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Abstract� We de�ne an in�nite array A of nonnegative integers based on a
linear recurrence� whose second row provides basis elements of an exotic ternary
numeration system� Using the numeration system we explore many properties of A�
Further� we propose and analyze a family Frankenstein of 	
player pebbling games
played on a semi
in�nite strip� and present a winning strategy based on certain
subarrays of A� Though the strategy looks easy� it is actually computationally
hard� The numeration system is then used to decide whether the family has an
e�cient strategy or not�

�� Introduction

Consider a doubly in�nite array �matrix
 A � fAn
j � � � j� n � �g of nonnega


tive integers whose �rst few entries are displayed in Table �� To de�ne its formation
rule� we introduce a little notation�

Denote by Z� Z� and Z� the set of integers� nonnegative integers and positive
integers respectively� If S is any proper subset of Z�� i�e�� S �� Z�� denote by mexS
the least nonnegative integer in the complement of S with respect to Z�� i�e�� the
least nonnegative integer not occurring in S� Note that the mex of the empty set is
�� The term mex� introduced in �BCG���	�� stands for Minimum EXcluded value�

For n � Z�� the entries of the array are de�ned as follows�

��
 An
� � mexfAi

j � � � i � n� j � �g�
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Table �� A doubly infinite

array of nonnegative integers�

n An
� An

� An
� An

� An
� An

� An
�

� � � � � � � �

� � � � 	� �� ��� ���

	 	 � �� �	 ��� 	�� ���

� � �� 	� �� ��� �	� ����

� � �� �� �� 	�� ��� ���� � � �

� � �� �� ��� ��� ��� 	���

� � 	� �� ��� ��	 ���� 	���

� �� 	� �� ��� ��� �	�� ����

� �	 �	 �� 		� ��� ���� ����

� �� �� �	 	�� ��� ���	 �		�

�� �� �� ��� 	�� �	� ���� ����
���

�	
 An
� � 	An

� � n �n � �
� An
j � �An

j�� �An
j�� �j � 	� n � �
�

It can be seen� by induction on n� that the set on the right hand side of ��
 is
indeed a proper subset of Z��

We further introduce a special ternary numeration system U � Its basis elements
are de�ned by u� � �� u� � �� ui � �ui�� � ui�� �i � 	
�

Theorem I� Every positive integer n has a unique representation over U � in the

form n �
P

i�� diui� where the digits di assume values in f�� �� 	g� subject to the

following special condition� if for some � � j � l� dj � dl � 	� then there exists k
satisfying j � k � l �so actually l � j � 	
� such that dk � ��

Theorem I is a special case of Theorem �� stated and proved in �Fra����� x���
The representation of the �rst few positive integers over U is given in Table 	� We
write the representation of n both in terms of its basis elements� n �

Pm

i	� diui� and
in its �ternary� form n � dm � � � d�� the same as is customary for more conventional
numeration systems� such as decimal or binary ��	� � �� ����	� ������ ���
�
Table 	 shows� for example� that �� � �	��� and �	 � 	��� rather than �	�	�
because of the special condition� Similarly� �� � ������ not 	��	��

�Some of my best friends are nonsemitic� among them referees and readers of my articles�
A number of them have commented to me that in a table such as Table �� the basis elements
�� �� �� ��� �� should be written from left to right rather than from right to left� I disagree� The
	ternary
 number n � dm � � � d�� now easily readable from the table� would be reversed� There
is a discrepancy in nonsemitic languages� often ignored� between text� including mathematical
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Table �� A special ternary

