personal communication� has suggested the possibility that
a positive integer p is avoided by �A�� B�� if and only if p is the numerator of a fraction
p�q satisfying 
 � p�q � �� �p� q� � 
� and the properties listed in Lemma 
� Lemma ��
and Lemma �� He has made considerable progress towards a proof�

�� Proof of Theorem �

We begin with a careful statement of a well�known fact that is sometimes sloppily stated�

�



Lemma � Let � be a positive real number and let pn���qn�� and pn�qn be two consecutive
convergents of the continued fraction representation of �� with n � �� Then

jqn�� pnj � jqn���� pn��j�

with equality if and only if n � 
 and � � a� � 
�� for some integer a�� On the other
hand� if c�d is a fraction with � � d � qn� then

jd�� cj � jqn���� pn��j�

Proof� This is essentially 	�� Theorems ��
� and ��
��� except that we have stated the
theorem for arbitrary real � instead of only for irrational �� The proofs are easily modi�ed
to cover the general case� �We remark that the lemma also follows from 	�� Theorem 
���
but the statement of this latter theorem is slightly incorrect� p��q� fails to be a best
approximation of the second kind whenever � � a� � 
����

Lemma � Let � be a positive real number and let pn���qn�� and pn�qn be two consecutive
convergents of the continued fraction representation of �� with n � �� Suppose p is an
integer such that

jqn�� pj � jqn���� pn��j�
Then p � pn�

Proof� Case �� jqn���� pn��j � 
��� Then by Lemma 
�

jqn�� pnj � jqn���� pn��j � 
���

and therefore qn� is at least 
�� away from any integer other than pn� Thus if p satis�es

jqn�� pj � jqn���� pn��j � 
���

we must have p � pn�

Case �� jqn��� � pn��j � 
��� Then repeated application of Lemma 
 implies that
jq�� � p�j � 
��� where p��q� is the zeroth convergent� Now q� � 
 and p� � b�c�
therefore the fractional part of � exceeds 
��� forcing the �rst partial quotient a� to equal
one� Then p� � b�c� 
 and q� � 
� so

jq��� p�j � 
� jq��� p�j � 
���

This shows us that Case � arises only if n � 
 and � � b�c � 
��� When this happens�
the only integer p �� p� that has a chance of satisfying

jq��� pj � jq��� p�j

�



is the integer on the other side of q�� from p�� But for this p�

jq��� pj � 
� jq��� p�j � jq��� p�j�
so the desired inequality cannot in fact be satis�ed even for this p� This proves the
lemma�

Lemma � Let � be a positive real number and let pn���qn��� pn�qn� and pn���qn�� be
three consecutive convergents of the continued fraction representation of �� with n � ��
Let c�d be a fraction whose denominator satis�es qn�� � d � qn��� If

jqn���� pn��j � jd�� cj� ���
�

then either c�d is in lowest terms and is an intermediate fraction having a denominator
between qn and qn��� or c�d � pn�qn� �In the latter case� c�d is not necessarily in lowest
terms	�

Proof� Assume that there exist c and d satisfying qn�� � d � qn�� and ���
� but such
that c and d are not the numerator and denominator of an intermediate fraction �in lowest
terms� having a denominator between qn and qn��� We will show that c�d � pn�qn in
several steps� First we construct a fraction c��d� satisfying ���
� and qn�� � d� � qn�qn���
�When we say that c��d� satis�es ���
� we mean of course ���
� with c and d replaced by
c� and d� respectively�� We then show that c��d� � pn�qn� and �nally we show that this in
turn implies that c�d � pn�qn�

Let an�� be the �n � 
�st partial quotient of �� By de�nition 	�� equation ������ the
intermediate fractions with denominators between qn and qn�� are �in lowest terms� the
fractions of the form

pn�� � kpn
qn�� � kqn

where � � k � an���

Let p � c�pn�� and let q � d�qn��� Then � � q � an��qn� so there exist unique integers
k� and j with � � j � qn and � � k� � an�� such that q � k�qn � j� Let i � p � k�pn�
By assumption� c and d are not simultaneously equal to the numerator and denominator
of any one of the above intermediate fractions� and q �� �� so i and j cannot both be zero�
Also by assumption� c�d satis�es leminter� so

jqn���� pn��j � j�qn�� � q��� �pn�� � p�j
� jqn���� pn�� � k��qn�� pn� � j�� ij� �����

The quantities qn����pn�� and qn����pn�� lie on the same side of zero with qn����pn��

being closer� �If � is rational and pn���qn�� is the last convergent of �� then qn����pn��

is actually equal to zero� but this does not invalidate the argument in the next sentence�
which is all that we use the observation in the previous sentence for�� Note that since
� � k� � an��� the quantity

X
def
� qn���� pn�� � k��qn�� pn�

�



lies between qn���� pn�� and qn���� pn��� in particular� X lies between qn���� pn��

and zero� �It could equal the former� this will not be a problem��

We now claim that

jj�� ij � jqn���� pn��j� �����

If j �� �� then this follows from Lemma 
 because j � qn� If j � �� then i �� �� and
the left hand side is a positive integer whereas the right hand side is at most one� This
establishes ������

Now ����� forces j�� i and qn���� pn�� to have opposite sign� For if they had the
same sign� then ����� together with the fact that X lies between qn��� � pn�� and zero
would imply that adding j�� i to X would result in a number with absolute value greater
than that of qn���� pn��� contradicting inequality ������

Next we claim that

jqn���� pn�� � j�� ij � jqn���� pn��j�

To see this� consider �rst the case where qn��� � pn�� � �� Then j� � i � � and
qn�� pn � �� and in light of ����� we have

� � qn���� pn�� � j�� i � qn���� pn�� � k��qn�� pn� � j�� i

� jqn���� pn�� � k��qn�� pn� � j�� ij
� jqn���� pn��j�

where the last inequality follows from ������ This establishes the claim in this case� and
the same argument mutatis mutandis covers the case qn���� pn�� � ��

This last claim� however� just says that if we set c� � pn��� i and d� � qn��� j� then
c��d� satis�es ���
�� and since � � j � qn� we have qn�� � d� � qn � qn��� This completes
the �rst step of our argument� We now wish to show that c��d� � pn�qn�

We may assume that d� � qn� by ���
� and Lemma 
� Let us now assume towards
a contradiction that d� � qn� For simplicity we shall assume that qn��� � pn�� � �� the
reader can check that the argument is easily modi�ed to handle the case qn����pn�� � ��

Using this assumption� we have qn�� pn � � and

d��� c� � qn���� pn�� � j�� i � ��

Since � � d� � qn � qn�� � qn��� by Lemma 
 d�� � c� must be further away from zero
than qn�� pn� i�e��

d��� c� � qn�� pn � ��


�



Therefore d�� � c� � �qn� � pn� is closer to zero than d�� � c� is� and d�� � c� is in turn
closer to zero than qn���� pn�� is� since c��d� satis�es ���
�� This means that the fraction

c� � pn
d� � qn

is a better approximation of the second kind to � than pn���qn�� is� But d� � qn � qn���
so this contradicts Lemma 
�

Therefore� d� � qn� By Lemma �� the inequality ���
� implies that c� � pn� It remains
to show that c�d � pn�qn� This is straightforward�

c

d
�

pn�� � i� k�pn
qn�� � j � k�qn

�
c� � k�pn
d� � k�qn

�
pn � k�pn
qn � k�qn

�
pn
qn
�

This completes the proof�

Remark� In fact� the converse of Lemma � holds� but we do not need this fact�

Proposition � Let � be an irrational number such that 
 � � � �� Let c be a positive
integer that is neither the numerator of an intermediate fraction nor the numerator of a
convergent� Then there exists a convergent p�q such that p and c� p are either both in A�

or both in B��

Proof� Choose d to minimize the quantity jd�� cj� We now wish to let n be the largest
positive integer such that qn � d� but we must �rst check that such an n exists� Since � is
between 
 and �� its zeroth convergent equals one and its �rst convergent equals �a��
��a�
for some integer a� � �� From the de�nition of intermediate fraction we see that every
fraction of the form �i� 
��i with 
 � i � a� is an intermediate fraction or a convergent�
Since c is not the numerator of any of these� c � a� � �� In particular� c � � so d � ��
Therefore there exist integers N � � such that qN � d� Let n be the largest such integer�
We claim that n � 
� For if n � �� then d � q� � a�� and since � � �a� � 
��a�� we have
d� � a� �
� contradicting c � a� ��� It therefore makes sense to speak of the convergent
pn���qn��� and we shall do so�

By our choice of n� qn � d � qn��� Now qn� � pn and qn��� � pn�� have opposite
signs� Let m be the element of the set fn� n� 
g such that qm�� pm has the same sign as
d�� c� We shall argue that pm and c� pm are in the same set �i�e�� they are either both
in A� or both in B��� We claim that to prove this it su�ces to show that

jqm�� pmj � jd�� cj� ���
�

To see that this does indeed su�ce� begin by noting that

�d� qm��� �c� pm� � �d�� c�� �qm�� pm��







Now in view of ���
� and the fact that d��c and qm��pm have the same sign� this implies
that �d � qm�� � �c � pm� has the same sign as d� � c� moreover� �d � qm�� is closer to
c� pm than d� is to c� so �d� qm�� is the multiple of � closest to c� pm� It follows that
c � pm is in the same set as c� From ���
� we see that qm� is the multiple of � closest
to pm� so the fact that d� � c and qm� � pm have the same sign implies that c is in the
same set as pm� Hence c� pm and pm are in the same set� as required�

We are reduced to proving ���
�� We handle �rst the special case where d � qn���
By assumption� c �� pn��� so c must be the integer on the opposite side of d� from pn���
Therefore

jd�� cj � 
� jqn���� pn��j
and m � n� We need to show that


� jqn���� pn��j � jqn�� pnj�

But this follows from the inequalities

jqn���� pn��j � jqn�� pnj � 
���

which hold because n � 
�

If d �� qn��� so that qn � d � qn��� then Lemma � provides the key to proving ���
��
For if c�d � pn�qn� then d�� c is just a multiple of qn�� pn and hence m � n� and ���
�
is obvious� Otherwise� Lemma � �together with Lemma 
� tells us that the only way for
���
� to be violated is for m to equal n� 
 and for c�d to equal an intermediate fraction in
lowest terms� But this contradicts the fact that c is not the numerator of an intermediate
fraction� This completes the proof�

Theorem � follows immediately from Proposition 
�

�� Relationship of Theorem � and Theorem � with prior work

Theorem 
 subsumes several earlier results� the case s� � 
 and s� � � was �rst posed by
D� L� Silverman 	
�� and solved independently by numerous people� and the case s� � 

and s� arbitrary was proved by Alladi� Erd�os� and Hoggatt 	
�� Evans 	
� also showed that
if S � fsng satis�es � j s�s�� �s�� s�� � 
� and sn � sn�� � sn�� for n � �� then S is
uniquely avoidable� but that if s� � s� and � � s�s�� then S is not avoidable�

Our results do not completely subsume Evans�s results� because our theorems say
nothing about uniqueness� However� our results do generalize Evans�s in the following
sense� given any set S that Evans has shown to be �uniquely� avoidable�i�e�� a set of
the form speci�ed in Theorem 
 or in the previous paragraph�we can �nd an irrational
number � between 
 and � such that fA�� B�g avoids S� To see this� consider �rst the
case s� � s�� If s� �� 
� set s� � s� mod s�� If s� �� 
� set s�� � s� mod s�� Continue in


�



this way until s�k � 
 for some k � �
� this must happen at some point since �s�� s�� � 
�
Now let � be the number whose partial quotients are


� s�k�� � 
�

�
s�k��

s�k��

�
�

�
s�k��

s�k��

�
� � � � �

�
s�
s�

�
� 
� 
� 
� 
� 
� � � �

It is easy to see that the numerators of the convergents of � are s�k� s�k��� s�k��� � � � � so
by Theorem �� fA�� B�g does indeed avoid S�

If s� � s� and � j s�s�� then applying the above argument with s� and s� in place
of s� and s� shows that for a suitable choice of �� fA�� B�g avoids every element of S
except possibly for s�� In fact� fA�� B�g must avoid s� as well� For Theorem 
 asserts
that fA�� B�g is the only partition avoiding fs�� s�� � � �g� But the partition avoiding all
of S is also unique and it a fortiori avoids fs�� s�� � � �g� Hence fA�� B�g must coincide
with the partition that avoids all of S�

We remark that if s� � 
 and s� � �� so that S is the set of Fibonacci numbers�
then it turns out that � � � � �
 �

p
����� and it is well known that the numerators of

the convergents of � are the Fibonacci numbers� In general� for any of Evans�s sets� the
associated irrational � is some element of Q�

p
���

The relevance of continued fractions to the theory of avoided sets has not been noticed
explicitly before� but it is implicit in 	��� To explain the main result of 	��� we must �rst
recall Beatty
s theorem 	��� Beatty�s theorem states that if � and 	 are positive irrational
numbers such that 
��� 
�	 � 
� then the sets

fbn�c j n � Ng and fbn	c j n � Ng

partition N into two disjoint sets� As Beatty partitions arise naturally in many contexts� it
is natural to ask for the connection between Beatty�s theorem and the theory of avoidable
sets� In 	
� it is proved that the partitions in Theorem 
 cannot be Beatty partitions�
�They actually only showed this for the case s� � 
 but their argument extends easily to
the general case�� However� Hoggatt and Bicknell�Johnson 	�� and the second author have
independently noticed that there is actually a close relationship between Beatty�s theorem
and avoidable sets� Let fA� � B�g denote the partition avoiding the Fibonacci numbers�
Observe that 
�� � 
��� � 
� so that if we set � � � in Beatty�s theorem then 	 � ���
The observation of Hoggatt�Bicknell�Johnson and the second author is that

A� 
 fbn�c j n � Ng
and B� � fbn��c j n � Ng�

Thus� we can obtain fA� � B�g from a Beatty partition by transferring some elements from
one half of the partition to the other�


�



The main result of 	�� is that the elements that need to be transferred have a simple
description�

A� � fbn�c j n � Ng n fbn�c j n � N and fn�g � ���g
and B� � fbn��c j n � Ng � fbn�c j n � N and fn�g � ���g� �
�
�

Now� it is not hard to see that the right�hand sides of these equations are equivalent to
the de�nitions of A� and B� given in Theorem �� Thus� Theorem � may be regarded as
generalizing the main result of 	�� from the case � � � to the case of arbitrary irrational ��

Incidentally� the reason we say that continued fractions are �implicit� in 	�� is that
the key lemma in that paper is really a well�known fact about continued fractions� but at
the time� the author was unaware of the theory of continued fractions� and hence did not
state the lemma in that language� In fact� only after we proved the main theorems of the
present paper did we notice the implicit continued fractions in 	���

One paper whose results we feel should be closely related to Theorem � and Theo�
rem � is Zhu and Shan 	
��� but so far we have had only partial success in establishing
a connection� �	
�� is in Chinese� but an English translation is available� 	

��� Zhu and
Shan consider sets S � fsng that are de�ned by a recurrence of the form

sn � sn�� � sn�� � k

for some �xed nonnegative integer k� Note that if we set tn � sn � k� then

tn � tn�� � tn���

so the Zhu�Shan sets may be regarded as �shifted Evans sets�� Now if k is even� with
k � �k� for some k�� and if fA�Bg is a partition avoiding the set ftng� then we may subtract
k� from each element of A and from each element of B� discarding any nonpositive integers
that result� This produces a partition that avoids S � fsng� This establishes a connection
in the case of even k� but we are not sure about odd k�

�� Saturated sets

Following 	
� we say that a set S 
 N is saturated if it is avoidable and it is maximal �with
respect to set inclusion� among all avoidable sets� In 	
� it is asked if a saturated set is
necessarily uniquely avoidable� Although it might seem plausible to conjecture that the
answer is yes� Evans 	
� exhibited a saturated set that is avoided in two di�erent ways� In
this section we strengthen this result by showing that there exist saturated sets that are
avoided by arbitrarily large numbers of partitions�

To state our results more precisely� we �rst recall another de�nition from 	
�� If S 
 N �
then the graph G�S� of S is the graph whose vertex set is N and whose edges are the sets







fx� yg such that x �� y and x � y � S� It is easily seen that S is avoidable if and only
if G�S� is bipartite and that S is uniquely avoidable if and only if G�S� is bipartite and
connected� Moreover� if G�S� has k connected components� then the number of partitions
avoiding S is �k���

We also say that a set S 
 N is doubly uniquely avoidable if it is uniquely avoidable
and there exists a unique partition of the odd positive integers into two disjoint sets A
and B such that no two distinct elements of A sum to twice an element of S and no two
distinct elements of B sum to twice an element of S�

The main result of this section is

Theorem � Let S be a doubly uniquely avoidable set that is maximal �with respect to set
inclusion	 among all doubly uniquely avoidable sets� For k � �� let

Sk � f
� �� �� ��� ��� ��� � � � � �k��g � f�ks j s � Sg�

Then Sk is saturated and G�Sk� has k connected components�

That Theorem 
 is not vacuous is guaranteed by the following result�

Proposition � There are uncountably many distinct doubly uniquely avoidable sets that
are maximal among all doubly uniquely avoidable sets�

