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The Ninth . . . like a lightning, an earthquake, a flood!
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1. Introduction.

The ‘1/9’ problem is the determination of the rate of convergence of best L∞ ratio-

nal approximation to exp ��� x 	 on 
 0 � ∞ 	 . The error En has first been found numerically

to decrease with the degree n of the approximation asymptotically as the nth power of

ρ � 1  9 � 2890254919208189187554494359517450610316948677 ����� ([4,19], see [20]

for the history). The value of ρ, and the first proof that lim
n � ∞

E1 � n
n � ρ, are in [7], where

it is shown how to build a potential function V vanishing on E ��
 0 � ∞ 	 , with 2V � x �
constant ��� logρ on an arc F of the complex plane, with equal normal derivatives on

the two sides of F.

1.1. Rational interpolation of analytic functions.

Let f be holomorphic in a domain D of the extended complex plane C� , and E be a

closed subset of D. Our subject-matter will be D � C� , f � z 	�� e � z, and E ��
 0 � ∞� .
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As f is real on the real set E, the best (real) rational approximation Rn of degree n to

f on E is known to interpolate normally f at 2n � 1 points of E, say z1, z2,. . . z2n � 1. The

error of interpolation of analytic functions is usually discussed through Hermite-Walsh

contour integral formula [21,22].

Let us consider first an approximation S2n of degree 2n, interpolating f at these

2n � 1 points, and with 2n poles p1, p2,. . . p2n. Then, the Hermite-Walsh formula is

f � z 	�� S2n � z 	�� 1
2πi

� z � z1 	�������� z � z2n � 1 	� z � p1 	�������� z � p2n 	 �
Cn

� t � p1 	�������� t � p2n 	� t � z1 	�������� t � z2n � 1 	 f � t 	 dt
t � z

� (1)

where Cn is a contour containing z1, z2,. . . z2n � 1 and z in its interior.

In order to ensure that S2n is the approximant Rn of degree n, and not 2n, we must

have only n true poles, say, p1,. . . , pn, so, vanishing residues at pn � 1,. . . , p2n, which

amounts to the formal orthogonality conditions�
Cn

� t � p1 	�� ����� t � pn 	 Q � t 	� t � z1 	�������� t � z2n � 1 	 f � t 	 dt � 0 (2)

for all polynomials Q of degree ! n.

Then, with the complex potential

Vn � z 	�� 1
2n

log " � z � z1 	�������� z � z2n 	� z � p1 	�������� z � p2n 	$# (3)

we estimate the exponential behaviour of the error norm of (1) on E as%
f � Rn

%
∞ � %

f � S2n
%

∞ �
Kn exp2n " max

z & E
Vn � z 	'� min

t & Cn ( Vn � t 	�� Re � log f � t 	�	�'� 2n 	�) # � (4)

where Vn � ReVn, and keeping in Kn what we hope will remain unessential factors.

Let En be the part of E where Vn reaches its maximum, and Fn be the (still un-

known1) part of Cn where Vn � t 	�� Re � log f � t 	 	�'� 2n 	 reaches its minimum.

The problem is now to study a harmonic function Vn satisfying the Dirichlet con-

ditions Vn � a constant on En, and Vn � constant � Re � log f � t 	�	��� 2n 	 on Fn. Such a

Dirichlet problem makes sense if En and Fn are a set of arcs in the complex plane. A

mild consequence of the form (3) is that the arcs should be part of rational lemniscates.

A much more important consequence of (3) is that, if we imagine Vn to be the potential

1Cn is also an unknown of the problem. While (1) and (2) do not depend on the choice of Cn, (4) does, if

we want (4) to yield a realistic estimate.
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of electric charges spread on En and Fn, we must have a positive unit charge on Fn and a

negative unit charge on En.

Then, the constant values taken by Vn on En, and by Vn � Re � log f 	��� 2n 	 on Fn,

simply mean that the charges, free on En, and submitted to the action of the external

potential � Re � log f 	�'� 2n 	 on Fn, are in equilibrium. Indeed, any part of the charged

matter is subject to a force directed along the (opposite of the) gradient of the potential,

and we just managed to have this gradient orthogonal to the sets En and Fn. . .

Finally, if the locus Fn is moved in the complex plane, one has to bring in the

system an energy needed to move the forces acting on the charges. The total energy,

which is the potential difference

δn : �+* Vn � Re � log f 	�'� 2n 	�,
Fn

�-* Vn ,
En

we have to maximize, will indeed reach its largest possible value when all the forces

acting on the system do vanish. We then expect the best approximation error norm to

satisfy

lim
n � ∞

%
f � Rn

% 1 � n � exp ./� 2 lim
n � ∞

δn 0 � (5)

It is a very remarkable fact that the constraints (2) will not change the validity

of the discussion just made, as shown by Stahl [18,17]: if f has branchpoints limiting

the extension of Fn, the interpolation points and the poles have (weak) limit distribu-

tions amounting to the correctness of (5). However, when f is entire, one must con-

sider a variable scaling factor ensuring the existence of the limit of the external term� log f � z 	 	�'� 2n 	 . For our problem with f � z 	�� exp ��� z 	 , we will of course work with the

variable z  n, and study the limits

V � z 	1� lim
n � ∞

Vn � nz 	2� V � z 	�� lim
n � ∞

Vn � nz 	3� F � lim
n � ∞

Fn

n
�

A thorough study of the existence of these limits is done in sections 1 and 3 of [7], where

the special case of the exponential function is also treated (section 2 of [7]).

We proceed with this case in more detail.