representation of integers n�

�� 	� � � � n 	� � � � n

� � � 	 �� � �

� � � � �	 	 	

� � � � �� � � �

� � � 	 �� � � �

� � 	 � �� � 	 �

� � 	 � �� 	 � �

� 	 � � �� 	 � �

� 	 � � �� � � � �

� 	 � 	 �� � � � �

� 	 � � �� � � 	 ��

� 	 � � �� � � � ��

	 � � � �	 � � � �	

	 � � � �� � � 	 ��

	 � � 	 �� � 	 � ��

	 � � � �� � 	 � ��

	 � � � �� 	 � � ��

	 � � 	 �� 	 � � ��

	 � 	 � �� 	 � 	 ��

	 � 	 � �� 	 � � ��

	 � � � �� 	 � � 	�

	 � � � �� � � � � 	�

	 � � 	 �	 � � � � 		

	 � � � �� � � � 	 	�

	 � � � �� � � � � 	�

� � � � � �� � � � � 	�

� � � � � �� � � � 	 	�

� � � � 	 �� � � 	 � 	�

� � � � � �� � � 	 � 	�

� � � � � �� � � � � 	�

� � � � 	 �� � � � � ��

formulas� and 	digital
 numbers� Though all of these are both written and read from left to
right� the basis elements of the latter� which are usually implicit but here explicit� nevertheless
increase from right to left� 
There is an even greater discrepancy when embedding formulas and
digital numbers in semitic language texts� but it is well�known and acknowledged� Moreover� word
processors have long since learned to overcome it� human beings still have di�culties with it��
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Figure ���� A position in Frankenstein with �Fr� coins�

Lastly� we de�ne a two
person pebbling game called Frankenstein�� played on
a semi
in�nite strip with a �nite number of pebbles� say coins� at most one per
square� The squares are numbered with the nonnegative integers �� �� 	� � � � from
the left end of the strip� as in Fig� �� There is a hole at square �� a coin landing on
it falls through the hole� disappearing from the play� The empty strip is denoted
by �� A single coin on the strip is a spinster� A legal move is to shift a number of
coins from their present squares to any unoccupied squares with a lower number
�a left shift
� avoiding a spinster� we never permit a spinster position� Every move
of � 	 coins involves a sequential shifting of coins� an arbitrary coin is �rst shifted�
Then a coin to its left is shifted� then a coin to its left� and so on� Every coin is
shifted at most once in a single move� Also new coins can be created� Speci�cally�
the moves from a position with say k �k � 	
 coins on squares

��
 X � �x�� � � � � xk��
� � � x� � 	 	 	 � xk���

are of two types�
I �a
 Shift a positive number of at most k � � tokens� at least one of them to

a positive numbered square� �b
 A coin on precisely one square m may be
shifted to � and new coins be placed on the unoccupied squares j�� � � � � j� if

and only if � �
P�

i	� ji � m� A move consists of either �a
 or �b
 �or both
�
II Shift all of the tokens by say� � � n� � 	 	 	 � nk�� squares� either preserving

k or resulting in �� Moreover� nk�� should not be too large� namely�

��
 nk�� � 	nk�� � nk�� � 	 	 	� n��

The player �rst unable to move loses� and the opponent wins� Notice that in
every position there is at most one coin per square� and the only end position is
�� A spinster is never permitted� In a type II move� either all coins are removed�
or none� The number of coins can decrease or increase during play� but the sum of
the occupied square numbers decreases at each move� Therefore play ends� and no
game position is repeated�

Examples�
�i
 Let X � ��� �
� A move X 
 ��� �
 is inconsistent with ��
� Also a move to

� or � is not permitted� since they are spinsters �and also by the second part
of I�a

� Thus the only possible move is to ��� 	
� Then player II can move
to ��� �
� winning�

�ii
 From the position ��� �� �
 player I can move to � winning instantly� because
the move �
 �� �
 �� �
 � satis�es � �with equality
�

�The game is played with coins called Francs 
in Belgium or France� and Franks 
in Switzer�
land�� Alternatively� it may be played with pebbles or stones� Hence the name of the game�
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�iii
 Given the initial position X � ��� �� �
� A move X 
 ��� �
 is not permitted
by the second part of I�a
� It can be seen that if only the coin at � is shifted�
then player II can move to � in the next move� We leave it to the reader to
verify that X is a position from which player II can win� either by moving
directly to � or by moving �rst to ��� �
�

�iv
 The winning move ��� �� ���
 
 ��� �� �
 involves �a
� ��� 
 �� � 
 � �or
���
 �� �
 �
�

�v
 The winning move ��� ��

 ��� �� �
 is of type �b
� ��
 ��� �
�
�vi
 Show that ���� ��� 	��
 
 ��� �� �� 	�� ��
 is a winning move

�
involving both

�a
� 	��
 � and �b
� ���
 ��� �

�
�

�vii
 Verify that player II can win from the position �	� �
�

We shall show that certain subarrays of the array A are the so
called �losing
positions� of Frankenstein� For proving this it is helpful to use some of the proper

ties of A� Essentially� A is a splitting of Z�� but to state the result precisely� some
further notions will �rst be introduced�

De�ne the operators L �Left shift
 and R �Right shift
 on representations over U �
if n �

Pm

i	� diui for some n � Z�� then L�n
 �
Pm

i	� diL�ui
 �
Pm

i	� diui�� � and
R�n
 �

Pm

i	� diR�ui
 �
P

i�� diui�� is de�ned if d� � �� In other words� if n �

dm � � � d�� then L�n
 � dm � � � d��� and� if i � � �i�e�� d� � �
� then R�dm � � � d��
 �
dm � � � d�� In particular� L�ui
 � ui�� �i � �
� and R�ui
 � ui�� �i � �
�

The j
th column of A� excluding the � in the �rst row� is denoted by Aj �S�
n	�A

n
j � j � �� and the n
th row is An �

S�
j	� A

n
j � n � �� If n �

P
i�� diui

with d� �� �� we say that n is reduced� A reduced number n has no right shift� The
golden section is the positive root � of the polynomial equation x� � x� � � �� so
� � �� �

p
�
�	 and �� � �� ��

In x	 we prove�

Theorem �� The array A is a splitting of Z�� every positive integer appears

precisely once in A� Moreover� for every j � �� the column Aj consists precisely of

all positive integers whose representation ends in j �s� In particular� An
� is reduced

for all n � Z��

The proof leans heavily on properties of the special ternary numeration system
U � which are also explored in x	� The system U is even more useful� the winning
strategy for Frankenstein� based on subarrays of A� is ine�cient �exponential
� The
system U enables one to decide whether there is or there isn�t a di�erent� e�cient
�polynomial
 strategy� This is taken up in x�� Some further remarkable properties
of A are listed in Theorem 	� also proved in x	�

Let f� � �� f� � 	� fn � fn�� � fn�� �n � 	
 be the sequence of Fibonacci
numbers� �It is easily seen that the numeration basis elements ui de�ned above�
which constitute the second row of A� are precisely the �even� Fibonacci numbers�
i�e�� ui � f�i for all i � �� Also the other rows of A are �even Fibonacci numbers�
with di�erent initial conditions� but these facts are not needed here�


Theorem ��
�i
 For j� n � Z�� An

j � bAn
j���

�c� � � L�An
j��
�

�ii
 For all n � �� An
� � b�n� �
�c� � is reduced�
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�iii
 For all n � �� all j � � we have� An��
j � An

j � ff�j � f�j��g� and for �xed j�
each of f�j � f�j�� is assumed for in�nitely many n� Moreover� for all n for

which An��
� �An

� � f� �respectively f�
� we also have for all j� An��
j �An

j �

f�j �respectively f�j��
�
�iv
 Let j � �� There are no real numbers �� �� such that for all n � �� An

j �
bn�� �c�

Properties of A are also presented in Lemmas � and 	 in x	� The formulation of
a winning strategy for Frankenstein needs a few technical concepts� so is best post

poned to x�� where the precise result is stated and proved� A sum up is presented
in the �nal x��

�� Some Properties of the Array

We begin with a simple result�

Lemma �� For all j� n � Z�� An
j � 	An

j�� �An
j�� � 	 	 	�An

� � n�

Proof� Induction on j� for arbitrary but �xed n� By the �rst part of �	
� the
assertion holds for j � �� Suppose it holds for some j � �� By the second part of
�	
�

An
j�� � 	An

j � �An
j �An

j��
 � 	An
j �An

j�� � 	 	 	�An
� � n� �

The following is the main lemma used for proving both Theorem � and Theo

rem 	�

Lemma �� Let n � �� Sn �
S

m�n

S�
j	� A

m
j � In every row An of A� the element

An
� is the smallest reduced element not in Sn� and An

j�� is the left shift of An
j for

all j � ��

Proof� Since u� � 	u� � � and ui � �ui�� � ui�� �i � 	
� the same as the
recurrence �	
� and A�

� � � � u�� the row A� consists of the basis elements of U �
for which the statement clearly holds� Suppose it holds for all m � n �n � 	
�
If An

