On conjecture no. 58 arising from the OEIS

Christian Meyer

December 7, 2004

In [1] certain conjectures arising from the numerical data in the online encyclopedia of integer sequences ([2]) are presented. Problem no. 58 is to prove that for the sequence (a_n) with $a_1 = 1$, $a_2 = 2$ and a_n the smallest number not of the form a_i , $a_{n-1} + a_i$ or $|a_{n-1} - a_i|$ with $i \le n - 1$ we have

$$a_n = 3n + 3 - 2 \cdot 2^{\lfloor \lg(n+2) \rfloor}$$
 for $n > 2$.

The sequence (a_n) can be found in [2] as A034702. Let n be a natural number. Then n can be written in a unique way as

$$n = 2^k - 2 + r$$

with $r < 2^k$. We define a sequence (b_n) by

$$b_n := 2^k - 3 + 3r$$
 for $n = 2^k - 2 + r$.

An alternative description of this sequence is

$$b_1 = 2,$$
 $b_n = \begin{cases} \frac{b_{n-1}}{2}, & n = 2^k - 2, \\ b_{n-1} + 3, & \text{otherwise.} \end{cases}$

Indeed we also have

$$b_n = 3n + 3 - 2 \cdot 2^{\lfloor \lg(n+2) \rfloor}$$
 for $n > 2$.

We are going to show that $a_n = b_n$ (except for n = 1, 2; the values of a_1 and a_2 should be interchanged). This is done in the following three easy lemmata.

Lemma 1 Let $n = 2^k - 2 + r$, $r < 2^k$. We have

$$\{b_i, i \le n\} = \{x | x \equiv b_n \mod 3, x \le 2^k - 3 + 3r = b_n\}$$
$$\cup \{y | y \equiv -b_n \mod 3, y \le 2 \cdot (2^k - 3)\}.$$

Proof:

The proof is by induction with respect to n. The case n=1 is trivial. Now let n>1. We distinguish between two cases:

Case 1: If r > 0 then $n - 1 = 2^k - 2 + (r - 1)$, $b_n = b_{n-1} + 3 \equiv b_{n-1} \mod 3$

$$\{b_i, i \le n\} = \{b_i, i \le n - 1\} \cup \{b_n\}$$

$$= \{x | x \equiv b_{n-1} \mod 3, x \le 2^k - 3 + 3(r - 1)\}$$

$$\cup \{y | y \equiv -b_{n-1} \mod 3, y \le 2 \cdot (2^k - 3)\}$$

$$\cup \{2^k - 3 + 3r\}$$

$$= \{x | x \equiv b_n \mod 3, x \le 2^k - 3 + 3r\}$$

$$\cup \{y | y \equiv -b_n \mod 3, y \le 2 \cdot (2^k - 3)\}.$$

Case 2: If r = 0 then $n - 1 = 2^{k-1} - 2 + (2^{k-1} - 1)$, $b_n = b_{n-1}/2 \equiv -b_{n-1} \mod 3$ and

$$\{b_i, i \le n\} = \{b_i, i \le n - 1\} \cup \{b_n\}$$

$$= \{x | x \equiv b_{n-1} \mod 3, x \le 2^{k-1} - 3 + 3(2^{k-1} - 1)\}$$

$$\cup \{y | y \equiv -b_{n-1} \mod 3, y \le 2 \cdot (2^{k-1} - 3)\}$$

$$\cup \{2^k - 3\}$$

$$= \{x | x \equiv -b_n \mod 3, x \le 2 \cdot (2^k - 3)\}$$

$$\cup \{y | y \equiv b_n \mod 3, y \le 2^k - 6\}$$

$$\cup \{2^k - 3\}$$

$$= \{x | x \equiv b_n \mod 3, x \le 2^k - 3\}$$

$$\cup \{y | y \equiv -b_n \mod 3, y \le 2 \cdot (2^k - 3)\}.$$

Lemma 2 Let $n = 2^k - 2 + r$, $r < 2^k$, $x < b_n$. Then we have $x = b_i$ or $x = b_{n-1} + b_i$ or $x = |b_{n-1} - b_i|$ for some i < n.