2. Equation of the potential.

We look for a distribution dλ on E ��
 0 � ∞� and a set F such that the corresponding

potential

V � z 	�� �
E 4 F

log
15

z � t
5 dλ � t 	
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satisfies

1. V � 0 on E ��
 0 � ∞� ,
2. V ��� x  2 � constant on F , (this constant is 687 logρ 9;: 2),

3. V � x  2 < this constant on a continuation of F

4. E carries a negative unit charge, and F carries a positive unit charge:=
E dλ � t 	���� 1 ;

=
F dλ � t 	�� 1 �

5. Symmetry property of F:

∂ � V � x  2 	� ∂n � � ∂ � V � x  2 	� ∂n � on F.

It is possible to show that F will be made of a finite number of analytic arcs,

actually a single arc in the f � z 	1� exp ��� z 	 case [7]. As F is the (scaled) limit of the set

of poles of real rational functions, we know that F will be symmetric with respect to the

real axis.

2.1. Solution through Sokhotskyi-Plemelj formulas.

Let us introduce the multivalued complex potential

V � z 	�� �
E 4 F

log
1

z � t
dλ � t 	 (6)

whose real part is the sought potential V . An elementary consequence of the Cauchy-

Riemann equations is that the two components of the gradient of V are the real part and

the opposite of the imaginary part of the derivative

V >�� z 	���� �
E 4 F

1
z � t

dλ � t 	 (7)

of V . This function V > is therefore analytic and single-valued outside E ? F . The

behaviour of such an integral (7) when z comes close to one of the cuts is given by the

very important Sokhotskyi-Plemelj formulas [9], chap. 14, [13]:

limV > � z 	���� �
E 4 F

1
z � t

dλ � t 	A@ πiλ > � z 	B� z C E D F � (8)

where the limit is taken when one approaches z from a definite side of the cut, the @ sign

depends on the chosen side, and where
�

means principal value.

Remark that, as dλ � z 	 is real, the complex conjugates @ iλ > � z 	E�GF idλ � z 	 dz  5 dz
5 2

are directed along the normal to E or F at z, and will therefore be involved in the com-

putation of the normal derivatives of V on the two sides of E or F .
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We now have to work out the conditions satisfied by V on the two cuts E and F, in

order to determine V ,. . . and the still unknown cut F!

On F , we must consider V � z 	H� z  2 instead of V � z 	 , so, the value of the principal

value in (8) must be 1  2 for any z C F .

We now transform the problem as a problem on F alone: the condition on E is

classical and is easily satisfied by a suitable combination of (complex) Green functions

of C�JI E

GE � z; t 	�� log K � t � K � zK � t � K � z
�

where K � z is defined for z C E as the square root of � z which has a positive real part

(see, for instance [5] § 8.11). The real part of GE � z; t 	 vanishes indeed on E.

We now sum such Green functions on the remaining singular locus t C F as

V � z 	�� �
F

log K � t � K � zK � t � K � z
dµ � t 	B� (9)

We only have to look again at the Sokhotskyi-Plemelj formulas for (9):

V >L� z 	E��� 1

2 K � z

�
F

" 1K � t � K � z
� 1K � t � K � z # dµ � t 	H@ πiµ >�� z 	M� z C F � (10)

As V � z 	H� z  2 must have opposite derivatives on the two sides of F, we have

1

2 K � z

�
F

" 1K � t � K � z
� 1K � t � K � z # dµ � t 	1� 1

2
� z C F �

which is an integral equation for dµ, but it is easier to solve immediately for V , actually

for V > , knowing that the values on the two sides of F are

V > � z 	���� 1
2
@ πiµ > � z 	M� z C F � (11)

Remark already that, when z is an endpoint a or a of F , the integral in (10) is a plain

integral, and µ > � 0 at these points:

V > � a 	�� V > � a 	���� 1
2

� (12)

We now go further in the study of a formula for V > :
1. Comparing (8) and (10), knowing that the principal values vanish on F, we see that

µ > � λ > on F . Therefore, as the total charge on F
�

F
dλ � t 	E� 1, (9) shows that, for

large z, V � z 	1�N@ πi � γ1  K � z �PO�O�O , with γ1 � �
F

2Re K � t dλ � t 	 . Here, the @ πi is

a result of the multivalued character of V .
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Also, V > � z 	�� γ1 '� 2 ��� z 	 3 � 2 	A�QO�O O for large z, V > > � z 	�� 3γ1 '� 4 ��� z 	 5 � 2 	A�QO�O O
For small z, V � z 	8� γ2 ��� z 	 1 � 2 ��O�O�O , V > � z 	8�R� γ2 '� 2 ��� z 	 1 � 2 	E��O O�O , V > > � z 	8�� γ2 �� 4 ��� z 	 3 � 2 	H�PO�O�O , with γ2 � �

F
2Re � 1  K � t 	 dλ � t 	 .

2. Now, let S � z � a 	T� z � a 	 be the square root of � z � a 	T� z � a 	 which is continuous

outside F and such that S � z � a 	T� z � a 	U� z remains bounded when z V ∞. AsS � z � a 	T� z � a 	 V > � z 	 is an analytic function of K � z outside F , vanishing at infin-

ity, with a pole of residue -
5
a
5
γ2  2 at 0, we have the Cauchy integral formulaS � z � a 	T� z � a 	 V >W� z 	���� 5

a
5
γ2

2 K � z
� 1

2πi X C

S � t � a 	T� t � a 	 V > � t 	K � z � K � t
d K � t �

where F is inside C, z and the origin are outside C. Letting C shrink to the two sides

of F , we have an integral on F of the jump of S � t � a 	T� t � a 	 V > � t 	 across F. But

as S � t � a 	T� t � a 	 takes opposite values on the two sides of F (that’s the trick of

these Sokhotskyi-Plemelj-Privalov-Riemann-Hilbert problems [9], chap. 14), (11)

tells that this jump is S � t � a 	Y� t � a 	 , hence,S � z � a 	T� z � a 	 V >L� z 	1� 5
a
5
γ2

2 K � z
� 1

2πi

� a

a

S � t � a 	T� t � a 	K � z � K � t
d K � t � (13)

Now, everything is known up to a small number of constants!