� would not be reduced� then R�An
� 
 would be a smaller element than An

� �
Moreover� R�An

� 
 �� Sn� otherwise also An
� � LR�An

� 
 would be in Sn� by the
induction hypothesis� contradicting ��
� Thus An

� is the smallest reduced element
not in Sn�

Let An��
� �

P
i�� diui be the representation of An��

� over U � By the induction

hypothesis� An��
� � L�An��

� 
 �
P

i�� diui�� and An��
� is reduced� In particular�

d� �� �� We consider two cases�

�i
 There exists j � � such that di � � for all i � j� but dj � �� Then

An��
� � � �

P
i�� diui � �d� � �
u� is reduced �by Theorem I� with least

signi�cant digit 	
� so the �rst part of the proof implies An��
� �� � An

� � Now�

An
� � 	An

� � n � 	�An��
� � �
 � n � 	An��

� � �n� �
 � � � An��
� � �

�
X

i��

diui�� � u� �
X

i��

diui�� � �d� � �
u� � L�An
� 
�






�ii
 There exists j � � such that di � � for all i � j� but dj � 	� By Theorem I�

dj�� � �� By Lemma � with n � �� An��
� �� �

P
i�j�� diui��dj����
uj��

is not reduced� but An��
� � 	 �

P
i�j�� diui � �dj�� � �
uj�� � u� � An

� is

reduced� Then by Lemma � �n � �
�

An
� � 	An

� � n � 	�An��
� � 	
 � n � 	An��

� � �n� �
 � �

� An��
� � � �

X

i��

diui�� � � �
X

i�j��

diui�� �

j��X

i	�

diui�� � �

�
X

i�j��

diui�� � dj��uj�� � �	uj�� � uj � 	 	 	� u�
 � �u� � � � �


�
X

i�j��

diui�� � �dj�� � �
uj�� � u� � L�An
� 
�

It remains only to show that An
j�� � L�An

j 
 for all j � �� Suppose we already
showed this for all j � m� For m � � this was just done� So consider An

m��� Let
An
m�� �

P
i�� diui be the representation of An

m��� By the induction hypothesis

and �	
�

An
m�� � �An

m �An
m�� �

X

i��

di��ui�� � ui
 �
X

i��

diui�� � L�An
m
� �

Proof of Theorem �� By Lemma 	� An
j�� � L�An

j 
� Therefore the representation
ofAn

j�� has one additional � at its tail end than that ofAn
j � Since the representations

of positive integers over U are unique �Theorem I
� all entries in A are indeed
distinct� Finally� every positive integer appears in A in view of ��
� �

For proving the left shift part of Theorem 	�i
� we prove� more generally�

Lemma �� Let m � Z�� n � bm��c� �� Then n � L�m
�

Proof� Letm �
Pr

i	� diui be the representation ofm� for suitable r � Z�� We have
to show� n �

Pr

i	� diui��� It su�ces to show that � � m���� �
Pr

i	� diui���	�
for some � � 	 � �� So it su�ces to show that � �

Pr

i	� di�ui�� � ui�
�
 � ��

The characteristic equation of the second recurrence of �	
 is x� � �x � � � ��

with solutions �� � �� �
p
�
�	 and conjugate ��� � �� � p

�
�	� From this it
follows that for n � ��

��
 un �
��n�� � ����n���p

�
�

Then ui���ui�
� � ���i������
�

p
� 
 �� Note that� due to the special condition

of Theorem I�
Pr

i	� di�ui�� � ui�
�
 is largest when d� � 	 and di � � for all i � ��

Thus�

� �

rX

i	�

di�ui�� � ui�
�
 �

��� ���
p
�

�� �

�X

i	�

���i
 �
��� ���
p

�
�� � �� �

For proving �iv
 of Theorem 	� we prove a technical result�






Lemma �� Let � 
 �� � be real numbers� Letting Nn � b�n��
���c�bn���c�
we have

��
 b�c � Nn � d�e�

Moreover� each of the values b�c and d�e is assumed for in�nitely many n�

Proof� The de�nition of Nn implies ��
 directly� If � � p�q with gcd �p� q
 � �
is rational� then we may clearly assume� without loss of generality� that � � r�q
�p � Z

�� q � Z
�� r � Z
� The congruence xp � q � r �mod q
 has a solution

x � n�� �� n� � q� so n�p � kq � r for some k � Z� It is then easily veri�ed that
Nn��� � d�e� and Nn� � b�c� Since the above congruence has the general solution
n � n� � sq� s � Z� each of the values b�c and d�e is assumed in�nitely often�

If � is irrational� then the fractional values �n�
 are dense in ��� �
 �Kronecker�s
Theorem� see e�g�� �HaWr������ Ch� 	�
� Hence each of b�c and d�e is assumed
in�nitely often also in this case� �

Proof of Theorem �� From Lemma � we have� in particular� bAn
j���

�c � � �

L�An
j��
� By Lemma 	� this is also the same as An

j for all j � �� proving �i
�

Since ��� � ��� � �� it follows from Theorem II of �Fra����� that if S �S�
n	��bn�c��
� T �

S�
n	��bn��c��
� then S� T are 	
upper complementary � i�e��

S � T � Z
� n f�g and S 
 T � �� By Lemma �� T contains only non reduced

numbers� Hence S consists of precisely all the reduced numbers 
 �� and T of all
the non reduced numbers� Replacing n by n� �� �ii
 follows from ��
�

For establishing �iii
� we use induction on j� For j � �� the claim follows directly
from Lemma � and �ii
� with � � �� � � �� For j � � we have by �	
� Am��

� �Am
� �

	�Am��
� �Am

� 
�� � f	f���� 	f���g � ff�� f�g� and f� �respectively f�
 is assumed

precisely when 	�Am��
� �Am

� 
 � f� �f� respectively
� Suppose it holds for all i � j
�j � 	
� By �	
� Am��

j � Am
j � ��Am��

j�� � Am
j��
 � �Am��

j�� � Am
j��
� This is either

�f�j��� f�j�� � f�j or f�j��� according to whether in the previous column �j � �

the result was f��j��� or f�j��� We have demonstrated the validity of �iii
�

By Lemma �� a necessary condition for the existence of real �� � with � positive
and irrational such that Aj � bn� � �c� is that An��

j � An
j � fb�c� d�eg� In

particular� An��
j � An

j has to assume two consecutive integer values� But by �iii
�
the two assumed values are f�j and f�j��� which are consecutive if and only if j � ��
This proves �iv
� �

Remark� Theorem 	 can be used to give an independent proof of Theorem ��
because the former implies� using the uniqueness of representation �Theorem I
�
that all entries of A are distinct� Aj�� � L�Aj
� and also every positive integer is
assumed�

�� A Winning Strategy for Frankenstein

Informally� a position u in a game such as Frankenstein is called a P 
position� if
the Previous player can win� i�e�� the player who moved to u� It is an N 
position�
if the Next player can win� i�e�� the player moving from u� The position � is a P 

position� since player I �the player called upon to move from the the given position
�
cannot even make a move� so the opponent� player II� wins by default� By F �u
 we



�

denote the set of all immediate followers of u� i�e�� the set of all positions reachable
from u by a single move � Note that F �u
 � � if u is a leaf � i�e�� an end position�

Denote by P the set of all P 
positions� and by N the set of all N 
positions� The
informal de�nition of P 
 and N 
positions implies�

��
 u � P �� F �u
 � N � u � N �� F �u
 
 P �� ��
All of these things can be done formally� See �Fra�	�����

For the sake of compactness of discussion� we will be talking about reducing
integers� rather than shifting coins on squares numbered with those integers� In
terms of this convention� we state the main result of this section�

Theorem �� The P �positions of the game Frankenstein are given by

P �

��

n	�

��

k	�

�An
� � � � � � A

n
k��
�

Proof� Let W �
S�

n	�

S�
k	��A

n
� � � � � � A

n
k��
� As was pointed out in x�� the empty

strip � is a leaf� i�e�� F ��
 � �� and so is a P 
position by ��
� It turns out that in
view of ��
� it su�ces to demonstrate the following two properties for all positions�

�A� Every move from a position in W produces a position not in W �
�B� From every position not in W there exists a move to a position in W �

�A� Let �An
� � � � � � A

n
k��
 �W � For a move of type I� there is a number An

j which
remains �xed� and a number L which is either reduced or replaced by a collection of
smaller numbers� In either case� the resulting position contains An

j and a number
L �� An

i for all i � �� so it is not in W �

Now consider a move of type II� Suppose there is a move X � �An
� � � � � � A

n
k��
 


�Am
� � � � � � A

m
j��
 � W � If m 
 n

�
such as �	� �� ��
 
 ��� ��


�
� the move involves

An
� 
 �� contrary to the requirement of preserving k� Clearly we cannot have m �

n� So m � n� j � k� Suppose �rst that j � k� If m � � �so �Am
� � � � � � A

m
j��
 � �
�

we have� using Lemma ��

��
 An
k�� � 	An

k�� �

k��X

i	�

An
i � n 
 	An

k�� �

k��X

i	�

An
i �

contradicting condition ��
� This contradiction holds a fortiori if m 
 �� because
then the terms to the right of An

k�� in ��
 are even smaller� but the left side is still
An
k�� if j � k� We conclude that j � k�
The presumed move is thus �An