Proof� Let S � fsng � f
� �g be any set that satis�es the following conditions� s� � ��
s� � �� and sn�� equals either �sn � 
 or �sn � � for all n � 
� We claim that S is doubly
uniquely avoidable�

One of the simplest general methods for demonstrating unique avoidability is induction
on n �cf� 	���� For example� to show that S is uniquely avoidable� use the inductive
hypothesis that there is a unique partition �into two sets� of the positive integers less
than sn that avoids S� If this is true for all n� then S must be uniquely avoidable� Here
the inductive hypothesis is easily checked for small n� To pass from n to n�
� we just need
to consider the integers m in the range sn � m � sn�� in succession� Provided sn�� is less
than �sn� uniqueness is guaranteed� because then m and sn���m are distinct and must be
placed in opposite sets� but sn���m is less than sn and it is therefore already determined
which half of the partition sn�� � m must be in� In the case at hand sn�� � �sn � 

or sn�� � �sn � � so uniqueness follows� To show existence� observe that we just need
to ensure that m can be placed in such a way as to avoid all elements of S that are less
than �m� In the case at hand� there is only one such element of S� namely sn��� and hence
it su�ces to put m into the set opposite sn�� �m�

The same idea works to show that there is a unique way to partition the odd integers
so as to avoid f�s j s � Sg� We begin by placing 
 and � in opposite sets so as to
avoid 
 � � 	 �� The induction argument proceeds as before� with only one additional


�



subtlety� when we are showing existence� there are two elements of S for which we need
to check avoidability� �sn�� and �sn��� Conceivably� we might not be able to avoid both
of these simultaneously when placing the odd integers m in the range �sn � m � �sn���
Actually� this potential problem arises only for the numbers �sn���
 and �sn����� which
may sum to �sn�� if sn�� happens to equal �sn�� � �� However� this is not a problem�
because 
 and � are in opposite sets� and hence the process of avoiding �sn�� will force
�sn�� � 
 and �sn�� � � into opposite sets �provided sn � �� so that �sn � � is distinct
from �� but one can check that no problems occur for sn � � either�� thus automatically
avoiding �sn�� as well� This proves the doubly unique avoidability of S�

We now �saturate� each S by taking a doubly uniquely avoidable set �S that is maximal
among all doubly uniquely avoidable sets and that contains S� The set �S exists and is
unique� the integers that we must add to S are precisely those integers m that are avoided
by the unique partition avoiding S and whose doubles are avoided by the unique partition of
the odd numbers avoiding f�s j s � Sg� There are clearly uncountably many distinct S�s�
and distinct S�s are avoided by distinct partitions fA�Bg� so distinct S�s have distinct
saturations� This completes the proof�

We remark that the set of Fibonacci numbers is doubly uniquely avoidable� but we
do not need this fact so we omit the proof�

Proof of Theorem �� We claim that the connected components of G�Sk� are as follows�

W � fm � N j m � � �mod �k�g
X � fm � N j m � 
�k�� �mod �k���g
Y � fm � N j m � 
� �� � �mod ��g � fm � N j m � �
������ �mod ��g
Z� � fm � N j m � 
 �mod 
��g � fm � N j m � �
 �mod 
��g
Z� � fm � N j m � � �mod ���g � fm � N j m � �� �mod ���g

���

Zk�� � fm � N j m � �k�� �mod �k�g � fm � N j m � ��k�� �mod �k�g

�If k � � then there are no Z�s�� Moreover� we claim that all these connected components
are bipartite� The bipartitions for Y and for the Z�s are the ones suggested by their
de�nitions above� and the bipartitions for W and X are the ones forced on them by
the doubly unique avoidability of S� take the unique partition of the positive integers
avoiding S and multiply each number by �k to obtain the correct partition for W � and
take the unique partition of the odd integers avoiding f�s j s � Sg and multiply each
number by �k�� to obtain the correct partition for X�

To prove these claims� let us begin by observing that two numbers m and m� from
distinct components cannot sum to an element of Sk� �Here �component� just means one
of W � X� Y � or Zi as de�ned above� we use the term �component� for convenience and
its use should not be construed as presupposing that these are the components of G�Sk�
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since we have not shown that yet�� To see this� write m and m� in binary notation and
note that their rightmost 
�s cannot be in the same position� Therefore they cannot sum
to a power of �� Moreover� at least one of them has its rightmost 
 in one of the k least
signi�cant bits� and hence m�m� cannot be divisible by �k� Finally� m�m� �� ��

Next� let us show that if the components are partitioned in the way we described� then
two distinct numbers m and m� from the same half of a single component cannot sum to
an element of Sk� In the case of Zi� m �m� � �r�� �mod �r� for some r � k and hence
cannot be divisible by �k� moreover it is clear that m�m� cannot equal a power of � since
m �� m�� A similar argument covers the component Y � As for W and X� the elements are
too large to sum to a power of � less than �k� and they avoid f�ks j s � Sg by the doubly
unique avoidability of S� Finally� m�m� �� � again�

Now observe that W and X are connected because of the doubly unique avoidability
of S� Proving that each of Y and Zi is actually connected can be done using an inductive
procedure similar to the one described in the proof of Proposition �� The details are
straightforward and are left to the reader�

It remains to prove saturation� No integer of the form �ks with s �� S can be added
to Sk� by the maximality of S� Integers m that are not multiples of eight cannot be added
to Sk� because they can be represented as sums of distinct elements from the same half
of Y � as follows� Observe that modulo �� we have

�� � ��� �� �� � 
 � �� �
 � 
 � �� 
 � �
� �� � � �
� �� � � � � �� 
 � ��� ��

Except when m � 
� �� �� 
� these congruences can be converted into pairs of distinct
integers summing to m� e�g�� if m � 
� then m � 
 �mod ��� and 
 � �
 � � so we can
write m as the sum of two integers� one congruent to �
 modulo � and the other congruent
to �� modulo �� i�e�� 
� � � � 
� or 
� � 
� � ��

It remains to show that integers m that are congruent to � modulo 
� or 
� modulo ��
and so on cannot be added to Sk� But this is easily proved using the same kind of argument
as in the previous paragraph� e�g�� � � 
�
 �mod 
��� and this congruence can be converted
into a representation of m as a sum of two distinct integers from the same half of Z��
except when m � �� but � is already in Sk�

�� Open problems

In an earlier version of this paper� we posed as an open question the problem of character�
izing S� precisely� since Theorem � and Theorem � provide only upper and lower bounds�
We also conjectured that S� is always uniquely avoidable� Both of these problems have
very recently been solved by David Grabiner 	��� In particular� Grabiner has proved the
following�
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Theorem � If pn is the numerator of a convergent� then �pn � S� if and only if pn is odd�
and either �i	 pn�� is odd and an�� � �� or �ii	 pn�� is even and an�� � �� or �iii	 pn � 
�
If pn � kpn�� is the numerator of an intermediate fraction� then it is in S� if and only if
either �i	 pn�� is even� or �ii	 k � 
 and pn is odd� or �iii	 k � an�� � 
 and pn�� is odd�

To convince the reader that Grabiner�s results are de�nitely nontrivial� we remark
that it is natural to conjecture that the set S� consists precisely of numerators of �best
approximations� in some sense� but for the most natural notions of �best approximation��
e�g�� best approximations of the �rst kind� or all fractions p�q such that j��p�qj � 
�q��
this conjecture is false� Also� the simple inductive method that we used in the proof of
Proposition � does not su�ce in general to prove the unique avoidability of S�� large
�gaps� can occur in S��

One can ask more generally for a characterization of all avoidable sets� or all uniquely
avoidable sets� or all saturated sets� or all saturated sets whose graph has a given number
of connected components� The sets S� do not exhaust the class of all saturated uniquely
avoidable sets� For example� the set

f�� 
� �� 
�� 
�� ��� 
�� ��� � � �g

�where each subsequent element is twice the previous element� minus one� is uniquely
avoidable but it can be shown that its saturation is not equal to any of our sets S��

There are several results in the existing literature that can probably be generalized�
For example� in 	�� it is proved that the set A�

� de�ned by

A�

� �
�bn�c j n � N

	 nA�

satis�es
A�

� �
�bn��c �� n � A�

	
�

We hope this result can be generalized� but we are not sure how� As another example�
	�� considers Tribonacci numbers� sequences in which each term is the sum of the previous
three terms in the sequence� It is not even obvious whether this kind of avoidable set has
any connection with continued fractions�

Many variations on existing ideas are possible� What if we drop the word �distinct�
from the de�nition of avoidable set What happens if we consider algebraic integers rather
than rational integers Clearly much more remains to be done�
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