We could have performed a division by S � z � a 	T� z � a 	 :
V > � z 	S � z � a 	T� z � a 	 � γ2

2
5
a
5 K � z

� 1
2πi

� a

a

d K � tS � t � a 	T� t � a 	Z
 K � z � K � t � � (14)

and

zmV > � z 	S � z � a 	T� z � a 	 � 1
2πi

� a

a

tmd K � tS � t � a 	T� t � a 	B
 K � z � K � t � � m � 1 � 2 (15)

may be useful.

3. We now look for a differential equation for V > . The derivative of (13) times K � z is

d
dz [ S � z � z � a 	T� z � a 	 V >�� z 	�\]� 1

4πi K � z

� a

a

S � t � t � a 	T� t � a 	� K � z � K � t 	 2
d K � t �

which we integrate by parts:

d
dz [ S � z � z � a 	T� z � a 	 V >�� z 	�\^�� 1

4πi K � z

� a

a

1K � z � K � t

d

d K � t

 S � t � t � a 	Y� t � a 	_� d K � t
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Figure 1. The sets E and F .

� � 1

4πi K � z

� a

a

1K � z � K � t c S � t � a 	Y� t � a 	H� 2t
2t � a � a

2 S � t � a 	T� t � a 	$d d K � t

��� 1
2 K � z

" S � z � a 	Y� z � a 	 V > � z 	�� 5
a
5
γ2

2 K � z # � z � 2z � a � a 	 V > � z 	
2 S � z � z � a 	T� z � a 	

from (13) and (15). The differential equation for V > collapses into the surprisingly

simple

V > > � z 	���� 5
a
5
γ2

4 S � z3 � z � a 	Y� z � a 	 (16)

which is to be found in Gonchar & Rakhmanov [7] § 2 eq. (13) , and could probably

be derived in a shorter and more elegant way as just done here. . .

4. Integration of (16) yields

V > � z 	���� 5
a
5
γ2

4

� z

∞

dt

t S � t � t � a 	Y� t � a 	 � (17)

on any path joining ∞ to z avoiding the cuts F and E. As the function V > is single-

valued in C� I � E e F 	 (remember the short discussion after equation (7)), it must

have a vanishing period about F :� a

a

dt

t S � t � t � a 	T� t � a 	 � 0 � (18)

which we could also have deduced from (12): V > � a 	'� V > � a 	�� 0.

V � z 	���� 2k � 1 	 πi � 5
a
5
γ2

4

� z

∞

� z � t 	 dt

t S � t � t � a 	Y� t � a 	 (19)

The condition (18) and the period 2πi of V in (19) will allow the complete determination

of the solution of the potential problem. Elliptic functions and integrals will be needed

in the following sections.
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Figure 2. Level lines of V
�
z �Bf x g 2 (in units of the value at a).
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3. The Weierstrass connection.

Integrals like (13)-(19) involving the square root of a polynomial P of degree three

or four are called elliptic integrals. They are multivalued functions, as their outcome

depends on the path of integration. Even if the path is not allowed to cross given cuts

(here: E and F), contour integrals around cuts leave nonzero values called periods.

An elliptic function E satisfies
dE � u 	

du
� S P � E � u 	�	 , so that the change of vari-

able t � E � v 	 in an integral involving S P � t 	 will leave an integral free of square roots.

The existence and the properties of single-valued elliptic functions is a deep subject

pioneered mainly by Abel, Jacobi, Riemann, and Weierstrass.

3.1. Use of the Weierstrass℘ function.

The Weierstrass function℘ is the best suited in the study of (13)-(19), as it satisfies* d℘� u 	
du

, 2 � P � ℘� u 	�	�� 4 � ℘� u 	�� e 	T� ℘� u 	�� e >h	T� ℘� u 	'� e > 	B�
where e is real, and e > is complex, with e � e > � e > � 0. As our (13)-(19) deal with a

polynomial of zeros 0, a � α � iβ (with β < 0), and a, we make the obvious translation

of 2α  3 and use

z � 2α
3

� ℘� u 	i� t � 2α
3

� ℘� v 	j� (20)

with the Weierstrass function associated to

e ��� 2α
3

� and e > � α
3

� iβ � (21)

It is especially important to see that the discriminant

∆ � 16 � e � e > 	 2 � e > � e > 	 2 � e > � e 	 2 ��� 64β2 � α2 � β2 	 2

is negative.