� � � � � � A
n
k��

 �Am

� � � � � � A
m
k��
� By Lemma ��

An
k�� �Am

k�� � 	�An
k�� �Am

k��
 �

k��X

i	�

�An
i �Am

i 
 � n�m


 	�An
k�� �Am

k��
 �

k��X

i	�

�An
i �Am

i 
�

��




��

This contradicts ��
� since Theorem 	�iii
 implies that for every n 
 m 
 � and all
j � � � An

j�� �Am
j�� 
 An

j �Am
j � so An

k�� �Am
k�� � max��i�k���A

n
i �Am

i 
�

�B� Given a position X � �x�� � � � � xk��
 �� W of the form ��
� with k � 	�
We show that there is a single move to a position in W � By complementarity
�Theorem �
� x� � An

j�� for some j� n � Z��
Assume �rst j 
 �� Since k � 	� there is x� 
 x�� By Lemma �� x� 
 x� �

	An
j���

Pj��
i	� A

n
i �n� If k � j� we reduce �x�� � � � � xj��
 
 �An

� � � � � � A
n
j��
� and put

x� 
 � for all � � j� if any� If k � j� we reduce �x�� � � � � xk��
 
 �An
� � � � � � A

n
k��
�

and then split a suitably reduced xk�� into �An
k��� � � � � A

n
j��
� In particular� if

k � 	� then x� is reduced and split into �An
� � � � � � A

n
j��
� We have made a type I

move to �An
� � � � � � A

n
j��
 �W �

We may thus assume x� � An
� � Then there exists j � 	 such that xi � An

i for
i � j � �� but xj�� �� An

j��� If xj�� 
 An
j��� move xj�� 
 An

j�� and put xi 
 �
for all i 
 j � ��

So we may assume xj�� � An
j��� We consider the following cases�

�i
 j � k� so xj�� � xk��� We have xk�� � An
k�� � t for some t � �� We claim

that X � �An
� � � � � � A

n
k��� xk��
 
 �An�t

� � � � � � An�t
k��� A

n�t
k��
 � W is a legal type II

move for t � n� and X 
 �� for t � n�
For t � n we have by ��
 �with m � n� t
� xk�� �An�t

k�� � An
k�� �An�t

k�� � t 


An
k�� �An�t

k��� Then by Lemma ��

xk�� �An�t
k�� � An

k�� �An�t
k�� � t � 	�An

k�� �An�t
k��
 �

k��X

i	�

�An
i �An�t

i 
�

which satis�es ��
� If t � n� then by Lemma �� xk�� � Ak�� � n � 	An
k�� �Pk��

i	� A
n
i � so X 
 � satis�es ��
�

�ii
 j � k� �Recall that xj�� � An
j���
 We �rst dispose of two subcases�

a� If there is r 
 j � � with xr 
 An
j�� and xi �� An

j�� for all i � �� then
make the type I move xr 
 An

j�� and xi 
 � for all i � j � �� i �� r� resulting in
�An

� � � � � � A
n
j��
 �W �

b� If xi � An
j�� for all i 
 j � �� then X � �An

� � � � � � A
n
j��� xj��� � � � � xk��
 
 �

is a legal move� Indeed� xj�� 
 An
j��� and Lemma � implies An

j�� � n� Hence�

xk�� � An
j�� � 	An

j�� �

j��X

i	�

An
i � n � 	xj�� �

j��X

i	�

An
i � 	xk�� �

k��X

i	�

xi�

is a legal type II move by ��
�

So we may assume that X has the form

X � �An
� � � � � � A

n
j��� xj��� � � � � A

n
j��� � � � � A

n
j�s� xt� � � � � xk��
�

where each An
j�i appears for all i � s� s � ��� and possibly also some intermediate

xi �� An
r � but A

n
j�s�� does not appear� Here are the two �nal subcases�



��

c� xk�� 
 An
j�s��� Then move� xk�� 
 An

j�s��� xj��� � � � � xt� � � � � xk�� 
 �
�type I move
� resulting in the position �An