Proof:

We distinguish again between two cases:

Case 1: Let r = 0. If $x \equiv 1 \mod 3$ or $x \equiv 2 \mod 3$ then $x = b_i$ for some i < n by the previous lemma. If $x \equiv 0 \mod 3$ then

$$x = 2b_n - \beta = b_{n-1} - \beta$$

with $\beta \equiv 2b_n \equiv -b_n \mod 3$ and $\beta < 2b_n = 2 \cdot (2^k - 3)$, so $\beta = b_i$ for some i < n by the previous lemma.

Case 2: Let r > 0. If $x \equiv -b_n \mod 3$ with $x \leq 2 \cdot (2^k - 3)$ or $x \equiv b_n \mod 3$ then $x = b_i$ for some i < n by the previous lemma.

Now let $x \equiv -b_n \mod 3$ with $x > 2 \cdot (2^k - 3)$. Because of $2 \cdot (2^k - 3) \equiv 2^{k+1} \equiv -2^k \equiv -b_n \mod 3$ we even have $x \geq 2 \cdot (2^k - 3) + 3$. Now let

$$x = b_{n-1} - \beta$$

with $\beta \equiv b_{n-1} - x \equiv b_{n-1} + b_{n-1} \equiv -b_n \mod 3$. We have

$$\beta = b_{n-1} - x = 2^k - 3 + 3(r-1) - x \le 2^k - 3 + 3(r-1) - 2 \cdot (2^k - 3) - 3 = 2^{k+1} - 3,$$

so $\beta = b_i$ for some i < n by the previous lemma. Note that if $\beta < 0$ then $\beta \in \{-1, -2\}$ and we have $b_n = b_{n-1} + b_2$ resp. $b_n = b_{n-1} + b_1$.

Finally let $x \equiv 0 \mod 3$. If $x > b_{n-1} = b_n - 3$ then $b_n = b_{n-1} + b_2$ or $b_n = b_{n-1} + b_1$. Otherwise we can write

$$x = b_n - 3 - \gamma = b_{n-1} - \gamma$$

with $0 < \gamma \equiv b_n \mod 3$ and $\gamma \leq b_n - 3 - x \leq b_n$, so $\gamma = b_i$ for some i < n by the previous lemma.

Lemma 3 Let $n = 2^k - 2 + r$, $r < 2^k$. Then we have $b_n \neq b_i$, $b_n \neq b_{n-1} + b_i$, $b_n \neq |b_{n-1} - b_i|$ for all i < n.

Proof:

Assume first that $b_n = b_i$, i.e.,

$$2^k - 3 + 3r = 2^l - 3 + 3s$$

for some $k \leq l$, $r < 2^k$, $s < 2^l$. We have

$$2^k + 3r = 2^l + 3s < 4 \cdot 2^l = 2^{l+2}$$

from which we conclude that k = l or k = l + 1. If k = l then r = s follows. If k = l + 1 then $2^{l+1} - 2^l = 2^l = 3(s - r)$, a contradiction. Thus we find that $b_n \neq b_i$ for all i < n. For the rest of the proof we distinguish again between two cases:

Case 1: Let r = 0. Then we have $b_{n-1} = 2b_n > b_n$. If we assume that $b_n = |b_{n-1} - b_i|$ then we conclude that $b_i = b_n$ which is impossible.

Case 2: Let r > 0. Then we have $b_{n-1} = b_n - 3 \equiv b_n \mod 3$. If we assume that $b_n = b_{n-1} + b_i$ or $b_n = |b_{n-1} - b_i|$ then we conclude that $b_i \equiv 0 \mod 3$ which is impossible by the first lemma.

Corollary 1 For all n > 2 (actually for all n > 0 if we adjust the definition of (a_n)) we have

$$a_n = b_n = 3n + 3 - 2 \cdot 2^{\lfloor \lg(n+2) \rfloor}.$$

Proof:

By the second and the third lemma the number (b_n) is the smallest number not of the form b_i , $b_{n-1} + b_i$ or $|b_{n-1} - b_i|$ with $i \le n-1$. But this is exactly the definition of a_n . Also the initial values are the same.

Remark 1 The sequence a_n produces exactly the natural numbers that are not divisible be 3 (in a strange order).

Address: Fachbereich Mathematik und Informatik

Johannes Gutenberg-Universität

D-55099 Mainz, Germany

Email: cm@mathematik.uni-mainz.de

References

- [1] Stephan, R., Prove or disprove 100 conjectures from the OEIS, preprint (2004), math.CO/0409509.
- [2] Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences/index.html.