In order to proceed, we need more data on the Weierstrass ℘ function. Remember

(see e.g. [1], p. 11) that the basic Weierstrass function

℘� u 	 : � 1
u2 � ∑k

m lm mon�pq k 0 l 0 nYr 1� u � 2mω � 2m > ω > 	 2 � 1� 2mω � 2m > ω > 	 2 s � (22a)

where 2ω and 2ω > are a pair of primitive periods such that

Im τ < 0 � τ : � ω >
ω

� (22b)
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is an (even) elliptic function, whose only poles (all of order 2) are the points 2mω � 2m > ω >
(for all integers m and m > ). Since here the coefficients of P are real and such that ∆ ! 0,

it is known (see e.g. [6], p. 339) that there exists a pair of conjugate complex primitive

periods 2ω > � 2ω > giving a rhombic fundamental parallelogram, whose translated diago-

nals mod � ω > @ ω > 	 are the only lines on which ℘� u 	 is real. However, we will rather

make use of the unimodular transformationt
ω >
ω u � t

1 0

1 1 u
t

ω >
ω > u �

which anyway leaves unchanged the point-lattice of all periods, to legitimate the as-

sumption adopted hereafter, viz.,

ω � 2Reω > < 0 � Imω > < 0 � (23)

As a matter of fact, provided only that ∆ v� 0, the customary definitions

e : � ℘� ω 	i� e > : � ℘� ω >h	i� (24a)

can be “inverted” to find a pair of primitive periods 2ω � 2ω > corresponding to given

numbers e and e > (see e.g. [1], p. 30 and p. 33). Moreover, ℘� u 	 satisfies the differential

equation

℘>$�xw 4 � ℘ � e 	T� ℘ � e > 	T� ℘ � e > 	 (24b)

in the region G I L (L is any simple arc lying in G � C� I E � C� I 
 0 � ∞ 	 and joining the

points a � a). It should be noted once for all that the square root in (24b) is to be under-

stood as the branch that is positive along the upper side of the cut E; this is clearly a

coherent choice, in view of the general principle of the permanence of functional equa-

tions, since ℘� u 	 increases from e to ∞ as u increases from ω to 2ω (for an alternative

convention, see e.g. [6], p. 334).

These classical results naturally suggest using the change of variable (20) in the

integrals (13)-(19) to “uniformize” the integrand by eliminating the square root; on the

other hand, determining a suitable range of integration apparently requires some famil-

iarity with the underlying conformal map interpretation (which does not seem to be

widely known when ∆ ! 0 !). It turns out (see also [16], p. 630 and p. 642) that the

(open) rectangle in the u � plane with vertices 0 � 2ω � ω > � 3ω  2 and ω > � ω  2,– to which

we must add two adjacent sides in order to cover the entire plane by its translations mod� 2ω � iImω > 	 – is a fundamental region for the mapping z � ℘� u 	'� e; in other words, the

interior of this set is mapped in a one-to-one manner onto the whole extended z � plane,

except for cuts, to wit:



A.P., Magnus, J., Meinguet / The ‘1/9’ problem. 11

u-plane
z � plane

0 ω 2ω

ω > � ω  2 ω > ω > � ω ω > � 3ω  2

E

L

a � ℘� ω > 	'� e

a � ℘� ω > � ω 	�� e

Figure 3. A fundamental region for z y ℘
�
u � � e.z the real interval 
 0 � ∞� (the edges of this cut correspond to the line-segments 
 0 � ω � and
 ω � 2ω � , respectively);z a simple arc L in G, symmetric with respect to C� and joining the points e > � e � a

and e > � e � a (the edges of this cut2 correspond to the line-segment 
 ω > � ω � ω > � and
 ω > � ω > � ω  2�Te{
 ω > � 3ω  2 � ω > � ω � , respectively).

A somewhat less detailed information is conveyed by saying simply that the closed

u � rectangle of vertices 0 � ω � ω > � ω  2 � ω > � ω  2 (resp. its translation by ω) is mapped

by z � ℘� u 	'� e onto the half-plane Imz | 0 (resp. Im z } 0).

The GP-Pari software [2] allows to compute the ℘ function. Some values are

given in table 1.

3.2. The potential in terms of the ℘and zeta functions.

We come now to the evaluation of the integrals (17)-(19): S � t � t � a 	T� t � a 	 is

negative real when t is real at the left of L; positive real when t is real between L and 0;

negative imaginary when t is real on the upper side of E; and positive imaginary when t

is real on the lower side of E. We have therefore, from (24b)

dtS � t � t � a 	T� t � a 	 � 2idv when t � ℘� v 	�� e �
and, from (17)-(19),

V > � z 	���� i
5
a
5
γ2

2

� u

0

dv
℘� v 	'� e

� V � z 	���� i
5
a
5
γ2

2

� u

0
* z

℘� v 	'� e
� 1 , dv �

2 which need not to be the arc F , see Fig. 4 for a modified fundamental region.
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u z y ℘
�
u � � e

0 ~ 05 f 0 ~ 01i 355 ~ 8254
�

147 ~ 9292i

ω g 2 f 0 ~ 01i 1 ~ 831555
�

0 ~ 04135211i

ω f 0 ~ 01i
�

0 ~ 0003356574

3ω g 2 f 0 ~ 01i 1 ~ 831555 f 0 ~ 04135211i

2ω
�

0 ~ 05 f 0 ~ 01i 355 ~ 8254 f 147 ~ 9292i

2ω
�

0 ~ 01 f i Im ω � g 2
�

9 ~ 953617 f 0 ~ 7107980i

2ω
�

0 ~ 01 f i Im ω � � 0 ~ 01i
�

1 ~ 922076 f 0 ~ 0946833i

3ω g 2 f i Im ω � � 0 ~ 01i 1 ~ 195284 f 1 ~ 388380i

ω f i Im ω � � 0 ~ 01i
�

1 ~ 744042

ω g 2 f i Im ω � � 0 ~ 01i 1 ~ 195284
�

1 ~ 388380i

0 ~ 01 f i Im ω � � 0 ~ 01i
�

1 ~ 922076
�

0 ~ 09468325i

0 ~ 01 f i Im ω � g 2
�

1 ~ 829805
�

0 ~ 09010485i
Table 1

Boundary of the fundamental region chosen for the Weierstrass connection.

