On conjecture no. 58 arising from the OEIS

Christian Meyer

December 7, 2004

In [1] certain conjectures arising from the numerical data in the online encyclopedia of integer sequences ([2]) are presented. Problem no. 58 is to prove that for the sequence $\left(a_{n}\right)$ with $a_{1}=1, a_{2}=2$ and a_{n} the smallest number not of the form $a_{i}, a_{n-1}+a_{i}$ or $\left|a_{n-1}-a_{i}\right|$ with $i \leq n-1$ we have

$$
a_{n}=3 n+3-2 \cdot 2^{\lfloor\lg (n+2)\rfloor} \quad \text { for } n>2 \text {. }
$$

The sequence $\left(a_{n}\right)$ can be found in [2] as $A 034702$.
Let n be a natural number. Then n can be written in a unique way as

$$
n=2^{k}-2+r
$$

with $r<2^{k}$. We define a sequence $\left(b_{n}\right)$ by

$$
b_{n}:=2^{k}-3+3 r \quad \text { for } \quad n=2^{k}-2+r .
$$

An alternative description of this sequence is

$$
b_{1}=2, \quad b_{n}= \begin{cases}\frac{b_{n-1}}{2}, & n=2^{k}-2, \\ b_{n-1}+3, & \text { otherwise } .\end{cases}
$$

Indeed we also have

$$
b_{n}=3 n+3-2 \cdot 2^{\lfloor\lg (n+2)\rfloor} \quad \text { for } n>2 .
$$

We are going to show that $a_{n}=b_{n}$ (except for $n=1,2$; the values of a_{1} and a_{2} should be interchanged). This is done in the following three easy lemmata.

Lemma 1 Let $n=2^{k}-2+r, r<2^{k}$. We have

$$
\begin{aligned}
\left\{b_{i}, i \leq n\right\}=\{x \mid x & \left.\equiv b_{n} \quad \bmod 3, x \leq 2^{k}-3+3 r=b_{n}\right\} \\
& \cup\left\{y \mid y \equiv-b_{n} \quad \bmod 3, y \leq 2 \cdot\left(2^{k}-3\right)\right\} .
\end{aligned}
$$

Proof:

The proof is by induction with respect to n. The case $n=1$ is trivial. Now let $n>1$. We distinguish between two cases:
Case 1: If $r>0$ then $n-1=2^{k}-2+(r-1), b_{n}=b_{n-1}+3 \equiv b_{n-1} \bmod 3$ and

$$
\begin{aligned}
& \left\{b_{i}, i \leq n\right\}=\left\{b_{i}, i \leq n-1\right\} \cup\left\{b_{n}\right\} \\
& =\left\{x \mid x \equiv b_{n-1} \quad \bmod 3, x \leq 2^{k}-3+3(r-1)\right\} \\
& \cup\left\{y \mid y \equiv-b_{n-1} \quad \bmod 3, y \leq 2 \cdot\left(2^{k}-3\right)\right\} \\
& \cup\left\{2^{k}-3+3 r\right\} \\
& =\left\{x \mid x \equiv b_{n} \quad \bmod 3, x \leq 2^{k}-3+3 r\right\} \\
& \cup\left\{y \mid y \equiv-b_{n} \quad \bmod 3, y \leq 2 \cdot\left(2^{k}-3\right)\right\} .
\end{aligned}
$$

Case 2: If $r=0$ then $n-1=2^{k-1}-2+\left(2^{k-1}-1\right), b_{n}=b_{n-1} / 2 \equiv-b_{n-1}$ $\bmod 3$ and

$$
\begin{aligned}
\left\{b_{i}, i \leq n\right\}= & \left\{b_{i}, i \leq n-1\right\} \cup\left\{b_{n}\right\} \\
= & \left\{x \mid x \equiv b_{n-1} \bmod 3, x \leq 2^{k-1}-3+3\left(2^{k-1}-1\right)\right\} \\
& \cup\left\{y \mid y \equiv-b_{n-1} \bmod 3, y \leq 2 \cdot\left(2^{k-1}-3\right)\right\} \\
& \cup\left\{2^{k}-3\right\} \\
= & \left\{x \mid x \equiv-b_{n} \bmod 3, x \leq 2 \cdot\left(2^{k}-3\right)\right\} \\
& \cup\left\{y \mid y \equiv b_{n} \bmod 3, y \leq 2^{k}-6\right\} \\
& \cup\left\{2^{k}-3\right\} \\
= & \left\{x \mid x \equiv b_{n} \bmod 3, x \leq 2^{k}-3\right\} \\
& \cup\left\{y \mid y \equiv-b_{n} \bmod 3, y \leq 2 \cdot\left(2^{k}-3\right)\right\}
\end{aligned}
$$

Lemma 2 Let $n=2^{k}-2+r, r<2^{k}, x<b_{n}$. Then we have $x=b_{i}$ or $x=b_{n-1}+b_{i}$ or $x=\left|b_{n-1}-b_{i}\right|$ for some $i<n$.