� � � � � � A
n
j�s��
 � W �

d� xk�� � An
j�s��� Then X 
 � is a legal type II move� Indeed� xj�� 


An
j�� � n� so

xk�� � An
j�s�� � 	An

j�s �

j�s��X

i	�

An
i � 	xk�� �

k��X

i	�

xi�

We have shown that W � P � �

�� Does Frankenstein have a Polynomial Strategy	

The statement of Theorem � enables one to decide whether any given position
X of the form ��
 of Frankenstein is a P 
position or an N 
position� and the proof

clearly indicates a winning move from any N 
position� These two things together
constitute a winning strategy for the game�

Given any position X of the form ��
 of Frankenstein� To decide whether X � P
or X � N � we have to compute the entries of A only up to the �rst encounter of
x�� Thus it is readily seen that Theorem 	�ii
 implies that An

j has to be computed

only for n � x��� � �
� and ��
 implies that j � �
� log��

p
��x� � �

 � �� So the

array has to be computed only up to ��x�
� which implies a strategy computation
linear in x�� which looks good�

However� the input size for Frankenstein is ��
Pk��

i	� logxi
� So unless either
k or xk�� are exponentially larger than x�� the indicated strategy is actually ex

ponential� But only the construction of the table needs exponential time and� in
fact� exponential space� The rest of the algorithm embodied in the proof of Theo

rem � is polynomial� A winning strategy is polynomial only if both of its parts are
polynomial�

It follows from �Fra����� that the computation of the representation of a positive
integer N over the numeration system U can be done by a greedy Euclidean algo

rithm� namely always dividing the remainder r �initially� r � N
� by the largest
basis element un � r� This is a polynomial process� In particular� expressing a
game position X of the form ��
 over U can be done in polynomial time� It can
then be observed in linear time whether or not x� is reduced� and all the other
steps of the winning algorithm indicated in the proof of Theorem � can also be
done in polynomial time� Thus the numeration system U actually enables us to
formulate a polynomial strategy for Frankenstein � not only to decide whether it
has or doesn�t have one�

The game Frankenstein proposed here belongs to the family of succinct games�
i�e�� their input size is logarithmic� Normally an extra e�ort is required for showing
that such games have a polynomial strategy� Di�erent families of succinct games
seem to require di�erent methods of strategy computations�

For example� in octal games� invented by Guy and Smith �GuSm������ a linearly
ordered string of beads may be split and or reduced according to rules encoded
in octal� See also �BCG���	� Ch� ��� �Con����� Ch� ���� The standard method
for showing that an octal game is polynomial� is to demonstrate that its Sprague�
Grundy function �the �s of which constitute the set of P 
positions
 is periodic�



��

Periodicity has been established for a number of octal games� Some of the periods
and or preperiods may be very large� see �GaPl������ Another way to establish
polynomiality is to show that the Sprague
Grundy function values obey some other
simple rule� such as forming an arithmetic sequence� as for Nim�

For the present class of pebbling games� polynomiality was established by a non

standard method� An arithmetic procedure� based on a class of special numeration
systems� was the key to polynomiality� In �Fra����� a game was proposed and anal

ysed� and another numeration system was used there to establish polynomiality�
For Wytho��s game �Wyt������ �Cox������ �YaYa������ the Zeckendorf numeration
system �Zec���	� can be used to establish polynomiality� But for Wytho��s game�
this can be done also using the integer value function� From Theorem 	�iv
 it fol

lows that this cannot be done for Frankenstein� In �Fra����� it was also proved
that the integer value function cannot be used to establish polynomiality for the
game de�ned there� But the question remains whether there or here� there is some
polynomial algorithm not based on numeration systems�


� Epilogue

We recap the main properties of the array A�

�a�
An
� � mexfAi

j � � � i � n� j � �g �n � �
�

An
� � 	An

� � n �n � �
� An
j � �An

j�� �An
j�� �j � 	� n � �
� �The de�nition�


�b� For all j� n � Z�� An
j � 	An

j�� �An
j�� � 	 	 	�An

� � n� �Lemma ��


�c� A is a splitting of Z�� every positive integer appears precisely once in A�
Moreover� for every j � �� the column Aj consists precisely of all positive
integers whose representation ends in j �s� In particular� An