Now,

1
℘� v 	�� e

� ℘� v � ω 	�� e
H2

� H2 : ��� e � e > 	T� e � e > 	�� 5
a
5 2 �

in view of the addition theorem for ℘; on the other hand

℘� u 	1��� ζ >_� u 	�� lim
u � 0 r ζ � u 	�� 1

u s � 0 �
where the (odd) Weierstrass zeta function ζ is meromorphic with only simple poles at

the points 2mω � 2m > ω > , and quasi-periodic in the sense that

ζ � u � 2ω 	2� ζ � u 	H� 2η � ζ � u � 2ω >�	E� ζ � u 	A� 2η >B�
so that the (half) quasi-periods are

η : � ζ � ω 	i� η > : � ζ � ω >�	i�
Hence

V > � z 	E� iγ2

2
5
a
5 ��� ζ � u � ω 	�� eu � η 	]� V � z 	1� iγ2

2
5
a
5 
 z ��� ζ � u � ω 	�� eu � η 	'� 5

a
5 2u ��@ πi �

(25)

We now go on with conditions for the remaining unknowns:

As V > must be single-valued (as seen earlier), a contour integral of (17) about any

arc joining a to a must leave a zero period. This means by (25) that in the u � plane,� ζ � u � ω 	E� eu is left unchanged when u is replaced by u � 2ω, as z � ℘� u 	E� e is
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itself left unchanged. As the increase of the zeta function is 2η, we have the important

condition

η � eω � 0 � (26)

The equation can also be deduced from (12) V > � a 	�� V > � a 	j� 0, as z � a and z � a

correspond to u � ω > and u � ω > � ω.

The equation (26) already gives a and a up to a real scaling factor. Indeed, if

one insists to write all the arguments involved in the computation of elliptic functions,

one knows that ℘� u 	�� ℘� u 5
ω � ω > 	 is a homogeneous function of degree � 2 of its three

arguments, and ζ � u 5
ω � ω > 	 is homogeneous of degree � 1 (see [6], p. 331). Then, after

division by ω of the three arguments of η � ζ � ω 5
ω � ω > 	^� ω � 1ζ � 1 5

1 � ω >  ω 	 and e �
℘� ω 5

ω � ω > 	E� ω � 2℘� 1 5
1 � ω >  ω 	 , (26) becomes

ζ � 1 5
1 � τ 	H� ℘� 1 5

1 � τ 	'� 0 � (27)

where τ � ω >  ω. This equation in τ can be solved numerically, see next subsection. One

has

τ � 0 � 5 � 0 � 354729892522431290272 � i �
We then find the phase of a (and a):

a � ℘� ω > 5 ω � ω > 	�� ℘� ω 5
ω � ω > 	E� ω � 2 
℘� τ 5 1 � τ 	'� ℘� 1 5

1 � τ 	;�� ω � 2 
 3 � 513737804416293417823 � 4 � 083668050275421524405i�$� 5
a
5
exp ��� iϕ 	B�

with ϕ � 0 � 8602743467491461920702 � or 49 � 29008929210000708037 degrees �
3.3. Use of theta functions.

Other equivalent formulations of the key condition (18) follow, via (26), from the

well known connection between the (odd) Weierstrass sigma function σ, which is defined

by

σ > � u 	
σ � u 	 � ζ � u 	2� lim

u � 0

σ � u 	
u

� 1 �
and the Jacobi theta function ϑ1. Remember (see e.g. [1], p. 37 and p. 53) that σ � u 	 is

an entire transcendental function having only simple zeros at the points 2mω � 2m > ω > . It

turns out that

σ � u 	E� 2ωeηu2 � 2ωϑ1 � v 	
ϑ >1 � 0 	 � v � u

2ω
�
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which easily implies that

℘� u 	���� η
ω

� 1
4ω2 
 logϑ1 � v 	;� > > � v � u

2ω
� (28)

Now ϑ1 � v 	 can be defined (see e.g. [6], § 13.19), either as a “rapidly convergent” simple

series

ϑ1 � v 	�� i
∞

∑
n q � ∞

��� 1 	 nq
k
n � 1 � 2 n 2eπi

k
2n � 1 n v � q � eπiτ (29a)

or as an infinite product (via Jacobi’s triple product identity)

ϑ1 � v 	E� 2q0q1 � 4 sinπv
∞

∏
n q 1

� 1 � 2q2n cos2πv � q4n 	2� q0 � ∞

∏
n q 1

� 1 � q2n 	B� (29b)

By substituting in (28) these explicit definitions for ϑ1 � v 	 and making v � 1  2 (which

corresponds to u � ω), we get eventually

e ��� η
ω

� 1
4ω2 " ϑ > >1 � v 	

ϑ1 � v 	 # v q 1 � 2
�

since ϑ >1 � 1  2 	�� 0 (easy verification), and

e ��� η
ω

� π2

ω2 � 1
4
� 2

∞

∑
n q 1

q2n� 1 � q2n 	 2 � �
Hence the key condition (18), reformulated as (26), becomes� ϑ > >1 � 1  2 	�'� 2π2 	�� ∞

∑
n q 0

� 2n � 1 	 2q
k
n � 1 � 2 n 2 � 0 (30)

from (29a), or
∞

∑
n q 1

q2n� 1 � q2n 	 2 ��� 1
8

(31a)

from (29b). The Lambert series equation (31a), in turn, can be rewritten as

∞

∑
n q 1

��� 1 	 nnq2n

1 � q2n � 1
8

(31b)

by making use of Weierstrass’ theorem on double series (see e.g. [11], p. 430 and p. 450),

or equivalently (for x : ��� q2),

x
1 � x

� 2
x2

1 � x2 � 3
x3

1 � x3 �PO�O�OT� 1
8

�
It is remarkable that the latter equation was exploited by Halphen in his book [8] (1886!)