Proof:

We distinguish again between two cases:
Case 1: Let $r=0$. If $x \equiv 1 \bmod 3$ or $x \equiv 2 \bmod 3$ then $x=b_{i}$ for some $i<n$ by the previous lemma. If $x \equiv 0 \bmod 3$ then

$$
x=2 b_{n}-\beta=b_{n-1}-\beta
$$

with $\beta \equiv 2 b_{n} \equiv-b_{n} \bmod 3$ and $\beta<2 b_{n}=2 \cdot\left(2^{k}-3\right)$, so $\beta=b_{i}$ for some $i<n$ by the previous lemma.

Case 2: Let $r>0$. If $x \equiv-b_{n} \bmod 3$ with $x \leq 2 \cdot\left(2^{k}-3\right)$ or $x \equiv b_{n}$ $\bmod 3$ then $x=b_{i}$ for some $i<n$ by the previous lemma.
Now let $x \equiv-b_{n} \bmod 3$ with $x>2 \cdot\left(2^{k}-3\right)$. Because of $2 \cdot\left(2^{k}-3\right) \equiv$ $2^{k+1} \equiv-2^{k} \equiv-b_{n} \bmod 3$ we even have $x \geq 2 \cdot\left(2^{k}-3\right)+3$. Now let

$$
x=b_{n-1}-\beta
$$

with $\beta \equiv b_{n-1}-x \equiv b_{n-1}+b_{n-1} \equiv-b_{n} \bmod 3$. We have
$\beta=b_{n-1}-x=2^{k}-3+3(r-1)-x \leq 2^{k}-3+3(r-1)-2 \cdot\left(2^{k}-3\right)-3=2^{k+1}-3$, so $\beta=b_{i}$ for some $i<n$ by the previous lemma. Note that if $\beta<0$ then $\beta \in\{-1,-2\}$ and we have $b_{n}=b_{n-1}+b_{2}$ resp. $b_{n}=b_{n-1}+b_{1}$.
Finally let $x \equiv 0 \bmod 3$. If $x>b_{n-1}=b_{n}-3$ then $b_{n}=b_{n-1}+b_{2}$ or $b_{n}=b_{n-1}+b_{1}$. Otherwise we can write

$$
x=b_{n}-3-\gamma=b_{n-1}-\gamma
$$

with $0<\gamma \equiv b_{n} \bmod 3$ and $\gamma \leq b_{n}-3-x \leq b_{n}$, so $\gamma=b_{i}$ for some $i<n$ by the previous lemma.

Lemma 3 Let $n=2^{k}-2+r, r<2^{k}$. Then we have $b_{n} \neq b_{i}, b_{n} \neq b_{n-1}+b_{i}$, $b_{n} \neq\left|b_{n-1}-b_{i}\right|$ for all $i<n$.

Proof:

Assume first that $b_{n}=b_{i}$, i.e.,

$$
2^{k}-3+3 r=2^{l}-3+3 s
$$

for some $k \leq l, r<2^{k}, s<2^{l}$. We have

$$
2^{k}+3 r=2^{l}+3 s<4 \cdot 2^{l}=2^{l+2}
$$

from which we conclude that $k=l$ or $k=l+1$. If $k=l$ then $r=s$ follows. If $k=l+1$ then $2^{l+1}-2^{l}=2^{l}=3(s-r)$, a contradiction. Thus we find that $b_{n} \neq b_{i}$ for all $i<n$. For the rest of the proof we distinguish again between two cases:
Case 1: Let $r=0$. Then we have $b_{n-1}=2 b_{n}>b_{n}$. If we assume that $b_{n}=\left|b_{n-1}-b_{i}\right|$ then we conclude that $b_{i}=b_{n}$ which is impossible.
Case 2: Let $r>0$. Then we have $b_{n-1}=b_{n}-3 \equiv b_{n} \bmod 3$. If we assume that $b_{n}=b_{n-1}+b_{i}$ or $b_{n}=\left|b_{n-1}-b_{i}\right|$ then we conclude that $b_{i} \equiv 0 \bmod 3$ which is impossible by the first lemma.

Corollary 1 For all $n>2$ (actually for all $n>0$ if we adjust the definition of $\left(a_{n}\right)$) we have

$$
a_{n}=b_{n}=3 n+3-2 \cdot 2^{\lfloor\lg (n+2)\rfloor}
$$

Proof:

By the second and the third lemma the number $\left(b_{n}\right)$ is the smallest number not of the form $b_{i}, b_{n-1}+b_{i}$ or $\left|b_{n-1}-b_{i}\right|$ with $i \leq n-1$. But this is exactly the definition of a_{n}. Also the initial values are the same.

Remark 1 The sequence a_{n} produces exactly the natural numbers that are not divisible be 3 (in a strange order).

Address: Fachbereich Mathematik und Informatik
Johannes Gutenberg-Universität
D-55099 Mainz, Germany
Email: cm@mathematik.uni-mainz.de

References

[1] Stephan, R., Prove or disprove 100 conjectures from the OEIS, preprint (2004), math.CO/0409509.
[2] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/index.html.