� is reduced for
all n � Z�� �Theorem ��


�d� �i
 For j� n � Z
�� An

j � bAn
j���

�c � � � L�An
j��
� �ii
 For all n � ��

An
� � b�n � �
�c � � is reduced� �iii
 For all n � �� all j � � we have�

An��
j � An

j � ff�j � f�j��g� and for �xed j� each of f�j � f�j�� is assumed for

in�nitely many n� Moreover� for all n for which An��
� �An

� � f� �respectively

f�
� we also have for all j� An��
j � An

j � f�j �respectively f�j��
� �iv
 Let

j � �� There are no real numbers �� �� such that for all n � �� An
j � bn���c�

The numeration system U was used both for proving the most important of
these properties� and for deciding the polynomiality question of the strategy of
Frankenstein�

The reason our title contains the term �arrays�� whereas we have presented only
a single array� is that we allude to an in�nite family of arrays� based on some linear
recurrence of the form

���
 u� � �� un � b�un�� � 	 	 	� bmum�

where the bi are constants� except that b� � b��n
 may depend on n� with given
initial integer values u�m��� � � � � u��� If

���
 � � bm � 	 	 	 � b��



��

then there is also an associated numeration system �Fra������ Replacing in ���
 the
elements uj by columns Aj the recurrence is used to construct A �with possibly a
special construction for the �rst initial values of j
�

A �rst � to my knowledge � �Fibonacci array� has been de�ned in �Sto������
Other �Stolarsky arrays� were de�ned in papers such as �Kim����� and �FrKi������
and there are in�nitely many such arrays� But we have not seen any applications of
these arrays� Perhaps the present use for a winning strategy to a new class of games
is the �rst application Is there a natural in�nite family of combinatorial games�
matching the in�nite family of arrays And what�s the nature of these arrays and
their uses if ���
 is violated 

It seems that the array de�ned here was not given before� Its antidiagonal hasn�t
appeared in �Slo����� until we sent it in there recently� and its columns Aj and its
rows An do not seem to appear in it for j 
 � and n 
 �� As we remarked just prior
to the statement of Theorem 	� the rows of the present array are �even Fibonacci
numbers��

Several comments can be made about recurrences such as �	
� We shall brie!y
relate to two items�

�I
 The second recurrence of �	
 can be considered to be the recurrence of the
convergents of the quasiregular �or semiregular� halbregelm"assig
 continued frac

tion

� �
� �

� �
� �

� �
� �

� � �

In �Per����� Ch� �� it is shown that every quasiregular continued fraction con

verges� In the present case it converges to ��� Many of the above properties of A
can be deduced from this observation� also other properties not mentioned above�
such as u�n�un��un�� � � for all n� and somewhat more complicated identities for
elements in the other rows of A�

�II
 In �BBDD������ the authors quote �BSS������ �� � � the recurrence fn�� �
�fn� fn�� cries out for a combinatorial interpretation� Finding this interpretation
is an open problem�� �BBDD����� gives such an interpretation� We remark that
in �Fra����� x�� a class of regular �simple
 continued fractions is de�ned whose
convergents satisfy recurrences including the above� In particular� the numerators
of the even
indexed convergents of the simple continued fraction

p
	 � ��� 	� 	� � � � � � � �

�

	 �
�

	 �
�

� � �

constitute the sequence �� �� ��� 	��� � � � with initial values f� � �� f� � � considered
in �BBDD������ Needless to say that each such recurrence also de�nes an exotic nu

meration system� Perhaps these facts constitute a �combinatorial interpretation��



��

The game Frankenstein is super�cially reminiscent of the game of Welter� an

alyzed in �Con����� Ch� ���� The terminology �spinster� was introduced there�
Welter is played on a semi
in�nite strip with a �nite number of coins� at most one
per square� and the squares are numbered with the nonnegative integers �� �� 	� � � �
from the left end of the strip� A move consists of selecting a single coin and shifting
it to an unoccupied square with lower number� The player �rst unable to move
loses� and the opponent wins� The winning strategy is intricate� Moreover� it
seems very di�cult to generalize Welter� The game proposed here is not a general

ization of Welter� but the moves are reminiscent of several moves of Welter taken
simultaneously�
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