to prove elegantly the existence of a unique root x in � 0 � 1 	 : each of the terms of this
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series is indeed an increasing function in � 0 � 1 	 , so that the series itself increases actually

from 0 to ∞; for the numerical determination of this root x, the formulation (30), or

equivalently,

1 � 9x � 25x3 � 49x6 � 81x10 �QO�O O���� 2n � 1 	 2 ��� x 	 n
k
n � 1 n�� 2 �QO�O�OY� 0

is, however, more advantageous (this remark is also due to Halphen [8], p. 287). For

very fast solution of problems related to elliptic functions and integrals, AGM methods

[3] must be considered too, see next section.

As for the number theoretic formulation privileged by Gonchar and Rakhmanov

(see [7], Theorem 2, p. 321), viz.,

∞

∑
n q 1

anxn � 1  8 � where an �x����� ∑d � n ��� 1 	 dd ����� � (32)

it easily follows from (31a) as sketched hereafter:� ∞

∑
n q 1

q2n� 1 � q2n 	 2 ��� ∑∞
n q 1 q2n ∑∞

k q 0 ��� 1 	 k � k � 1 	 q2nk� ∑∞
n q 1 ∑∞

k q 1 ��� 1 	 kk ��� x 	 nk � with x : ��� q2 �� ∑∞
m q 1 xm � ��� 1 	 m ∑d �m ��� 1 	 dd ���

which actually equals the left-hand side of (32).

We now have a full proof of the existence of

x ��� q2 � ρ � ‘1  9 >Z� 0 � 107653919226484576615 �����W� 1  9 � 28902549192081891875 �����
3.4. Complete determination of remaining parameters.

Final determination of ω, a, etc. is done by using remaining equations, as (12)

which yields, thanks to (25):

iγ2

2
5
a
5 ��� ζ � ω > � ω 	�� eω > � η 	E��� iγ2

2
5
a
5 � η > � eω > 	���� 1

2
�

which, from the Legendre relation η > ω � ηω > � π '� 2i 	 ([1], § 12) and (26), becomes

η > � eω > ��� πi
2ω

; γ2 � 2
5
a
5
ω

π
� (33)

The positive unit charge of F means that V increases by 2πi when ones achieves a

clockwise contour about any arc joining a to a. One finds a valid trajectory by following
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the curved arrows in figure 3, which corresponds to a decrease of the u variable by the

amount 2ω (the three upper arrows3 in the left part of fig. 3). Now, by (25),

V � u � 2ω 	'� V � u 	�� z 
 V >W� u � 2ω 	�� V >�� u 	;��� iγ2
5
a
5

2

�� 2ω ��� iγ2

5
a
5
ω �

as z and V > are unaffected, therefore, γ2
5
a
5
ω � 2π, and, from (33),5

a
5
ω � π ; γ2 � 2 � (34)

and, as
5
a
5 � 5

℘� ω > 	�� ℘� ω 	 5 � 5
℘� ω > 5 ω � ω > 	�� ℘� ω 5

ω � ω > 	 5 � ω � 2 5℘� τ 5 1 � τ 	�� ℘� 1 5
1 � τ 	 5 ,

finally:

ω � 5
℘� τ 5 1 � τ 	'� ℘� 1 5

1 � τ 	 5
π

;
5
a
5 � π25

℘� τ 5 1 � τ 	�� ℘� 1 5
1 � τ 	 5 � (35)

ω � 1.71482189287770440634,

ω > � τω � 0.857410946438852203171 + 0.608298585755620267353 i

e � -0.796599543700524985912, η � 1.36602633739404986733

a � 1.19489931555078747886 - 1.38871265581562671229 i

Finally, the locus F is the arc joining a to a where V � x  2 � Re � V � z  2 	 has a

constant value ��� logρ 	� 2. Looking for the corresponding locus in the u � plane, we find

a sine-like curve (whose equation is still a small enigma) which makes a convenient new

upper boundary of the fundamental region, see Fig. 4.

u

0 ω 2ω

ω > � ω  2
ω > ω > � ω

ω > � 3ω  2

Figure 4. A modified fundamental region for z y ℘
�
u � � e, whose upper boundary corresponds to the two

sides of F .

3 see also that a clockwise contour around E correspond to an increase of u by an amount of 2ω (negative

unit charge).
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4. The Jacobi connection.

As is well known, the Weierstrass viewpoint is almost always preferable for theo-

retical investigations (higher symmetry), whereas the Jacobi viewpoint is more suitable

for various computations (higher standardization).

The Jacobi elliptic integrals involve the square root of � 1 � k2x2 	Y� 1 � x2 	 . The

complete elliptic integrals of first and second kind are

K � k 	 : � � 1

0

dxS � 1 � x2 	T� 1 � k2x2 	 and E � k 	 : � � 1

0

1 � k2x2

1 � x2 dx �
The periods are 4K � k 	 and 2iK � k > 	 , with k > 2 : � 1 � k2. The connection with the preced-

ing section is therefore given by

τ � ω >
ω

� iK � k > 	
2K � k 	 �

The most convenient (and most tabulated) elliptic integrals correspond to k (and k > ) C� 0 � 1 	 , which supposes τ to be a pure imaginary number. We will show how to construct

a pure imaginary
.
τ � ..τ � 1 � 2τ � 1

A fundamental region for the conformal mapping of the modular function

λ : τ �V k2 � λ � τ 	3� Im τ < 0

(see e.g. [12], p. 197) is classically the (open) curvilinear quadrilateral��5
Re τ

5 ! 1 and
5
2τ @ 1

5 < 1 � Im τ < 0 ��� (36)

the right (resp. left) half of which is mapped one-to-one onto the upper (resp. lower)

half of the k2 � plane cut along the line-segment ��� ∞ � 0� and 
 1 � ∞ 	 ; this mapping extends

continuously to the boundary in such a way that τ � 0 �W@ 1 � ∞ correspond to k2 � 1 � ∞ � 0
(which are the only lacunary values of the modular function).

It turns out that the (unique) argument ϕ of any point a � exp iϕ � α � iβ � β < 0 	
in the region G � C�EI 
 0 � ∞ 	 satisfying the Gonchar-Rakhmanov condition (18) belongs

to � 0 � π  2 	 (as a matter of fact, as seen above, ϕ � 49 � 19 > ).
In view of the cut along the positive real axis, the argument of the point a � α � iβ
can only be 2π � ϕ, and not � ϕ; it follows that the complementary Jacobi modulus

k > : ��� e � e > 	 1 � 2 '� e � e > 	 1 � 2 (see e.g. [6], p. 342) is necessarily

k > : ��� a  a 	 1 � 2 � ei
k
ϕ � π n � 0 ! ϕ ! π  2 �
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1
0 2

×

× ×

×

×

τ

.
τ

..τ

.
k

2

k2
0 1

� ..
k

2 � 6 4 � 75

τ � plane k2 � plane

Figure 5. A fundamental region for the modular function k2 y λ
�
τ � .

On the other hand, the squared Jacobi modulus k2 : � 1 � k > 2 belongs to the lower

half-plane, whereas the semiline Re τ � 1  2 � Im τ < 1  2 	 is mapped onto the upper

semicircle of radius 1 centered at k2 � 1. This apparent paradox can be easily removed,

however, by adopting for fundamental region the right half of (36) together with its

Schwarz reflection with respect to the right-hand semicircle (rather than its reflection

with respect to the imaginary axis, see [1], p. 63).

The passage from the line-segment
�
τ : Re τ � 1  2 � 0 ! Im τ ! 1  2 � (which con-

tains the unique τ satisfying to (23) and corresponding to k > ) to the standard line-segment� 0 � i∞ 	 (on which q : � eπiτ, and therefore k, belong to the standard interval � 0 � 1 	 ) is rel-

atively easy. We are actually concerned here with the modular transformation of the

second order

τ �V .
τ � 2τ � 1 � q �V .

q ��� q2; �
which can be achieved in two steps as summarized hereafter (see e.g [6], p. 319 and

p. 342), namely:z a Landen transformation

..τ � 2τ � ..
q � q2 �

..
k � 1 � k >

1 � k > � icot
ϕ
2

� ..
k > 2 � 1  sin2 ϕ

2
�

..
K � 1 � k >

2
K � 1

1 � ..
k

K � ..E � E � k > K
1 � k > �
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But E ��� η � eω 	�'� e � e > 	 1 � 2 must vanish in view of (26), so that the last equation

can be rewritten as
..
E ��� 1 � ..

k 	 K  2, which strongly suggests eliminating K to get

..
K ��� 2  ..k > 2 	 ..E �z a Jacobi transformation

.
τ � ..τ � 1 � .

q ��� ..q �
.
k

2 ��� ..
k

2

..
k > 2 � cos2 ϕ

2
�

.
K � ..

k > ..K � .
E ��� 1  ..k > 	 ..E �

That E � 0 makes us look for a quite unexpected zero of the function k �V E � k 	 .
There are not many tables and graphs of this function in the complex plane. Jahnke and

Emde ([10], p. 65) show level lines of E � k 	 in the k2 � plane cut by 
 1 � ∞ 	 and one finds

no zero. However, if we follow an analytic continuation across 
 1 � ∞ 	 ,
k2

1

the zero of E cannot be missed (Fig. 6).

In conclusion, the Gonchar-Rakhmanov condition (18) can be rewritten in the par-

ticularly nice form
.
K � 2

.
E ; (37a)

this is indeed a real equation having only one root
.
k in � 0 � 1 	 , namely,

.
k � cos

ϕ
2

� 0 ! ϕ ! π � (37b)

which determines the required point a (up to a normalization provided in subsection 3.4).

It should also be realized that the half-periods
.
ω � ω and

.
ω > � 2ω > � ω are respectively

real and purely imaginary, and that

x � .
q � 1  9 � 289 � 0 � 1077 �����

is the famous ‘1  9 > constant.
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Figure 6. The level-lines of �E �
k ��� in the k2 � plane.
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There are very efficient algorithms to compute Jacobi complete elliptic integrals

through arithmetic-geometric mean (AGM, [3], chap. 1): let

a0 � 1 � b0 � k >$� S 1 � k2 � c0 � k �
then,

an � 1 � an � bn

2
� bn � 1 � S anbn � cn � 1 � c2

n

4an � 1

produces

K � k 	�� π
2limn � ∞ an

� E � k 	
K � k 	 � 1 � ∞

∑
n q 0

2n � 1c2
n �

One finds, according to next section,.
k � cosϕ  2 � 0 � 9089085575485414782361189 ,.
k
> � sinϕ  2 � 0 � 4169954844060420563904195.

5. Appendix. The GP-PARI program.

See here the program used to produce the numerical values. The Jacobi data
.
k and.

q are first found thanks to the very efficient AGM algorithm. The Weierstrass form fol-

lows in the determination of the periods 2ω � 2ω > , and a formula for the complex potential

V .

The program can be fetched at http://www.math.ucl.ac.be/˜magnus/nine.gp

{

/* nine.gp: launch gp and type \r nine

Elliptic functions & integrals related to ‘1/9’

gp-pari program: see

ftp://megrez.math.u-bordeaux.fr/pub/pari/

*/

default(realprecision,40); default(format,"g7.21");

flone=1.0;pr=precision(flone);ep=10ˆ(-pr);

/*

AGM calculation of E and K such that K=2E

from J. & P. Borwein, Pi and the AGM, Wiley 1987, algorithm 1.2

*/

k=0.9;ek=1; cnt=1;
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while((abs(2*ek-1)> 1000*ep)&&(cnt<20), cnt=cnt+1;

a=1;b=sqrt(1-kˆ2);c=k;ek=1;cnt2=1;p2=1;

while( (a-b > 1000*ep)&&(cnt2<20), cnt2=cnt2+1;

ek=ek-p2*cˆ2/2;a1=(a+b)/2;b=sqrt(a*b);a=a1;c1=cˆ2/(4*a);

cc=c1/c;c=c1;p2=p2*2;

); \\ end while a-b

dek= (2*ek-1 -ekˆ2/(1-kˆ2) )/k; \\ derivative of E/K wrt k

k = k -(2*ek-1)/(2*dek) ; \\ Newton step

print(k," ",2*ek-1);

); \\ end while 2ek-1

/* q = lim (c_{n+1}/c_n)ˆ{1/2ˆn} : */

dotq=cc;for(iq=1,cnt2-3,dotq=sqrt(dotq));

print(" rho = ’1/9’ = 1/",1/dotq); \\ rho=dotq

q=sqrt(-dotq); \\ dotq = -qˆ2

tau=log(q)/(Pi*I);

print("tau = ",tau);

/* Weierstrass functions with periods 2 and 2 tau : */

perio=2*[1,tau];

print(" check eta+e omega=0: ",ellzeta(perio,1)+ellwp(perio,1));

e21=ellwp(perio,tau)-ellwp(perio,1);

/* actual periods */

om1=abs(e21)/Pi;om2=tau*om1;om=[om1,om2];perio=2*om;

print("half periods= ",om);

e1=ellwp(perio,om1); eta1=ellzeta(perio,om1);

print("e= ",e1); print("eta= ",eta1);

}

/* z as a function of u : */

{

zu(u)= ellwp(perio,u)-e1

}

{

a=zu(om2); absa=abs(a);absa2=absaˆ2; print("a= ",a);

}

/* V as a function of u : */

{
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vu(u)=

locz=zu(u);

(1*I/absa)*(locz*(ellzeta(perio,om1-u)-eta1-e1*u)-absa2*u);

}

{

vu2(u)=

locz=zu(u);

vu(u)+locz/2;

}

{

default(format,"g12.7");

print("You may now use functions zu, vu, and vu2 for z,V, and V+z/2");

print("as functions of the complex number u");

print(zu(om2)," ",vu2(om2));

}

Precision may be set (almost) at will! Here is a run with a little more than 1000

digits. Successive errors in the Newton-Raphson iteration needed to solve 2
.
E � .

K are

given first:

Script V1.1 session started Fri Jul 02 11:17:05 1999

C:\calc\pari>gp

...

/* ninem.gp: launch gp and type \r ninem

default(realprecision,1100);

...

? \r ninem

0.909106389042564496377 0.0275569449838391609734

0.908908659948146424888 -0.000626191643655082797822

0.908908557548568882889 -0.000000323955610037733639977

0.908908557548541478236 -8.66984654923741374392 E-14

0.908908557548541478236 -6.20959400962069829582 E-27

0.908908557548541478236 -3.18542069815699074789 E-53

0.908908557548541478236 -8.38250806957750567338 E-106

0.908908557548541478236 -5.80481449065487332117 E-211

0.908908557548541478236 -2.78366568096331142362 E-421

0.908908557548541478236 -6.40139365695332962324 E-842



24 A.P., Magnus, J., Meinguet / The ‘1/9’ problem.

0.908908557548541478236 -1.79438244558797800674 E-1108

rho = ’1/9’ = 1/9.

2890254919 2081891875 5449435951 7450610316 9486775012

4408239700 6142172937 5247286507 0705241587 0614247144

3912681967 7128554634 7619722718 8544788518 0420483981

0589915280 9484682552 1982511074 8658254081 5458401564

8136915011 7186189524 6761040890 8308993768 4760280340

5868937594 6010024587 8577308304 3751302874 4779961340

7190579322 3955637594 9783816768 3632589307 7334560097

3350182664 9343035931 6218132137 3666611613 8225969837

0767080119 5884844115 4302660175 5483089394 7104785320

1025861840 7185058908 4662450431 6462436998 7930626775

1488801274 1726769451 4490394090 7097402173 3227620975

0075560031 6605883906 6451215528 0694284302 7393563193

4928943995 4835453174 0869105909 8687547545 5565122660

3233226675 4811472225 9063831342 4685872428 1552421119

0218737835 4467747118 4720787880 1401612334 4268072847

0863803318 7195631203 9582366412 0392486822 9780060331

8692746560 2489555817 7940630266 7701570912 4711699116

7847538280 1366128253 7836690422 1897763449 9799342464

5700490122 1605086501 6281257252 7002899916 4390980736

8153525888 9110283973 7792295987 2981897188 7234445326

? quit Good bye!
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[8] G.H. Halphen, Traité des fonctions elliptiques et de leurs applications. Première partie. Théorie des
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